大气颗粒物采样分析方法研究进展 颗粒物采样

合集下载

大气细颗粒物 PM 2.5的研究进展

大气细颗粒物 PM 2.5的研究进展

大气细颗粒物 PM 2.5的研究进展姜娜【摘要】PM2.5 gradually became the primary air pollutants in many large and medium cities in China , and their research was the current international atmospheric chemistry community hotspot.The sources of PM 2.5 , chemical characteristics and the relevant analysis methods , monitoring technologies and its health effect and impact on the environment were described.Finally, the research prospect of PM 2.5 was described.%PM2.5逐渐成为我国许多大中城市的首要空气污染物,对其研究是当前国际大气化学界的研究热点。

文章阐述了PM2.5的来源、化学成分及有关分析方法、监测技术、 PM2.5对人类的危害和对环境的影响,并对其研究动向进行了展望。

【期刊名称】《广州化工》【年(卷),期】2014(000)013【总页数】3页(P134-135,168)【关键词】细颗粒物;PM2.5;监测技术【作者】姜娜【作者单位】葫芦岛市环境保护监测中心站,辽宁葫芦岛 125000【正文语种】中文【中图分类】X513近年来,随着经济的发展,空气质量问题日益突出,国内众多城市阴霾天气出现频率逐年增高。

在大气污染中,大气颗粒物污染是一类常见的污染物。

大气颗粒物质(Particulate Matter,PM)是大气中固体和液体颗粒物的总称。

粒径为0.01~100μm的大气颗粒物,统称为总悬浮颗粒物(TSP)[1-2]。

固定污染源排气中颗粒物和气态污染物采样方法

固定污染源排气中颗粒物和气态污染物采样方法

固定污染源排气中颗粒物和气态污染物采样方法一、引言随着工业化和城市化的不断发展,固定污染源排放的颗粒物和气态污染物对环境和人体健康造成了越来越大的威胁。

因此,精确且可靠的采样方法对于监测和控制固定污染源的污染物排放至关重要。

本文将介绍固定污染源排气中颗粒物和气态污染物采样方法的一些常用技术。

二、颗粒物采样方法颗粒物是固定污染源排放中的常见污染物之一,它们对空气质量和健康产生重大影响。

以下是几种常用的颗粒物采样方法:1. 高体积采样法高体积采样法是目前应用广泛的一种颗粒物采样方法。

它通过一个大面积的滤膜将空气中的颗粒物捕集下来,并采用抽真空的方式使空气通过滤膜。

该方法采样量大,适用于长期监测和颗粒物来源分析。

2. 空气动力学采样法空气动力学采样法基于颗粒物在气流中的运动原理,通过将采样气流引向样品收集器,利用气流动力学的作用使颗粒物沉积下来。

该方法适用于颗粒物浓度较高的情况,采集效率较高。

3. 冲击颗粒物采样法冲击颗粒物采样法是一种利用采样头对颗粒物进行冲击撞击,使其附着在采样板上的方法。

该方法采样过程简单,适用于大气中颗粒物浓度较低的情况。

三、气态污染物采样方法与颗粒物不同,气态污染物主要以气体的形式存在于固定污染源的排气中。

以下是几种常用的气态污染物采样方法:1. 吸附管采样法吸附管采样法是一种常用的气态污染物采样方法,它利用吸附剂吸附气态污染物,并将吸附剂送至实验室进行分析。

不同种类的吸附剂可以选择不同的气态污染物进行采样。

2. 均质采样法均质采样法通过将采样气体经过均质器,使气态污染物均匀地分布在整个采样气流中。

该方法适用于需要对气态污染物进行均匀分布采样的情况。

3. 免净器采样法免净器采样法是一种通过过滤物理吸附或化学吸附来去除气态污染物的方法。

该方法使用过滤介质或吸附剂进行采样,在气流经过后将气态污染物滞留在过滤介质或吸附剂上。

四、结论固定污染源排气中颗粒物和气态污染物的采样方法是研究和管理污染源的重要手段。

1环境空气中颗粒物的测定

1环境空气中颗粒物的测定

实验一、环境空气中颗粒物(TSP或PM10)的测定一、实验目的1.掌握环境空气中颗粒物的测定原理及测定方法。

2.掌握颗粒物采样器的基本操作。

二、实验原理TSP测定原理:通过具有一定切割特性的采样器以恒速抽取定量体积的空气,使之通过已恒重的滤膜,空气中粒径小于100μm的悬浮微粒被截留在滤膜上。

根据采样前后滤膜质量之差及采样体积,即可计算总悬浮颗粒物的浓度。

PM10测定原理:使一定体积的空气,通过带有PM10切割器的采样器,粒径小于10μm的可吸入颗粒物随气流经分离器的出口被截留在已恒重的滤膜上,根据采样前后滤膜的质量差及采样体积,即可计算出可吸入颗粒物浓度。

