神经元及突触
第1章 神经元和突触

Cajal 染色的神经元
Cajal的神经元学说
神经元构成神经系统 神经细胞的树突接受信息, 传向胞体,由胞体传向轴 突 神经元之间具有高度特异 性的连接 Golgi 和Cajal共享1906 年的诺贝尔生理、医学奖。
3、电子显微镜观察下的神经元
二、神经元的数量和大小: 1、数量:人脑有140亿以上。 2、大小: 最小的小脑的颗粒细胞等其直径为58微米;较大的大脑锥体细胞其直径为 80-100微米;相应的体积为300微米3; 200,000微米3。
细胞膜将细胞内外分隔,膜的厚度约5nm。 细胞器 胞体内除核外,聚集着由质膜包裹着 的结构,这些结构称为细胞器(organelle)。 主要包括粗面内质网、滑面内质网(尼氏体), Golgi器和线粒体等。
除细胞核之外,细胞膜内所包含的各种物质统 称为细胞质(胞浆,cytoplasm)。
2、突触前膜
突触前终末被一表面膜包围着,它是突 触前轴突膜的延续,与突触后膜相对应的膜即 突触前膜 。
突触前膜的致密质向细 胞内凸出形成三角形的致密 突起(dense projection)并 和膜上的网形格子共同形成 能容纳突触囊泡的突触囊泡 栅栏(synaptic vesicular grid),它引导囊泡与突触 前膜接触,并融合穿孔释放 递质传递信息。
3.脑脊液-脑屏障( Cerebrospinal fluid-Brain Barrier,CBB )是室管膜上皮细胞和星形胶质细胞共同 构成,对于脑脊液中的物质进入脑细胞起选择通透作用.
第二节 神经元 一、神经元的发现 二、神经元的数量和大小 三、神经元的结构、形态和种类
神经系统是机体的主导系统,由神经元和神经胶质 细胞组成。 神经元接受各种信息,传导、整合这些信息,调节 各器官的活动,保证机体各器官、系统的协调,维 持生命活动的正常进行。
神经元-突触

神经元-突触神经元突触1.突触的基本结构在电镜下观察到,突触部位有两层膜,分别称为突触前膜和突触后膜,两膜之间为突触间隙。
所以,一个突触由突触前膜、突触间隙和突触后膜三部分构成。
前膜和后膜的厚度一般只7nm左右,间隙为20nm左右。
在靠近前膜的轴浆内含有线粒体和突触小泡,小泡的直径为30~60nm,其中含有化学递质。
如图2-50所示,突触前神经元末端膨大形成突触小体(synaptic knob),其轴浆内含有大量的线粒体和突触小泡(synaptic vesicle)还有负责轴浆运输的微管和微丝。
突触小泡中所含递质类型和形态的不同,可以分为三类:小儿清亮的小泡,内含乙酰胆碱或氨基酸类递质;小儿具有致密中心的小泡,内含儿茶酚胺类递质;大而具有致密中心的小泡,内含神经肽类物质。
从图中也可以看出,在突触前膜内侧存在类似栅栏的结构,这是突触小泡排放神经递质的位置,又称为活性区(active zone)。
突触间隙的宽度为30~40 nm,其中充满了细胞外液以及一些蛋白基质。
突触后膜也有增厚的现象,这是由于一些受体蛋白聚集在膜下方,形成突触后致密区(postsynaptic density),另外后膜上还存在一些能够分解递质的酶类。
1)单向传递突触传递只能由突触前神经元沿轴突传给突触后神经元,不可逆向传递。
因为只有突触前膜才能释放递质。
因此兴奋只能由传入神经元经中间神经元,然后再由传出神经元传出,使整个神经系统活动有规律进行。
2)总和作用突触前神经元传来一次冲动及其引起递质释放的量,一般不足以使突触后膜神经元产生动作电位。
只有当一个突触前神经元末梢连续传来一系列冲动,或许多突触前神经元末梢同时传来一排冲动,释放的化学递质积累到一定的量,才能激发突触后神经元产生动作电位。
这种现象称为总和作用。
抑制性突触后电位也可以进行总和。
3)突触延搁神经冲动由突触前末梢传递给突触后神经元,必须经历:化学递质的释放、扩散及其作用于后膜引起EPSP,总和后才使突触后神经元产生动作电位,这种传递需较长时间的特性即为突触延搁。
生物学中的神经元与突触

生物学中的神经元与突触神经元与突触是构成神经系统的两个最基本的单位。
