船舶冷却水系统设计指导
第五章船舶冷却水温度自动控制系统

第二节 MR-Ⅱ型电动气缸冷却水 温度自动控制系统
一、控制系统的组成
第二节 MR-Ⅱ型电动气缸冷却水 温度自动控制系统
1、电源电路 2、继电器和开关电路 3、输入和指示电路 4、比例微分控制电路 5、脉冲宽度调制电路
第二节 MR-Ⅱ型电动气缸冷却水 温度自动控制系统
二、问题
1、温度变化趋势与电压变化趋势是否 一致?
第五章 船舶冷却水温度自动控制系统
▪ 船舶冷却水系统的种类 (闭式系统、开式系统、中央冷却水系统) ▪ 第一节 直接作用式冷却水温度控制系统 ▪ 第二节 MR-II型电动气缸冷却水温度控制系统 ▪ 第三节 采用智能调节器控制的冷却水温度控制
系统
第一节 直接作用式冷却水温度控制系统
直接作用: 无需外加能源,靠感温元件内充注
的低沸点工作介质压力随温度成比例变 化的原理,来驱动三通阀开闭。 典型的控制阀:WALTON恒温阀
第一节 直接作理 2、给定值的调整 3、优点:结构简单 缺点:不够精确,存在静差
第一节 直接作用式冷却水温度控制系统
二、管理和维护要点 1、安装注意事项 避免变形、卡阻 2、运行管理 定期清洗、装复时确保转动灵活 3、故障处理 不可控制的升高:手动调节降温, 若可降,可能是感温液体漏泄 不可控制的降低:弹簧断裂,滑板5 卡死。
升高
3)温度表指针为100,实际水温不 断降低
第三节 采用智能调节器控制的冷却水 温度自动控制系统
2、为何要用脉冲宽度调制,而非直接 驱动?脉冲宽度板上有哪些参数可调?
3、两个继电器有否互锁装置? 4、电路板上各旋钮和开关的作用? 5、为何要设不灵敏区?
第二节 MR-Ⅱ型电动气缸冷却水 温度自动控制系统
三、管理要点及常见故障分析
冷却水系统原理与操作

本单元结束!
《轮机模拟器》
冷却水系统原理与操作
《轮机模拟器》 冷却水系统原理与操作
第三节 系统运行操作
LTFW
① 膨胀水箱补水 ② PID调节器控制气源 ③ 中冷器选择、放气、放残 ④ 选取冷却器 ⑤ 泵浦电源 ⑥ 泵浦及阀件的开启 ⑦ 观察流量、压力、温度
《轮机模拟器》 冷却水系统原理与操作
第三节 系统运行操作
AEFW
① 低温淡水系统正常运行 ② 确定待起发电机 ③ 确定暖缸泵电源、暖缸 ④ 开启发电机低温淡水阀件 ⑤ 开启发电机高温淡水阀件 ⑥ PID调节器控制气源 ⑦ 观察流量、压力、温度
冷却水系统原理与操作
第一节 船舶冷却水系统概述 第二节 系统工作原理
第三节 系统运行操作
《轮机模拟器》 冷却水系统原理与操作
第一节 船舶冷却水系统概述
是机舱设备及系统热量的传递与控制系统 是船舶机舱的脉络
重要的参数及依据来源
状态判别 故障诊断判别
《轮机模拟器》
冷却水系统原理与操作
第一节 船舶冷却水系统概述
分类:
1、开式冷却
《轮机模拟器》
冷却水系统原理与操作
第一节 船舶冷却水系统概述
分类:
2、闭式冷却
《轮机模拟器》
冷却水系统原理与操作
第一节 船舶冷却水系统概述
分类:
3、中央冷却系统
《轮机模拟器》
冷却水系统原理与操作
第一节 船舶冷却水系统概述
中央冷却系统优点
海水管系及热交换器少 淡水系统管路清洁 减少海水腐蚀 减少机舱舱底水量 减少维修工作量 工作可靠
《轮机模拟器》 冷却水系统原理与操作
第一节 船舶冷却水系统概述
7-1 冷却水温度控制系统

若电机仍不转→故障在执行机构(M烧坏或卡死,过载继
电器动作) 若M只能一个方向运转→增、减输出断电器之一有故障
三 中央冷却水温度自动控制系统 1.ENGARD中央冷却水温度自动控制系统 的组成
第七章
船舶机舱辅助控制系统
§7-1 冷却水温度控制系统 第一节 冷却水温度控制系统
感温元件 感温元件
主 机
调 节 器
主 机
调 节 器
三通调节阀
三通调节阀
M
执行电机 冷却器 冷却器
M
执行电机
汽缸冷却水温度控制原理
MR—Ⅱ型电动冷却水温度控制系统
属需外加电源的间接作用基地式仪表,能实现PD控制规律 组成及工作过程 测量元件 热敏电阻T802(插于进口管中,电阻值随水温作线性变化)。 测量信号→分压器分配后变成电压信号 定位器调定给定值电压信号 →偏差 e,
用来调整脉冲宽度
指示灯L2 相当于手动开关SW1 F2 F 电源主开关,右合左断 发光二极管D2,指示电源是否正常
E F1
手—自动选择开关SW2,右边自动,左边手动
二。管理要点
(1)调节器面板布置 一块温度表+五块插板B、C、D、E、F。 (2)控制系统投入工作的操作。 A.将开关13扳到右边,合上主电源,电源批指示灯 14亮,
2. ENGARD控制器
3.系统工作原理 ⑴低温淡水温度控制 ⑵海水11。
B.按下按钮2,转动1,使A指示水温给定值。 C.拔出按钮2,A指示测量值,开关12扳至左边手动位,手 操开关9,将水温调至给定值 。 D.将开关12扳至自动位,实现无扰动切换,系统投入工作。
船舶冷却水系统设计指导