三、仪器和试剂(1)采样器,带TSP或PM10切割器。

(2)X光看片器用于检查滤料有无缺损或异物。

(3)打号机用于在滤料上打印编号。

(4)干燥器容器能平展放置200mm×250mm滤料的玻璃干燥器,底层放变色硅胶,滤料在采样前和采样后均放在其中,平衡后再称量。

(5)竹制或骨制品的镊子用于夹取滤料。

(6)滤料本法所用滤料有二种,规格均为200mm×250mm。

其一为“49”型超细玻璃纤维滤纸(简称滤纸),对直径0.3μm的悬浮粒子的阻留率大于99.99%;其二为孔径0.4~0.65μm和0.8μm有机微孔滤膜(简称滤膜)。

(7)烘箱。

(8)分析天平。

四、操作步骤1.滤料的准备(1)采样用的每张滤纸或滤膜均须用X光看片器对着光仔细检查。

不可使用有针孔或有任何缺陷的滤料采样。

然后,将滤料打印编号,号码打印在滤料两个对角上。

(2)清洁的玻璃纤维滤纸或滤膜在称重前应放在天平室的干燥器中平衡24h。

滤纸或滤膜平衡和称量时,天平室温度在20~25℃之间,温差变化小于±3℃;相对湿度小于50%,相对湿度的变化小于5%。

(3)称量前,要用2~5g标准砝码检验分析天平的准确度,砝码的标准值与称量值的差不应大于±0.5mg。

大气颗粒物采样器原理

大气颗粒物采样器原理

大气颗粒物采样器原理
大气颗粒物采样器是用于收集大气中的颗粒物,以便分析颗粒物的组成和浓度的仪器。

其工作原理可以简要概括为以下几个步骤:
1. 空气引入:大气颗粒物采样器通常通过一个进气口将环境空气引入到采样器中。

进气口通常带有一个过滤器,以防止较大的颗粒物进入采样器内部,从而保护采样装置。

2. 分离:引入的空气在采样器内部经过一系列的分离装置。

其中最常用的分离装置是采样头旁流器或撞击器。

这些装置可以将空气中的颗粒物与气态物质分离开来。

3. 采集:一旦颗粒物与气态物质被分离开来,颗粒物需要被采集并收集起来。

采样器通常使用一种或多种采集介质,如过滤器或沉积器,来捕捉颗粒物。

这些采集介质可以是具有特定颗粒物捕捉能力的材料。

4. 测量:采集的颗粒物需要进行后续的测量和分析。

常用的方法包括重量法、显微镜观察和化学分析等。

这些方法可以确定颗粒物的质量、分布和化学成分等信息。

需要注意的是,不同的大气颗粒物采样器可能会使用不同的原理和采样方式,但基本的工作原理通常是相似的。

最终采集到的颗粒物样品可以用于环境污染监测、健康影响研究、大气模型验证等领域。

环境大气颗粒物的测定原理

环境大气颗粒物的测定原理

环境大气颗粒物的测定原理环境大气颗粒物的测定原理是通过采集大气中的颗粒物样品,然后利用不同的分析方法来确定其质量浓度和组成。

大气颗粒物主要包括可吸入颗粒物(PM10)和细颗粒物(PM2.5),其测定原理有以下几种方法:1. 重量法:重量法是最常用的测定大气颗粒物质量浓度的方法。

该方法是将空气中的颗粒物通过采样器收集在滤膜上,然后将滤膜放入称量器中进行称重,通过测量滤膜的质量变化来确定颗粒物的质量浓度。

重量法适用于测定PM10和PM2.5的质量浓度,但无法确定颗粒物的化学组成。

2. 光学法:光学法是一种基于颗粒物对光的散射和吸收特性进行测定的方法。

常用的光学法包括激光散射法和激光吸收法。

激光散射法利用激光束与颗粒物发生散射,通过测量散射光的强度来确定颗粒物的浓度。