神经元可看作是信息传递的基本单元,而突触则是神经元之间传递信号的关键部位。
理解这两个结构的性质和功能,是深入探究神经科学的关键。
神经元的组成与结构神经元是神经系统最重要的功能性单位,它们负责信息的接收、处理和传递,构成了复杂的神经回路。
神经元具有三个组成部分:细胞体、树突和轴突。
细胞体整合传入的信息,由此确定是否要将信息传递至下游元件;树突以分支的方式接收传入信息的信号,最后转化为神经冲动被送往细胞体;轴突则代表着从细胞体向周围发出信息的管道。
轴突通过与目标神经元建立连接,从而传导信息,甚至延伸到肌肉和腺体的运动部分,控制身体各个部位的行为。
每个神经元都有一个独特的结构,但它们彼此之间有一个显著的共同特点:电势差。
静息状态下,神经元的细胞体和树突的内部电位都比外部低;而轴突内部的电位则更高。
当受到刺激时,神经元内部的电位会瞬间发生改变,这种传导方式我们称之为“神经冲动”。
突触的结构与功能突触连接了神经元之间,是神经信号传递的桥梁。
神经元的轴突末端分泌出一种称为神经递质的物质,并通过突触与目标神经元细胞体或树突相连,从而实现信息传递。
突触的组成由突触前膜、突触后膜和突触间隙三个部分组成。
突触后膜和突触前膜分别位于细胞体和轴突末端,它们相对地位置差别极大,但都包含了一种特别的蛋白质,称为SNARE蛋白质。
当神经递质被释放入突触,并与突触后膜相连时,SNARE蛋白质的作用使得突触后膜与突触前膜相连,从而实现神经递质的传递。
突触间隙则是神经递质与下游神经元之间的空隙,中间还有一些调节性蛋白质,它们能够影响神经递质的释放和反射。
突触的结构不仅与神经冲动的传递有关,也与神经递质的类型有关。
神经递质可以是多巴胺、血清素等多种类型,这些递质结构和功能的差异使得突触的响应方式也存在显著差异。
例如,受伤后,多巴胺能够促进大脑中的神经元重塑,帮助改善神经系统的功能。
神经元与突触的结构和功能

神经元与突触的结构和功能神经元是构成人类神经系统的基本单位,它负责传递和处理神经信息。
神经元通过突触与其他神经元相连,形成复杂的神经网络。
在本文中,我们将探讨神经元和突触的结构和功能。
一、神经元的结构神经元通常由细胞体、树突、轴突以及突触四个部分组成。
1. 细胞体:神经元的细胞体包含了细胞核和大量的细胞质。
细胞核包含着遗传信息,细胞质则提供能量和其他物质支持细胞活动。
2. 树突:树突是神经元上分支状的突出部分,其主要功能是接收来自其他神经元的信号。
树突的数量和形状因神经元的类型和功能而异。
3. 轴突:轴突是神经元的主要传导部分,它负责将神经冲动从细胞体传递到突触。
轴突的长度也因神经元的类型而有所不同。
4. 突触:突触是神经元之间传递信号的特殊连接部分。
突触可以分为化学突触和电突触两种类型。
化学突触通过释放神经递质来传递信号,而电突触则通过直接传递电流来传递信号。
二、突触的结构与功能突触是神经元之间相互作用和信息传递的关键结构。
它由突触前细胞、突触间隙和突触后细胞三部分组成。
1. 突触前细胞:突触前细胞即传递信号的神经元。
当神经冲动到达突触前细胞时,它会触发突触前细胞的神经递质的释放。
2. 突触间隙:突触间隙是突触前细胞和突触后细胞之间的空隙。
它起到信号传递的媒介作用。
3. 突触后细胞:突触后细胞是接收信号的神经元。
突触后细胞上有许多受体,当神经递质到达突触后细胞时,它会与受体结合,触发神经冲动的传递。
突触的功能主要包括传递和整合神经信息。
当神经冲动到达突触前细胞时,突触前细胞会释放神经递质,将信号传递到突触后细胞。
突触后细胞则根据神经递质的类型和数量,继续传递或抑制该信号。
三、神经元与神经网络神经元通过突触的连接形成复杂的神经网络。
神经网络是人类神经系统的基础,它实现了大脑的高级功能,如学习、记忆和决策。
神经网络的结构与功能是通过神经元之间的连接方式和突触的调节来实现的。
连接方式包括兴奋性突触和抑制性突触,它们调节神经冲动的传递方向和强度。
神经元和突触的发育和功能研究