编制大纲:需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。
)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》前言(目的)以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。
参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式;系统发展核心:1,稳定调节;2,节省能源,余热循环利用;3,节省成本,替代方案的方式;关键词:将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)冷却水系统目录1,范围2,冷却水系统的基本形式3,系统形式的选择4,冷却水系统实例5,中央冷却系统热平衡计算6,冷却水系统的主要设备配置要点7,制淡装置(造水机)8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求10,冷却水系统的温控阀11,冷却水系统的节流孔板12,冷却水系统的泵13,冷却水系统的膨胀水箱冷却水系统1,冷却水系统的基本形式冷却水系统的基本形式见表1,注解:(1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。
开式系统是指柴油机本身直接用舷外海水或者江水冷却。
如今除江河小船之外,基本不采用开式系统。
海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。
(潜在问题:船内海水泄露,在与柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船)(2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷外水冷却。
船舶冷却水系统设计指导(精编文档).doc

【最新整理,下载后即可编辑】编制大纲:需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。
)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》前言(目的)以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。
参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式;系统发展核心:1,稳定调节;2,节省能源,余热循环利用;3,节省成本,替代方案的方式;关键词:将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)冷却水系统目录1,范围2,冷却水系统的基本形式3,系统形式的选择4,冷却水系统实例5,中央冷却系统热平衡计算6,冷却水系统的主要设备配置要点7,制淡装置(造水机)8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求10,冷却水系统的温控阀11,冷却水系统的节流孔板12,冷却水系统的泵13,冷却水系统的膨胀水箱冷却水系统1,冷却水系统的基本形式冷却水系统的基本形式见表1,(1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。
开式系统是指柴油机本身直接用舷外海水或者江水冷却。
如今除江河小船之外,基本不采用开式系统。
海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。
(潜在问题:船内海水泄露,在与柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船)(2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷外水冷却。
船舶发动机冷却系统方案

第六章冷却系统第一节冷却系统的功用、组成和布置一、冷却系统的功用柴油机工作时的燃气温度高达1800℃左右,使与燃气直接接触的气缸盖、气缸套、活塞、气阀、喷油器等部件严重受热。
严重的受热会造成:①材料的机械性能下降,产生较大的热应力与变形,导致上述部件产生疲劳裂纹或塑性变形;②破坏运动部件之间的正常间隙,引起过度磨损,甚至发生相互咬死或损坏事故;③燃烧室周围部件温度过高,使进气温度升高,密度降低,从而减少进气量;增压后的空气温度也会升高,并影响进气量;④润滑油的温度也逐渐升高,粘度下降,不利于摩擦表面油膜的形成,甚至失去润滑作用。
综上所述,为了保证柴油机可靠工作必须对柴油机受热机件,滑油及增压后的空气等进行冷却。
然而从能量利用观点来看,柴油机的冷却是一种能量损失,过分冷却将导致燃油滞燃期延长,产生爆燃和燃烧不完全,增加加散热损失;机件内外温度差过大,以致热应力超过材料本身的强度而产生裂纹,润滑油粘度变大而增加摩擦功的消耗;在燃用含硫量较高的重油时,将产生低温腐蚀,使缸套严重腐蚀等。
因此,在管理中应既不使柴油机因缺乏冷却而导致机件过热,也不使柴油机因过分冷却而造成不良后果,应有所兼顾。
冷却系统的主要任务应是保证柴油机在最适宜的温度状态下工作,达到既能避免零件的损坏和减小其磨损,又能充分发出它的有效功率。
近代,从尽量减少冷却损失以充分利用燃烧能量出发,国内、外正在进行绝热发动机的研究,相应发展了一批耐高温的受热部件材料,如陶瓷材料等。
目前,柴油机的冷却方式分为强制液体冷却和风冷两种,绝大多数柴油机使用前者。
而液体冷却的介质通常有淡水、海水、滑油等三种。
淡水的水质稳定,传热效果好并可采用水处理解决其腐蚀和结垢的缺陷,因而它是目前使用最广泛的一种理想冷却介质;海水的水源充裕但水质难以控制且其腐蚀和结垢问题比较突出,为减少腐蚀和结垢应限制海水的出口温度不应超过55℃;滑油的比热小,传热效果较差,在高温状态易在冷却腔内产生结焦,但它不存在因漏泄而污染曲轴箱油的危险,因而适于作为活塞的冷却介质。
船舶冷却水系统设计与分析