激光吸收法则是利用颗粒物对激光光束的吸收特性进行测定。

光学法适用于测定颗粒物的质量浓度和粒径分布,但对颗粒物的化学组成无法确定。

3. X射线荧光光谱法:X射线荧光光谱法是一种通过颗粒物中元素的特征X射线荧光来测定其化学组成的方法。

该方法将颗粒物样品暴露在X射线束中,颗粒物中的元素吸收X射线后会发射出特定的荧光信号,通过测量荧光信号的强度和能量来确定颗粒物中各元素的含量。

X射线荧光光谱法适用于测定颗粒物的化学组成,但对颗粒物的质量浓度和粒径分布无法确定。

4. 电子显微镜法:电子显微镜法是一种通过电子显微镜观察颗粒物的形态和结构来确定其组成和来源的方法。

该方法将颗粒物样品放入电子显微镜中,利用电子束与颗粒物相互作用产生的信号来观察颗粒物的形貌、晶体结构和元素分布情况。

电子显微镜法适用于测定颗粒物的形态、组成和来源,但对颗粒物的质量浓度和粒径分布无法确定。

综上所述,环境大气颗粒物的测定原理主要包括重量法、光学法、X射线荧光光谱法和电子显微镜法。

不同的测定方法适用于不同的测定目的,可以综合应用来获取更全面的颗粒物信息。

大气颗粒物检测方法及发展趋势分析

大气颗粒物检测方法及发展趋势分析

大气颗粒物检测方法及发展趋势分析摘要:如何有效地探测大气中颗粒物浓度,从而准确地判定大气中的颗粒物浓度,是目前大气污染防治的一种重要方法,本文对大气中颗粒物的探测技术及其发展方向作了较为详细的分析与探讨。

关键词:大气颗粒物;检测方式;发展趋势;引言当前,基于不同原理的颗粒物浓度探测技术在国内大气环境探测领域被广泛采用,且不同探测技术在实际探测结果上具有很强的可比性,并着重分析了不同检测方法对大气中颗粒物的影响,近几年来,随着大气环境学科的不断深入,对大气中颗粒物的检测手段也日趋多元化,因此,颗粒物作为一种新型的污染物,将是当前大气环境研究的热点之一。

1.大气颗粒物浓度及测试分类大气中悬浮颗粒物(SPM)是对大气中颗粒物的统称,可分为一次污染物和二次污染物,一次污染物为直接排放到大气中的颗粒物,其粒径通常为1~20微米,大部分大于2.5微米以上;二次污染物粒子很小,粒径从0.01微米到1.0微米,在大气中的气态污染物之间及气态污染物与尘粒之间,相互会发生化学反应或者光化学反应,大气中的颗粒物按其粒径被分开来命名,在这些污染物中,大气细颗粒物(TSP)、可吸入细颗粒物(PM10)和肺细颗粒物(PM2.5)因其对环境有较大影响而备受关注。

大气中颗粒物的浓度可以划分为个数浓度、质量浓度和相对质量浓度,个数浓度指的是每一单位体积的大气中含有的颗粒的数量所代表的浓度值,其单位为粒/cm3或粒/L,广泛应用于大气净化技术,如无尘室内、超净作业场所等,也广泛应用于气象科学、大气科学等领域;质量浓度以mg/m3或微克/m3表示,它是以单位体积空气中含有的颗粒物质量为单位,而相对质量浓度则是相对于颗粒的绝对浓度而言的物理量,作为相对浓度使用的物理量包括光散射量、放射线吸收量、静电荷量、石英振子频率变化量等。

2.个数浓度的测定方法2.1化学微孔滤膜显微镜计数法化学微孔薄膜显微术是目前常用的一种测量方法,可用于洁净条件下的尘埃浓度,这是其中一种最基本的方法,用过滤薄膜显微镜来计算和测定水中的浓度,化学微孔薄膜显微术计算方法的具体应用方式如下:首先,将粒子聚集在过滤器表面;其次,使用显微镜,使过滤后的物质变得透明;第三步,观察计数。