神经元和突触的发育和功能研究神经元和突触是神经系统中最基本的单位,神经元是神经系统中传递信号的细胞,而突触则是神经元之间传递信号的位置。
神经元和突触的发育和功能一直是神经学研究的重点,本文将从发育和功能两个方面来探讨神经元和突触的研究。
一、神经元和突触的发育研究神经元和突触的发育是神经系统形成和功能稳定的基础,它受到遗传和环境因素的共同影响。
在发育过程中,神经元首先形成,随后突触的发育逐渐成熟。
1、神经元的发育神经元从神经干细胞分化而来,经历了多个发育阶段。
其中,初生神经元形态不成熟,但具有一定的电生理功能;不断分化差异后出现形态上的分化(树突、轴突、轴突结点、突触、突触前凸突等),平均持续时间为一周至一个月。
最终分化成熟神经元。
2、突触的发育突触的发育可以分为5个阶段:发育前期、接触期、形态阶段、功能阶段和稳定期。
在突触形成前期,轴突会释放出称为吸引剂或排斥剂的分子,吸引或排斥神经元的突触,进而趋向特定神经元。
接触期是突触发育中最重要的阶段,轴突和神经元之间的信号交流逐渐增加。
形态期时突触的形态发生了巨大的变化,神经元末梢形成了密集的突触树。
神经元到达功能成熟后,神经元的突触开始稳定。
二、神经元和突触的功能研究1、神经元功能的研究神经元是神经系统的基本单位,神经元的功能主要是信号传递和处理。
神经元的信号传递是通过负责激发(传入区中的突触)、传导(轴突)和抑制(传出区中的突触)的功能来实现的。
神经元的工作可以通过兴奋性、抑制性、警觉性和可塑性等多个方面进行研究。
例如,神经元的兴奋性可以通过测量轴突尖峰电位、动作电位等指标来衡量;神经元的抑制性则可以通过测量高峰电位、局部场电位等指标来评估。
2、突触功能的研究突触是神经元之间传递信号的位置,突触的功能主要是实现神经元之间的信号传递。
突触的功能可以通过细胞外和细胞内的机制来实现。
细胞外机制主要通过调节神经递质的释放来影响突触功能,如增强或抑制神经递质的释放、改变神经递质结合受体等。
神经元与突触的结构与功能

神经元与突触的结构与功能神经元是人类和动物神经系统中的基本功能单元,它们大约有100亿个,而每个神经元可以连接到其他神经元,形成神经网络,这是我们理解大脑如何工作的关键。
为了理解神经网络的结构和功能,需要先了解神经元和突触的结构和功能。
一、神经元的结构神经元主要包含三个部分:细胞体、树突和轴突。
细胞体是神经元的主体,包含细胞核、细胞质和许多细胞器,包括线粒体、内质网、高尔基体和核仁等。
树突是细胞体边缘的分支突起,树突多而短,每个树突都是一个接受其它神经元信息的通道。
树突上有许多突起,称为突起刺。
突起刺可以增加细胞的表面积,从而增加它接收其它神经元信息的能力。
轴突是神经元的主要输出部分。
它负责将神经元的信号转移到其他神经元或效应器上,如肌肉和腺体等。
轴突较长,且一般只有一个,它们可以延伸数厘米甚至数米,经过许多分支,最终接触到其他神经元或效应器。
二、突触的结构突触指两个神经元之间的接触点,这是神经元之间的传递信号的重要场所。
每个神经元可以有数万个突触,它们可以连接到其他神经元的树突、细胞体或轴突。
突触主要由三部分组成:突触前端、突触间隙和突触后端。
突触前端是轴突末端最前面的部分。
它包含许多突触小泡,这些小泡内含神经递质,当神经元收到信号时,这些小泡会释放神经递质,从而将信号传递到下一个神经元。
突触间隙是神经元之间的微小间隔,它约为20至40纳米。
当突触前端释放神经递质时,它会进入突触间隙,并与下一个神经元的突触后端结合,从而传递信号。
突触后端是突触接受神经递质的地方,它通常出现在树突或细胞体上。
当突触前端释放神经递质时,它会结合到突触后端上,从而产生电信号,传递到神经元的细胞体或轴突上。
三、神经元和突触的功能神经元和突触共同构成神经系统的结构基础,它们的功能也是神经系统高度复杂和高度有效的原因。
神经元的主要功能是将信息从一个地方传递到另一个地方。
当神经元收到信号时,它会将信号处理并将其传递到一个或多个有关神经元。
描述神经元与突触之间的关系。

描述神经元与突触之间的关系。
