九年级数学上册21.1二次根式二次根式概念的学习华东师大版

合集下载

【新华东师大版】九年级数学上册:21.1《二次根式》教案(两课时)

【新华东师大版】九年级数学上册:21.1《二次根式》教案(两课时)

_B _A _C21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题.教学方法三疑三探教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,所以所求.问题2:由勾股定理得问题3:由方差的概念得二、设疑自探——解疑合探自探1.你能通过上面的数据归纳出二次根式的概念吗?子,我们就把它称二次根式.因此,一般地,a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少? 3.当a<0老师点评:(略)自探2.、1xx>0)、、1x y+x ≥0,y•≥0).分析”;第二,被开方数是正数或0.(x>0)、x ≥0,y ≥0);不是二次根式1x、1x y +.自探3.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 四、应用拓展1.当x 11x +在实数范围内有意义?分析:11x +在实数范围内有意义,0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩ 由①得:x ≥-32 由②得:x ≠-1当x ≥-32且x ≠-1+11x +在实数范围内有意义.2.(1)已知,求xy的值.(答案:2)(2)=0,求a 2004+b 2004的值.(答案:25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1(a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、作业设计一、选择题1.下列式子中,是二次根式的是()A. B C D.x2.下列式子中,不是二次根式的是()A B D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个. A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.教后反思:21.1 二次根式第二课时教学内容)2=a(a≥0),a(a≥0)教学目标2=a(a≥0(a≥0),并利用它进行计算和化简.(a≥0),并利用这个结论解决具体问题.教学重难点关键 1.重点:2=a(a≥0a(a≥0)及其运用.2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学方法 三疑三探 教学过程一、设疑自探――解疑合探自探1.做一做:根据算术平方根的意义填空:)2=_______;)2=_______;2=______;)2=_______;2=______;)2=_______;)2=_______.是4是一个平方等于4的非负)2=4.同理可得:)2=2,2=9,)2=3,2=13,2=72,)2=0,所以自探2(一)计算1.2(x ≥0) 2.23.24. 2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)2≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4)2=a (a ≥0)的重要结论解题.(二)在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略)自探3(学生活动)填空:=______;=________=_______.自探4 化简(1(2(3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展1. 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.2.当x>2.分析:(略)四、归纳小结(师生共同归纳)本节课应掌握:2=a(a≥0)(a≥0)及其运用,同时理解当a<0-a的应用拓展.五、作业设计一、选择题1).A.0 B.23 C. 423D.以上都不对2.当a≥0).AC.二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三计算)21.2 2.(2 3.2 4.(22.计算下列各式的值:2)2()222(4四、综合提高题1.先化简再求值:当a=9时,求甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│教后反思:。

九年级数学上册 第21章 二次根式知识归纳 华东师大版

九年级数学上册 第21章 二次根式知识归纳 华东师大版

1 / 11 / 1 第21章 二次根式
1. 二次根式的概念:形如 的式子叫做二次根式.
2. 二次根式的性质:
(1)=2)(a (a ≥0);(2a 0(a≥0);(3)⎪⎩
⎪⎨⎧<=>==)0___()0___()0___(____2a a a a
3. 二次根式的乘除:
计算公式:___(0,0)
___(0,0)a b a b a a b b ⎧≥≥⎪⎨=≥>⎪⎩
乘法运算:除法运算: 4. 概念: 1.2.⎧⎨⎩最简二次根式:(1) (2) (3)
同类二次根式:
5. 二次根式的加减:(一化,二找,三合并 )
(1)将每个二次根式化为最简二次根式;
(2)找出其中的同类二次根式;
(3)合并同类二次根式.
6. 二次根式化简求值步骤:(1)“一分”:分解因数(因式)、平方数(式);(2)“二移”:
根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;(3)“三化”:化去被开方数中的分母.
7. 二次根式的混合运算:
(1)二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.
(2)对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用.
(3)在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.。