大气颗粒物化学组分分析研究进展

大气颗粒物化学组分分析研究进展

大气颗粒物化学组成分析技术摘要大气颗粒物的化学组成非常复杂, 包括大量矿质氧化物、可溶性硫酸盐、硝酸盐、海盐、多环芳烃、有机酸和有机氯等。

大气颗粒物对局地、区域甚至全球大气辐射平衡、大气能见度和元素的生物化学循环具有重要影响, 危害人体健康。

化学组成是决定大气颗粒物各种环境效应的关键因素。

本文从大气颗粒物的化学组分的研究出发,阐述了离线技术和在线技术在颗粒物组分分析中的应用进展,对于采样技术、样品预处理技术进行了比较分析。

关键词大气颗粒物化学组成分析方法引言大气气溶胶(aerosol)是指空气动力学当量直径为0.001-100μm的固体或液体微粒均匀分散在空气中形成的分散体系。

其中, 分散相固体或液体微粒统称为大气颗粒物(APM)。

大气颗粒物根据粒径大小主要分为总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)、细颗粒物(PM2.5)3种。

由于大气颗粒物,特别是细颗粒物对人体健康和环境的潜在危害大,关于颗粒物的组成及来源解析方面的研究日益受到国内外重视[1-3]。

其中大气颗粒物的化学组成分析是评价其环境效应、气候效应和进行源解析以及建立有效控制措施的基础。

本文对近年来国内外大气颗粒物化学组成分析的研究进行了较详细的综述。

1 大气颗粒物的化学组分大气颗粒物的化学组分复杂,主要分为无机元素、水溶性离子、含碳组分3大类[4]。

无机元素包括Ca、Fe、Al、Si、Ti、Ni、P、K、V、S、As、Cu、Pb、Zn、Se、Br、Cr、Hg等。

水溶性离子主要有Mg2+、Ca2+、NH4+、F-、SO42-、NO3-等,其中Mg2+、Ca2+主要来源于土壤和植物燃烧,F- 主要来源于工业排放,SO42-主要来源于工业排放和汽车尾气,NO3-主要来源于化工燃料燃烧,NH4+主要来源于畜牧业和化肥的利用。

1.1大气颗粒物化学组成分析方法化学组成分析的一般流程为:sampling→pretreatment→determining,依据三者的关系,化学组成分析可分为离线分析和在线分析。