神经元和突触是神经系统的两个核心部分,它们之间有着密不可分的关系。
神经元是神经系统的基本单位,它们负责将信息从一个神经细胞传递到另一个神经细胞,形成神经网络。
而突触则是神经元之间传递信息的关键结构,是神经元和神经元之间的连接点,可以将信号传递到相邻的神经元。
神经元是由细胞体、树突、轴突和突触四部分组成的。
细胞体是神经元内部最大的部分,包含细胞核、细胞质、内膜系统和线粒体等器官。
树突是神经元的突出部分,它们向周围神经元传递电信号和化学信号,并将这些信号传递到细胞体。
轴突是神经元的主要传递路径,它从细胞体伸出,向远处延伸,末端形成了突触。
突触可以将神经元之间的电信号转化为神经递质的分泌,并将这些化学信号传递到相邻的神经元。
在神经元之间,突触起着至关重要的作用。
突触分为前突触和后突触两部分。
前突触是突触细胞的端膜区,它包含了细胞质和囊泡。
这些囊泡里包含了神经递质,可以通过电信号的控制释放出来。
后突触则是接受端,由另一个神经元的树突或细胞体上的受体蛋白质组成。
当神经递质释放之后,它可以与受体结合,从而引起细胞内部电位的变化,造成电信号的传递。
在神经系统中,突触的数量和质量对神经元之间的信息传递起着决定性的作用。
神经系统中的大部分信息都是通过神经元之间的突触传递的,并且每一个神经元可以和其他数以千计的神经元之间建立数千个不同的突触连接。
这些连接的数量和强度可以改变,并影响神经元之间的信息传递。
总的来说,神经元和突触之间的密不可分的关系对于神经系统的功能起着至关重要的作用。
神经元通过突触之间传递信息来完成神经信号的传递和神经网络的建立,而突触则是神经元之间通信的关键结构,引导神经元之间的信号传递和信息处理。
对于掌握神经系统的结构和功能,这两个结构的构成和功能的理解至关重要。
探究神经元与突触的结构和功能关系

探究神经元与突触的结构和功能关系神经元和突触是人类神经系统中最基本的组成部分。
神经元是神经系统的基本单位,负责传递和处理神经信号。
而突触则是神经元之间连接的地方,是信号传递的主要场所。
神经元和突触的结构和功能对于理解神经科学、认知科学以及神经疾病的研究等具有重要意义。
神经元的结构主要由细胞体、树突、轴突和细胞膜等组成。
神经元的树突部分主要接收来自其他神经元的信号,而轴突则负责将神经信号传递给其他神经元或者目标细胞。
细胞膜则负责维持神经元内部和外部的稳定状态,保证神经信号的可靠传递。
除此之外,神经元还可以通过各种方式改变自己的形态和功能,以适应不同的情境和需要。
与神经元相邻的突触,主要分为化学突触和电突触两种。
化学突触是信号传递的主要场所,它由突触前终末、突触间隙和突触后膜三部分组成。
当神经元兴奋性电流到达突触前终末时,会引起神经递质的释放,这些递质会经过突触间隙作用于突触后膜上的受体和离子通道,进而对接收细胞进行影响。
通过这种方式,化学突触保证了神经信号的传递和调节。
除了化学突触,电突触也存在于人类神经系统中。
电突触主要在少数情况下出现,它使用离子流突触连接神经元。
通过共享神经元的细胞膜,电突触可以更快速地传递神经信号,同时也可以提高神经元的同步性。
神经元和突触之间的结构和功能联系非常紧密。
首先,神经元的树突结构和突触的数量直接影响到神经元的信号接收和传递能力。
不仅如此,在神经系统的长期记忆形成中,突触的可塑性是至关重要的。
例如,神经元和突触之间的短时程可塑性(如短时程突触后电位增强和抑制,即STDP)可以通过突触前和突触后神经活动之间的联系而发生变化,从而调节神经元之间的连接。
此外,神经疾病和认知障碍的发生也与神经元和突触的结构和功能异常有关。
例如,阿尔茨海默病常伴随有突触脱落和突触损伤,使得神经元之间的信息传递受到影响,引发认知能力的下降。
因此,神经元和突触的结构和功能关系不仅对于科学研究有着重要意义,同时对于诊断神经疾病和设计相应治疗方案也具有重要价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. /
6. / 7. /physiology/davies
8.