最新华东师大版九年级上册数学知识总结

最新华东师大版九年级上册数学知识总结

华东师大版数学九年级上知识点小结第21章 二次根式1、二次根式的意义形如)0(≥a a 的式子叫二次根式。

二次根式a 有意义,a 的取值范围是;0≥a 当a 0<时,a 在实数范围内没有意义。

2、最简二次根式满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式(被开方数因数因式的次数为1); ③分母不含根式。

3、同类二次根式几个二次根式化成最简二次根式 以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

4、二次根式的主要性质(1)双重非负性:)0(0≥≥a a(2)还原性:(a 2)=a )0(≥a 。

*(3)绝对性:⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a5、二次根式的运算(1)因式的外移和内移如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面。

反之,也可以将根号外面的正因式,平方后移到根号里面去。

(2)有理化因式与分母有理化两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。

把分母中的根号化去,叫做分母有理化。

(3)二次根式的加、减法先把二次根式化成最简二次根式,再合并同类二次根式。

步骤:一化二找三合并 (4)二次根式的乘、除法二次根式相乘(除),就是把被开方数相乘(除),并将运算结果化为最简二次根式。

0,0).a b ⋅=≥≥=(0,0)b a ≥> (5)加法、乘法运算律,以及多项式的乘法公式,都适用于二次根式的运算。

附:1、根式)0,0(>≥a b a b的化简方法 (1)把a b 化为,ab然后分母有理化为.a ab (2)把ab 化为a a a b ⨯⨯,然后化为.a ab2、 分母有理化的关健是确定有理化因式,其基本方法为: (1)根据(a )a =2)0(≥a 可知a(2)根据平方差公式,可知b ±a 的有理化因式为b a ,y b x a ±的有理化因式是y b x a第22章 一元二次方程:1、只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程......。

华东师大版九年级数学上册第21章《二次根》教案设计

华东师大版九年级数学上册第21章《二次根》教案设计

一、情境导入 计算下列各题,观察有什么规律?
(1) 36=________; 49
3469=________.
(2) 9 =________; 16
196=________.
36________ 49
3469;
9 ________ 16
196.
二、合作探究 探究点一:二次根式的除法 【类型一】 二次根式的除法运算 例 1:计算:
解析:根据题意得x2+ -1x≥ ≥00, ,解得
-1≤x≤2.故选 C.
方法总结:运用二次根式的乘法法则: a· b= ab(a≥0,b≥0),必须注意被开方数均 是非负数这一条件.
【类型二】 二次根式的乘法运算
例 2:计算:
(1) 3× 5;(2) 64;
(3)6 27×(-3 3);
(4)34 18ab·-a2 6ab2.
21.2 二次根式的乘除
第 3 课时
教学目标
1.掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算; 2.能综合运用已学性质进行二次根式的化简与运算.
教学重难点
【教学重点】 二次根式的除法法则和商的算术平方根的性质. 【教学难点】 运用已学性质进行二次根式的化简与运算.
课前准备

教学过程
21.2 二次根式的乘除
第 2 课时
教学目标
1.掌握积的算术平方根的性质; 2.会用积的算术平方根的性质对二次根式进行化简.
教学重难点
【教学重点】 积的算术平方根的性质. 【教学难点】 用积的算术平方根的性质对二次根式进行化简.
课前准备

教学过程
一、情境导入 计算: (1) 4× 25与 4×25; (2) 16× 9与 16×9. 思考: 对于 2× 3与 2×3呢? 从计算的结果我们发现 2× 3= 2×3,这是什么道理呢? 二、合作探究 探究点一:积的算术平方根的性质 例 1:化简: (1) (-36)×16×(-9); (2) 362+482;

华东师大版数学九年级上册21.1二次根式课件

华东师大版数学九年级上册21.1二次根式课件
?
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根
2. a可以是数,也可以是式.
3. 情势上含有二次根号
4. a≥0, a≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
说一说: 下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
? 在实数范围内,负数没有平方根
例1: 当x取何值时,下列各式有意义?
(1) x 5 (2) x2 2
(3) x 1 x3
(4) x 2 2 x 1
( 4)2 4 ( 0)2 0
1
(Hale Waihona Puke 0.01)2 0.01 (
3 1 )2
3
2 a a (a≥0)
42 4
02 0
0.012 0.01
一路下来,我们结识了很多新知识, 你能谈谈自己的收获吗?说一说,让大 家一起来分享。
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式 .
二次根式的性质:
a 0, a 0(. 双重非负性)
2 a a(a 0) a (a≥ 0) a2 =∣a∣= -a (a<0)
S
圆形的下球体在平面图上的面积为S,
S
则半径为____________.
b-3
如图示的值表示正方形的面积,则
正方形的边长是 b 3
s
a2 2500
b3
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式 .
a叫被开方数
凭着你已有的知识, 说说对二次根式 a 的认识,好吗?

九年级数学上册第21章二次根式21.1二次根式二次根式的概念和性质讲义华东师大版.doc

九年级数学上册第21章二次根式21.1二次根式二次根式的概念和性质讲义华东师大版.doc

二次根式的概念和性质 重难点易错点解析 区别)0()(2≥=a a a 和⎩⎨⎧<-≥==)0()0(2a a a a a a 例1题面:判断下列等式是否成立(1)2(19)19()= (2)2(19)19()-=- (3)2(19)19()-= (4)2()()a b a b -=- (5)2()()a b a b-=- (6)2(0)().a a a =-≤金题精讲题一 题面:(1)已知a <0,化简二次根式b a 3-的正确结果是( ).A .ab a --B .ab a -C .ab aD .ab a - (2)把mm 1-根号外的因式移到根号内,得( ). A .m B .m - C .m -- D .m - 题二题面:已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______.满分冲刺题一题面:已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.题二题面:已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.题三 题面:设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积.思维拓展题面:若41=+a a (0<a<1),则aa 1-= .讲义参考答案重难点易错点解析例1答案:(1)√;(2)×;(3)√;(4)√;(5)×;(6)√.金题精讲题一答案:(1)A (2)C题二答案:0满分冲刺题一答案: c=2,3,4.题二题三答案:1() 2bc ad-思维拓展答案:。

九年级数学上册 21.1 二次根式讲授素材 (新版)华东师大版

九年级数学上册 21.1 二次根式讲授素材 (新版)华东师大版

二次根式我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式?分析:,,,、、、四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是二次根式.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为二次根式:(1)(2)(3)(4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3),且x≠0,∴x>0,当x>0时,是二次根式.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得.(2)由,得3a-1>0,解得.(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.。

华东师大版九年级上册 数学 教案 21.1 二次根式

华东师大版九年级上册 数学 教案 21.1 二次根式

华东师范大学出版社九年级上册第21章第一节
21.1.1二次根式(第1课时)教学设计
一、教材分析
1、地位作用:本章主要内容是初中代数运算的基础内容,在整个中学代数中起承上启下的重要作用,内容有两部分,它们是二次根式的有关概念、性质和二次根式的四则运算。

本章的第一部分是二次根式的有关概念、性质。

它是把前面学习的实数写成式子进行运算,体现了由特殊到一般的数学思想,同时二次根式的概念和性质又是今后学习根式运算、函数的知识储备.
2.对象分析
(1)学生是乡镇普通初中九年级的学生,班级学生学习方面存在一定的差异;但学生对数学抱有浓厚的兴趣。

(2)学生在前面已学习了平方根,基本上掌握了平方根。

3.环境分析
(1)教师自制多媒体课件。

(2)上课环境为多媒体教室。

二、教学目标:
知识技能:积极参与构建二次根式的概念、探究二次根式的特征与性质的活动,在活动中体验成功的喜悦.
过程与方法:(1)了解二次根式的概念,能判断一个式子是不是二次根式。

(2) 掌握二次根式有意义的条件。

(3) 掌握二次根式的基本性质:)0
a
≥a
(0≥
情感、态度、价值观:通过计算、观察、类比、归纳、猜想,探索二次根式的概念、
性质的发生过程;发展学生合情推理能力和演绎推理能力.
三、教学重点、难点
教学重点:掌握二次根式的有关概念、性质;能熟练地运用二次根式的有关概念、
性质进行计算,并能利用它解决简单的实际问题.
教学难点:能熟练地运用二次根式的有关概念、性质进行计算,并能利用它解决简单的实际问题.
教学重点、难点突破方法:通过类比平方根和算术平方根的有关概念、性质突破难点
四、教学过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式概念的学习 式子a (a ≥0)叫做二次根式,这个概念是初中数学中的重要概念之一,要学好这个
概念必须注意以下几个问题:
1. a ≥0是a 为二次根式的决定条件. 因为在实数范围内,负数不能进行开 平方运算,
即当a<0时, a 在实数范围内无意义. 2. a (a ≥0)表示a 的算术平方根, 它是一个非负数, 即a 0≥.
3. 二次根式a (a 0≥)中a 可以表示数、单项式、多项式乃至符合条件的一切代数式.
熟悉、掌握并正确、灵活应用这个概念是学习《二次根式》一章的重点. 下面看几个例
子.
例1. 下列各式哪些是二次根式? 哪些不是? 为什么? (1)19- (2) 39 (3)1+x (4) a 6-
分析: 二次根式的第一个特征是根号的根指数必须是2; 第二个特征是必须能保证被
开方数不小于零.
解: (1) –19 < 0 , ∴19-不是二次根式
(2) 39中根指数是3, ∴39不是二次根式.
(3) 不论x 取什么实数,都有1+x > 0 , ∴1+x 是二次根式.
(4) 当 – 6a ≥0 , 即a 0≤时, a 6-是二次根式. 当 – 6a < 0, 即a>0 时,
a 6-不是二次根式.
例2. x 是什么值时,下列各式在实数范围内有意义?
(1) 2x - (2)x x -+ (3)12+x
解: (1) 要使 2x - 在实数范围内有意义,应有 - x 2,0≥ 即x 2≤0.
又 在实数范围内,不论x 取什么值恒有x 02≥. 故x ,02= 从而 x=0.
即当x=0时, 2x -在实数范围内有意义.
(2) 要使 x x -+ 在实数范围内有意义,应有⎩
⎨⎧≥-≥00x x 从而x=0. 即当x=0时, x x -+ 在实数范围内有意义.
(3) 要使12+x 在实数范围内有意义,应有x 012
≥+. 在实数范围内,不论x 取什么值,恒有x 012>+,
∴ 不论x 为何值, 12+x 在实数范围内都有意义.
例3. 已知 a +,0=a 求2a 的值.
解: 0=+a a , a ∴有意义, 0≥∴a 且0≥a .
又 a +,0=a 0=∴a ∴ 2a =0.
例4. 计算x
x x --+-+11142
2. 解: 由原式知12-x 和21x -均有意义,
⎪⎩⎪⎨⎧≥-≥-∴0
10122x x .012=-∴x .1±=∴x
又 当a=1时, 分母 1-x=0, 原式无意义, 故 x = -1.
∴ 原式= .22
4)1(1004==--++
练习:
1. 如果a
b 是二次根式,那么a 、b 应满足( ) A. a>0, b>0. B. a,b 同号. C. a>0, b ≥0. D.
.0≥a b 2. 式子2
33---x x 中x 的取值范围是 . 3. 已知522+---=x x y . 求x y 的值. 参考答案:
1、 D
2、2,3≠≤x x 且
3、25。

相关文档
最新文档