颗粒物采样仪器的工作原理与使用方法

颗粒物采样仪器的工作原理与使用方法

颗粒物采样仪器的工作原理与使用方法近年来,随着环境污染问题的日益严重,颗粒物的监测成为了一项重要的任务。

而颗粒物采样仪器作为监测颗粒物浓度和粒径分布的重要工具,其工作原理和使用方法备受关注。

本文将介绍颗粒物采样仪器的工作原理和使用方法,并探讨其在环境监测中的应用。

一、工作原理颗粒物采样仪器的工作原理主要基于颗粒物的物理特性。

颗粒物主要包括悬浮颗粒物和沉降颗粒物两种类型,其粒径范围从纳米到微米不等。

颗粒物采样仪器通过一系列的物理过程,将空气中的颗粒物捕集并测量其浓度和粒径分布。

首先,颗粒物采样仪器通过一个进气口将空气引入到采样室。

采样室内通常设置有滤膜或滤芯,用于捕集颗粒物。

这些滤膜或滤芯具有不同的孔径大小,可以根据需要选择合适的过滤介质。

接下来,空气中的颗粒物在滤膜或滤芯上沉积下来,形成颗粒物的沉积层。

颗粒物的沉积速率与其粒径有关,一般来说,粒径较大的颗粒物沉积速率较快,而粒径较小的颗粒物沉积速率较慢。

然后,颗粒物采样仪器使用一种适合的方法将沉积在滤膜或滤芯上的颗粒物转移到测量装置中。

常见的方法包括超声震荡、机械振动和气流冲击等。

最后,颗粒物采样仪器通过一种合适的方法对捕集到的颗粒物进行浓度和粒径分布的测量。

常见的测量方法包括重量法、光学法和电学法等。

其中,重量法是最常用的方法,通过称量滤膜或滤芯的质量变化来计算颗粒物的浓度。

二、使用方法颗粒物采样仪器的使用方法主要包括采样前的准备工作和采样过程的操作。

首先,需要准备好合适的滤膜或滤芯,并按照仪器的要求进行更换。

滤膜或滤芯的选择应根据所需监测的颗粒物类型和粒径范围来确定。

接下来,需要将颗粒物采样仪器放置在适当的位置,并接通电源。

在采样过程中,应尽量避免仪器受到外界干扰,保证采样的准确性和可靠性。

然后,根据监测需求设置采样时间和采样流量。

采样时间的选择应根据监测任务的要求来确定,一般情况下,采样时间越长,所得到的数据越准确。

采样流量的设置应根据仪器的要求进行调整,以保证颗粒物的捕集效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大气颗粒物采样分析方法研究进展颗粒物采样大气颗粒物采样分析方法研究进展史红星肖凯涛李庆伟防化研究院第五研究所北京102205摘要大气颗粒物是大气环境中的直接污染物或大气环境中化学污染物、微生物污染物的主要载体,在大气或空气环境质量监测和污染控制与治理中具有重要作用。

本文综述了大气颗粒污染物采样与分析方法研究现状,并展望了大气颗粒物采样分析方法研究的未来发展方向。

关键词大气颗粒物气溶胶采样方法分析方法综述大气颗粒物是大气环境中的直接污染物或大气环境中化学污染物、微生物污染物的主要载体,在大气或空气环境质量监测和污染控制与治理中具有重要作用。

大气颗粒物种类很多,可以根据来源、形成机制、形成特征、粒径、化学组成等多种方法分类。

通常把大气颗粒物按粒径分为4类:总悬浮颗粒物TSP、可吸入粒子IP、粗粒子PMlo、细粒子PM2、5。

TSP是指漂浮在空气中的固态和液态颗粒物的总称,其空气动力学当量粒径范围约为0、1、100微米。

PM,。

在环境空气中持续时间很长,对人体健康和大气能见度影响都很大。

PM,o被人吸入后,会累积在呼吸系统中,引发许多疾病…。

目前普遍认为PM对人体危害最大,因为这个粒径的颗粒物可以在肺泡中沉积并进入血液循环。

25一般情况下,大气颗粒物采样分析方法是使含有一定量大气颗粒物的大量空气通过截留滤膜、固体吸附剂或液体吸收剂,将大气中浓度较低的污染物富集起来,然后根据需要直接或间接分析其质量浓度、粒径分布、颗粒形态、元素组成和颗粒负载有机物的种类与数量等指标。

目前对大气颗粒污染物的研究主要集中在大气颗粒物的时空浓度分布水平或粒级分布特点、源解析与贡献、化学组成及形态、颗粒物上的多环芳烃等重点化学污染物分析以及大气颗粒物的危害性及防治对策等方面‘2l【31141151,而对大气颗粒污染物采样分析方法方面的研究报道很少。

本文综述了大气颗粒物采样和分析方法方面的研究现状,展望了大气颗粒物采样分析方法研究的未来发展方向。

l大气颗粒物采样方法大气颗粒物采样方法从:I:作环节上包括采样点布置、采样方法选择、采样器材准备和采样效率评价等几个方面。

1、1采样点布置方法采样点的布置方法与方案直接取决于试验目的和当地的地形气象条件,并要综合考虑采样与分析方面的技术要求。

采样点布置的基本要求是能够保证采集到在时间空间上都具有代表性的有价值的样品,这就要求采样点平面位置平¨采样高度的选取要具有代表性、科学性。

具体情况根据试验日的和性质确定。

火气环境监测采样时,采样点应殴在空旷地点且颗粒物采样器放置高度为3~5m,避免地面扬尘影u向。

特殊:C况环境采样时,采样点设在污染严重地点,颗粒物采样器放置高度为1、5m左右,即呼吸带高度。

根据试验的目的和性质可分为大气环境质量监测、室内空气质量监测、污染源环境影响评价或污染范围程度调查等。

常用的点源污染调查采样布点方法包括同心圆布点、扇形布点等;常用的面源污染布点方法包括网格布点、功能分区布点、选择性布点等。

采样点布置方面较新的研究文献很少,一般工作中参考现有的相应调查研究规范并根据实际情况和经验灵活决定。

1、2采样方法分类与选择大气颗粒物采样方法一般可分为直接采样法和浓缩采样法两类。

直接采样法用于当空气中被测组分浓度较高或所用分析方法灵敏度较高时的情形,这种情况下采集少量空气样品就可满足分析需要,采样方法包括注射器采样、塑料袋采样和真空瓶取样等。