9. /silverthorn/
下丘脑神经肽、阿片样肽、胃肠肽。
外周神经递质 1.乙酰胆碱(acetylcholine, ACH) 2.去甲肾上腺素(norepinephrine,NA) (noradrenaline,NA)
四、反射中枢
(一)中枢神经元的联系方式
辐散式 聚合式 环式 链锁式
(二)中枢兴奋传布的特征 1.单向传递 2.突触延搁 3.总和 包括时间总和、空间总和。 4.兴奋节律的改变
(二)突触的基本结构
1.突触前膜
2.突触后膜
3.突触间隙 20nm
(三)突触传递的过程
突触传递(synaptic transmission):
突触前神经元的信息传递到突触后 神经元的过程。
突触传递的过程
神经冲动达到轴突末梢 →突触前膜去
极化→Ca2+内流→突触小泡移动至突触前膜,
释放神经递质→突触间隙→突触后膜,神
②绝缘性
③双向传导
④相对不疲劳性
3.神经纤维的传导速度
①与直径有关
直径较粗、有髓鞘的纤维,传导速度较快
②受温度影响
温度下降,传导速度减慢。
二、突触生理(synapse)
(一)突触的概念与分类
1.突触的概念 神经元与神经元之间发生功能接触的部位。
2.分类 按接触部位:轴-体、轴-树、轴-轴突触。 按作用方式:化学突触、电突触 按效应:兴奋性突触、抑制性突触
③细胞间通道将胞浆直接沟通。
④信息传递双向性,电阻低,是一种电 传递。 ⑤没有潜伏期,传递速度快。
三、神经递质
(一)神经递质的基本慨念
神经递质:是在神经元之间或神经元与 效应器细胞之间起传递信息作用的化学物质。 据存在部位的不同,分为:
外周神经递质
中枢神经递质
(二)中枢神经递质 1.乙酰胆碱 2.单胺类 多巴胺、去甲肾上腺素、5-羟色胺。 3.氨基酸类 谷氨酸、甘氨酸 4.肽类
第十章
神经系统
第一节
神经元及反射活动的一般规律
一、神经元和神经纤维 (一)神经元的基本结构和功能 神经元(neuron):胞体和突起
树突
轴突
胞体
神经胶质细胞的功能:
①支持作用
②运输营养物质
③分隔与绝缘作用
④修复与再生作用
(二)神经纤维 1.神经纤维的功能
传导兴奋
2.神经纤维传导兴奋的特征
①生理完整性
神经系统活动的一般规律
The Nervous System: General Principles
授课内容:
神经元及反射活动的一般规律
授课对象:
护理专业
授课时间:
2学时
学习要点:
1.重点掌握化学性突触传递的方式 及特点。 2.掌握兴奋性突触后电位和抑制性 突触后电位。 3.了解突触前抑制和突触后抑制。
5.对内环境变化敏感和易疲劳
(三)中枢抑制
突触后抑制(postsynaptic inhibition)
突触前抑制(presynaptic inhibition)
1.突触后抑制(postsynaptic inhibition)
通过突触后膜产生抑制性突触后电位
而发生的抑制。
特点:需要通过抑制性中间神经元
突触、突触传递。
2.比较兴奋性突触后电位和抑制性突触后电位。
主要参考资料:
姚泰主编. 生理学. 第6版. 北京:人民卫生出版 社, 2003
朱大年主编. 生理学. 第7版. 北京:人民卫生出 版社, 2008 Guyton AC, Hall JE.Textbook of Medicine Physiology. 10th edition. Philadelphia: WB Saunders, 2000
经递质与受体结合→突触后膜去极化或超
极化→突触后电位
突触后电位的类型:
兴奋性突触后电位
(excitatory postsynaptic potential,EPSP) 抑制性突触后电位 (inhibitory postsynaptic potential ,IPSP)
1.兴奋性突触后电位
突触前膜:兴奋性递质
突触后膜:提高了对Na+的通透性 Na+内流,突触后膜发生局部去极化 即兴奋性突触后电位。
2.抑制性突触后电位
突触前膜:抑制性பைடு நூலகம்质
突触后膜:提高了对Cl-的通透性 Cl-内流,突触后膜发生超极化 即抑制性突触后电位。
电突触传递:如缝隙连接
特点:
①膜之间的间隙小,只有 2~3nm。
②轴浆中没有聚集的突触小泡。
Gannong WF. Review of Medical Physiology. 22th edtion. Stamford, Connecticut: McGraw-Hill, 2005
网络资源:
1. /jpkc/shenglixue/index.htm 2. /sl/ 3. http://202.116.65.193/jinpinkc/shengli/index.htm 4.
来发挥作用。
据抑制性中间神经元的联系方式,分:
传入侧支性抑制 返回性抑制
2.突触前抑制(presynaptic inhibition) 通过改变突触前膜的活动而使突触后 神经元产生的抑制。
小结:
1.突触与突触传递过程
2.兴奋性突触后电位与抑制性突触后电位。
3.突触后抑制与突触前抑制。
思考题:
1.名词解释: