运筹学实验报告1
运筹学实验报告

实验报告运筹学学号:100103155姓名:周李斌专业:工业工程指导教师:周三玲二○一一年六月运筹学(一)实验报告一、实验目的:1)熟练掌握运筹学软件的相关操作2)学会使用软件求解运筹学中常见的数学模型,如线性规划问题、运输问题、目标规划问题、最短路问题、最大流问题等等3)了解线性规划问题在Excel中如何建立,主要是数据单元格、输出单元格、可变单元格和目标单元格的定义以及规划求解宏定义应用设置。
4)熟练掌握Excel规划求解宏定义模块使用。
二、实验仪器设备及材料计算机、Excel软件三、实验任务:Ⅰ、线性规划Ⅱ、目标规划Ⅲ、运输问题Ⅳ、最短路问题Ⅴ、最大流问题四、实验内容记录:问题1模型:Min z = -2X1-X2+3X3-5X4s.t. X1+2X2+4X3-X4<=62X1+3X2-X3+X4<=12X1+ X3+X4<=4X1,X2,X3,X4>=0实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析:问题2模型:min z= P1d1-+P2d2++P3(5d3-+3d4-)+P4d1+ s.t. x1+x2+d1--d1+=80x1+x2+d2--d2+=90x1+x2+d3--d3+=70x1+x2+d4--d4+=45x1,x2,d i-,d i+≥0,i=1,2,3,4 实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题3模型:求运输问题最优解实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题4模型:求V1到各点的最短路2V2 V32 3 4 61 6V1 V5 V6 V43 4 3 7V7 V81实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得到f(v1,v8)=10,其余结果,方法同上。
问题5:求网络最大流V1 (1,1) V4(4,3) (3,2) (4,3 ) (7,6)Vs (3,2) V3 (2,2) Vt (10,4) (3,2) (5,3) (8,3)V2 (4,2) V5实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得最大流为V(f)=11,此时S=(Vs,V2),S=(V1,V3,V4,V5,Vf)实验总结(或心得体会)“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
运筹学实验报告[1]
![运筹学实验报告[1]](https://img.taocdn.com/s3/m/24d72c8e998fcc22bdd10d5c.png)
中南民族大学管理学院学生实验报告课程名称:《管理运筹学》年级:2012级专业:指导教师:胡丹丹学号:姓名:实验地点:管理学院5号楼综合实验室2013学年至2014学年度第2 学期目录实验一线性规划建模及求解实验二运输问题实验三整数规划问题实验四目标规划实验五用lingo求解简单的规划问题实验六用Excel求解线性规划模型要求:(1)每一个实验都要求将软件最后的输出结果进行截图,粘贴在每个实验中,然后根据截图内容回答相应的问题。
(2)将建模、求解结果或是相关分析过程写在实验相应结果中。
(3)实验结果禁止照搬抄袭他人,一旦发现,则无实验分。
(4)实验报告完成后,用B5纸打印。
实验一线性规划建模及求解实验内容:某轮胎厂计划生产甲、乙两种轮胎,这两种轮胎都需要在A、B、C三种不同的设备上加工。
每个轮胎的工时消耗定额、每种设备的生产能力以及每件产品的计划如表所示。
问在计划内应该如何安排生产计划,使总利润最大?(2)使用“管理运筹学”软件求得结果。
根据“管理运筹学”软件结果,回答下列问题:(3)哪些设备的生产能力已使用完?哪些设备的生产能力还没有使用完?其剩余的生产能力为多少?(4)三种设备的对偶价格各为多少?请对此对偶价格的含义给予说明。
(5)保证产品组合不变的前提下,目标函数中的甲产品产量决策变量的目标系数的变化范围是多少?(6)当乙中轮胎的单位售价变成90元时,最优产品的组合是否改变?为什么?(7)如何在A、B、C三台设备中选择一台增加1小时的工作量使得利润增加最多,请说明理由。
(8)若增加设备C的加工时间由180小时增加到200小时,总利润是否变化?为什么?(9)请写出约束条件中常数项的变化范围。
(10)当甲种轮胎的利润由70元增加到80元,乙种轮胎的利润从65元增加到75元,请试用百分之一百法则计算其最优产品组合是否变化?并计算新利润(11)当设备A的加工时间由215降低到200,而设备B的加工时间由205增加到225,设备C的加工时间由180降低到150,请试用百分之一百法则计算原来的生产方案是否变化,并计算新利润。
运筹学实验报告