浓缩采样法用于空气中被测组分较低、需要浓缩后才能满足分析方法的要求的情形,具体方法包括溶液吸收法、滤纸和滤膜截留法、固体吸附法等。

滤纸和滤膜截留法也简称滤料法,实际:1二作中比较常用。

方法中滤料的选择是一个关键性问题,通常应注意以下几点:①滤料种类选择应尽量减少甚至排除滤料背景值带来的系统误差:②滤料的孔径既要能够保证有足够高的采样效率,又要能够保证适当的采样速度:⑧滤料的机械强度及价格等也是需要综合考虑的因素。

1、3采样器分类与选择大气颗粒物采样器通常由样品收集器和动力装置所组成。

根据国家环保局标准《环境保护仪器分类与命名》HJ/T121996,常用丁。

测定人气颗粒物浓度时空分布的空气污染监测仪器见表2。

表2空气污染监测仪器激光散射法可吸入尘测定仪可吸入尘浓度测定仪B射线计数法可吸入尘测定仪压电晶体差频法可吸入!拉测定仪总悬浮微粒浓度测定仪颗粒物平均粒度测定仪光扫描粒度分布测定仪颗粒物粒度测定仪冲击式可吸入尘粒度测定仪库尔特计数器离心式颗粒物分级装置沉降天平2、2颗粒物样品中的化学污染物分析分析方法根据分析任务分为定性分析、定量分析和结构分析;根据分析对象分为无机分析矛[1有机分析;根据分析所需试样用量或被测组分含量分为常量分析、半微量分析、微量分析矛H痕量分析;根据分析方法所用手段分为化学分析和仪器分析对目标物进行鉴定或测定的分析方法,要借助精密仪器,除可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是目前分析领域的主流分析方法,是分析化学发展的方向。

由于大气颗粒物样品中往往包含多种微量或痕量有机和无机成分,其定性和定量分析比较适合仪器分析方法‘12l。

分析颗粒物样品中的无机元素常选用X射线荧光分析、粒子诱导X射线发射谱、仪器中子活化分析、等离子体原子发射光谱、毛细管电泳、原子吸收光谱等。

选用XRF、PIXE和INAA等方法分析多种成分元素时,采样得到的大气颗粒物样品可不经样品消解处理而直接进行定量分析。

XRF法与INAA法和PIXE法相比较,其灵敏度稍低,但仪器相对廉价,且操作方便,元素的相互干扰较少,因此是目前源解析中使用最多的定量分析手段;全反射X一射线荧光法测定灵敏度远比XRF法高,然而测定方法的灵敏度越高,滤膜中杂质的影响就越大,必须进行校正。

试样经消解后分析方法较多,分析方法因分析目的、消解方法而不同。

将试样经酸分解后,原子吸收法、等离子发射光谱法、等离子发射光谱法一质谱法分析是最为广泛使用的方法。

火焰原子吸收法是我国最为普及的监测分析方法,且已有许多国家标准方法颁布,在金属成分分析中发挥着重要作刚:电热原子吸收法币Il含彳i墨炉原子吸收法可使试样前处理程序简化。

ICPAES、ICPMS定性了53种,占色谱总流出成分的85、2%。

2、3样品中的微生物污染物分析大气微生物是大气颗粒污染物中的特殊种类,目前我国对大气微生物污染程度的研究多以空气中细菌数量多少来表示。

大气颗粒物样品中微生物污染物的分析主要是一些致病细菌和真菌的鉴定,涉及的分析方法主要是常规生物或生化方法在该领域的运用,从采样分析全过程来看其创新点主要在于其采样过程。

文献报道的分析方法主要为生理生化试验鉴定和16SrRNA序列分析法。

方东等人118l利用生理生化试验鉴定了2000年10月至2001年8月南京市主要功能区大气微生物中常见种类的细菌和霉菌类,并指出大气微生物数量变化与大气化学监测指标PM】0、S02、N02等呈一定的正相关关系,尤其与PMlo关系更为密切。