运筹学实验报告学院:安全与环境工程姓名:***学号: **********专业:物流工程班级:物流1302班实验时间: 5月8日、 5月9日5月13日、5月14日5月20日、5月21日湖南工学院安全与环境工程学院2015年5月实验一线性规划一、实验目的1、理解线性规划的概念。
2、对于一个问题,能够建立基本的线性规划模型。
3、会运用Excel解决线性规划电子表格模型。
二、实验内容线性规划的一大应用适用于联邦航空公司的工作人员排程,为每年节省开支超过600万美元。
联邦航空公司正准备增加其中心机场的往来航班,因此需要雇佣更多的客户服务代理商,但是不知道到底要雇用多少数量的代理商。
管理层意识到在向公司的客户提供令人满意的服务水平的同时必须进行成本控制,因此,必须寻找成本与收益之间合意的平衡。
于是,要求管理团队研究如何规划人员才能以最小的成本提供令人满意的服务。
分析研究新的航班时间表,以确定一天之中不同时段为实现客户满意水平必须工作的代理商数目。
在表1.2的最后一栏显示了这些数目,其中第一列给出对应的时段。
表中的其它数据反映了公司与客户服务代理商协会所定协议上的一项规定,这一规定要求每一代理商工作8小时为一班,各班的时间安排如下:轮班1:6:00AM~2:00PM轮班2:8:00AM~4:00PM轮班3:中午~8:00PM轮班4:4:00PM~午夜轮班5:10:00PM~6:00AM表中打勾的部分表示这段时间是有相应轮班的。
因为轮班之间的重要程度有差异,所以协议中工资也因轮班所处的时间而不同。
每一轮班对代理商的补偿(包括收益)如最低行所示。
问题就是,在最低行数据的基础上,确定将多少代理商分派到一天之中的各个轮班中去,以使得人员费用最小,同时,必须保证最后一栏中所要求的服务水平的实现。
表1.1 联邦航空公司人员排程问题的数据轮班的时段时段 1 2 3 4 5 最少需要代理商的数量6:00AM~8:00AM √ 488:00AM~10:00AM √√ 7910:00AM~中午√√ 65中午~2:00PM √√√ 872:00PM~4:00PM √√ 644:00PM~6:00PM √√ 736:00PM~8:00PM √√ 828:00PM~10:00PM √ 4310:00PM~午夜√√ 52午夜~6:00AM √ 15每个代理商的每日成本 170 160 175 180 195三、实验步骤(1)明确实验目的:科学规划人员以最小的成本提供令人满意的服务。
运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学实验报告

《运筹学》实验报告河南理工大学经管学院班级:人力11—1班姓名:陈浩学号:311110030120实验一线性规划1.某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D,已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1产品名称规格要求单价(元/kg)原材料C不少于50%50A原材料P不超过25%原材料C不少于25%35B原材料P不超过50%D不限25表2原材料名称每天最多供应量(kg)单价(元/kg)C100 65P 100 25H 60 35解:(1)依题意得到模型:260260150125253550max 321321321≤++≤≤≤++=x x x x x x x x x z(2)建立新问题:(3)解得:实验二运输问题2.设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。
假定等量的化肥在这些地区使用效果相同。
各化肥厂年产量,各地区年需要量及从各化肥厂到各地区运送单位化肥的运价表如下表所示。
试求出总的运费最节省的化肥调拨方案。
需求地区化肥厂I II III IV 产量A B C 1614191313202219231715—506050最低需求最高需求305070703010不限注意:表格中的运价可以填入M(任意大正数)。
解:(1)建立新问题:得:(2)求解问题,观察求解结果:3.人事部门欲安排四人到四个不同岗位工作,每个岗位一个人。
经考核五人在不同岗位的成绩(百分制)如下表所示,如何安排他们的工作使总成绩最好,应淘汰哪一位。
工作人员人力资源物流管理市场营销信息管理甲乙丙丁戊8595828676928783908573787980929095908893解:(1)建立新问题(2)修改各个人名和任务名:(3)得:(4)解得:实验三整数规划4.某厂拟建两种不同类型的冶炼炉。
运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
运筹学实验报告1

实验报告项目名称所属课程名称运筹学项目类型实验(实训)日期3月18号班级学号姓名指导教师浙江财经学院教务处制一、实验概述(一)实验目的掌握使用Excel软件求解线性规划问题。
(二)实验要求用Excel软件完成案例求解并进行结果分析。
(三)实验工具Excel软件二、实验内容案例营养配餐问题♦有A、B两种食品,含有每天必须的营养成分C、D,每天至少需要营养成分C和D 分别为2和3个单位。
食品A、B的成分和单价如下表,试做花钱最少的食谱,并求其费用。
(一)线性规划模型♦1、确定决策变量:设A、B两种食品每天的购买量分别为x1,x2单位。
♦2、确定目标函数:min W=0.9x1+0.8x2♦3、确定约束条件:成分C约束:x1+2x2 ≥2成分D约束:3x1+x2 ≥3x1 ≥0,x2 ≥0(二)电子表格模型A购买量0.8B购买量0.6目标函数 1.2成分C约束 2成分D约束 3A购买量0.8B购买量0.6(三)结果分析Microsoft Excel 11.0 运算结果报告工作表[Book1.xls]Sheet1报告的建立: 2012/3/18 18:51:54目标单元格(最小值)单元格名字初值终值$B$5目标函数0 1.2可变单元格单元格名字初值终值$B$2A购买量00.8 $B$3B购买量00.6约束单元格名字单元格值公式状态型数值$B$7成分C约束2$B$7>=2到达限制值$B$8成分D约束3$B$8>=3到达限制值$B$10B购买量0.6$B$10>=0未到限制值0.6$B$9A购买量0.8$B$9>=0未到限制值0.8分析:由上表可知:目标函数的最小值为1.2,当产品A的购买量为0.8,产品B的购买量为0.6时取得最小值。
取得最小值时成分C的含量与成分D的含量均达到最低要求。
Microsoft Excel 11.0 极限值报告工作表 [Book1.xls]极限值报告 1报告的建立: 2012/3/18 18:54:24目标式单元格名字值$B$5 目标函数 1.2变量下限目标式上限目标式单元格名字值极限结果极限结果$B$2 A购买量0.8 0.8 1.2 #N/A #N/A$B$3 B购买量0.6 0.6 1.2 #N/A #N/A分析:有该表可知:产品A购买量下极限为0.8单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大;产品B购买量下极限为0.6单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大。