张涛等人【191采用平皿沉降法采样测定了深圳特区不同功能区37个监测点人群呼吸带内的大气细菌数和真菌数。

叶锦韶等人120I采用th然沉降法对广州市8个菜市场进行空气微生物污染现场采样研究,利用生理生化试验方法检测空气中细菌总数和金黄色葡萄球菌菌落数。

翟俊辉等人1211等选择5株大气中采集分离的菌株,通过比较研究说明16SrRNA序列分析法可以作为大气微生物分析的一个有效技术,具有快速、准确和不依赖于细菌生长状态等优点。

2、4样品中的单个特殊颗粒物分析单颗粒分析方法能够提供全颗粒物分析方法所无法提供的有关颗粒物特性的大量信息,同时单颗粒分析所需的采样时间短,很小质量的样品就可以进行分析,这使得单颗粒分析已成为表征大气颗粒物大气化学行为的重要手段。

目前,该方法已经在大气颗粒物气候效应、生态健康效应、环境效应、颗粒物源解析、人气颗粒物化!学反应过程等大气化学的诸多领域得到了广‘泛的应用122|。

颗粒物表面微观形貌表征手段实际上是单颗粒物分析方法,采取合适的微量分析方法可以研究颗粒物的来源、形成机理、传输过程、化学活性以及对环境的影响等,还可以研究某元素或化合物在单个颗粒物中的分布状态。

但微区分析通常限于?仁定量分析:且颗粒物中的一些易挥发成分和不稳定成分在高真空环境中容易挥发;同时要获得统计信息,需分析大量的单颗粒物,因此单颗粒物研究费时费力。

目前已应用到颗粒物中的微量分析技术主要有以下几个方面:在观测微小粒子的形态及微细结构时多使用透射电子显微镜或扫描电子显微镜fSEM)。

单个粒子的组成成分可使刚透射电子显微镜的能谱分析附件进行定量测定。

常用的方法还有电子探针微区分析法。

总体来说,显微分析方法是研究单颗粒物的形态结构的主要方法,激光微探针质谱、二次离子质谱、Raman微探针以及红外光谱是研究单颗粒物的化学组成的重要方法123112引。

肖锐等125’采集了北京市2000年春夏季的5个大气气溶胶样品并采用扫描电镜x射线能谱技术分析大气气溶胶单颗粒。

左丹英等126l采用二次离子质谱对大气单颗粒物中的有机成分进行分析研究,并认为大气颗粒物中含有多环芳烃系列。

杨二弘申等127|利用透射电子显微镜对北京市区和背景点的细颗粒物的形貌特征和集聚状态进行分析,结合颗粒物能谱和I选区电子衍射特征,将北京市大气细颗粒物分为烟尘集合体、飞灰、矿物颗粒、硫酸盐和有机颗粒等5种单颗粒类型,并讨论了它们的来源。

3大气颗粒物采样分析方法研究展望根据大气颗粒物采样分析方法研究现状,我们认为在未来的研究中,应强化采样分析全过程误差研究,促进采样方法的革新,实现采样方式与样品预处理、样品分析方法的有机结合,促进大气颗粒物采样分析技术又好又快的发展。

3、1采样分析全过程误差研究大气颗粒污染物的采样误差禾1分析误差是影响最终检测结果可靠性的两个重要方面,但人们往往将注意力集中在充分降低分析误差方面,而忽视了对采样误差的降低。

实际上,当分析误差为采样误差的三分之一或更小时,进一步降低分析误差是不重要的,有效降低采样误差就变成了矛盾的主要方面。

采样误差与分析误差具有完全不同的特性,分析误差一般可用空白扣除、标准量值传递、精密度和准确度控制等成熟技术来加以控制,而采样误差则由于受影响因素更多、更复杂和采样真值很难确定等难以控制。

因此,在实际工作中也许我们会常遇到这样的矛盾,即,在实验室单独分析时分析方法回收率很高,而在分析实际采集的样品时,却发现某些样点的分析结果与实际明显不符的错误结果。

因此,在现实工作中如何估算和测定大气颗粒物的采样分析全过程中采样环节对测定结果的影响,以及如何科学定量的评判采样代表性、有效性及采样效率等,都是容易被忽视却很值得研究的问题。

相关文档
最新文档