自动调节阀 。混流式冷却 系统 的特 点是主机 没有缸套 水冷 却
器, 有 一 部分 低 温 水 经 高 温 淡 水 冷 却 泵 后 直 接 至 主 机 气 缸 套 、
和安 装 高 度 均 有 具 体 规 定 , 设 计 时 应查 阅并 在 图 上 注 明 。
( 4 )在独立式中央冷 却系统 中, 若高温水 热交换器 由低 温
水冷却 , 而低 温 淡 水 冷 却器 ( 中央 冷 却 器 ) 可 设 计 为 用 自流 海 水
( 将冷却器直 接与海水 接触 , 利用船舶 航行 的速度) 来冷却 , 称 为 自流式 中央冷却系统。这种系统可省去 主海水泵 , 但 对航速
动 切 换 。系 统 一 般 还 设 1台 排 量 较 小 的港 口停 泊 低 温 淡 水 冷 却 泵 。也 可设 3台相 同排 量 的 低 温淡 水 泵 , 航 行 时用 2台 , 1台 备用 , 停 泊时 用 1台 。
( 7 )淡水冷却系统均应设置膨胀水箱 , 安装在一定高度 , 以 保持淡水泵吸入 E l 的正压头 , 各型柴油机所需膨 胀水箱 的容量
1 冷 却 水 系统 设 计 的基 本 要 求
( 1 )系 统 应 满 足 设 计 任 务 书 或 技 术 规格 书 的要 求 。
循环系统。系统应设 淡水高 温报警及 超高温 自动停 车保护 装 置, 主机 淡水 冷 却泵 一般 有 2台 ( 小 船除 外) 互 为备 用 , 自动
切换 。
( 2 )系统应满足相关规范 、 公约 、 规则等 的要求 。 ( 3 )系统应完全正确表达并满足各种冷却设 备的冷却原理
30万吨油轮冷却水系统设计5页2

30万吨油轮冷却水系统设计兰志新摘要船舶冷却水系统是船舶动力装置的重要组成部分。
它通过冷却水的循环带走了主机和辅机运转过程中散发出来没有转化为机械能的热量,从而避免了因大量热量的积累而造成的金属疲劳脆化和润滑油的失效。
因此,船舶冷却水系统性能的优劣直接影响到船舶主机和辅机的工作性能,想要优化和充分发挥船舶冷却水系统的性能,就需要了解它的工作过程和注意事项。
关键词:冷却淡水系统,冷却海水系统—————————为了使船舶受高温燃气和摩擦作用的部件保持正常稳定的工作性能,必须对这些部件进行冷却。
冷却系统的作用就是把冷却介质送到受热部件,将其多余的热量带走。
船舶动力装置中经常使用的冷却介质主要有:海水、淡水、滑油、燃油和空气等,其中最常用的是海水和淡水。
冷却系统应符合的要求是:确保充足、连续和温度适宜的冷却介质供给柴油机动力装置的各个需要冷却的部位,工作安全可靠,便于维护管理和经济耐用等。
[1]30万吨油轮冷却水系统设计研究的内容,主要包括合理的选择泵、阀和管路材料,合理的布置管路走向。
根据相关资料及相关设计规范,确定泵的排量,管路的管径。
方法是在不违反规范要求的前提下,选择合适的泵、阀和相关材料,设计出合理的冷却海、淡水管路原理图、日用淡水管路原理图和机舱给排水管路原理图。
本设计主要研究的内容有:冷却淡水系统,冷却海水系统,并完成海淡水泵的排量的计算。
1 30万吨油轮冷却淡水系统设计1.1概述冷却淡水系统是船舶系统中不可缺少的重要部分之一。
它对主机、副机进行冷却以保证它们能够正常的运转,更大的发挥它们的价值。
1.2 淡水冷却系统设计的总体思路30万吨油轮的冷却淡水系统主要包括主机冷却、副机冷却。
主机采用闭式冷却,用高温淡水冷却主机缸套活塞,再用低温淡水冷却高温淡水,最后用海水来冷却低温淡水。
1.3淡水冷却管路工作原理(如图)首先淡水泵从中央淡水膨胀柜吸入淡水,然后沿着淡水管路到达两台中央淡水循环泵,一台正常工作,另一台备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编制大纲:需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。
)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》前言(目的)以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。
参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式;系统发展核心:1,稳定调节;2,节省能源,余热循环利用;3,节省成本,替代方案的方式;关键词:将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)冷却水系统目录1,范围2,冷却水系统的基本形式3,系统形式的选择4,冷却水系统实例5,中央冷却系统热平衡计算6,冷却水系统的主要设备配置要点7,制淡装置(造水机)8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求10,冷却水系统的温控阀11,冷却水系统的节流孔板12,冷却水系统的泵13,冷却水系统的膨胀水箱冷却水系统1,冷却水系统的基本形式冷却水系统的基本形式见表1,注解:(1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。
开式系统是指柴油机本身直接用舷外海水或者江水冷却。
如今除江河小船之外,基本不采用开式系统。
海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。
(潜在问题:船内海水泄露,在与柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船)(2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷外水冷却。
这减少了对柴油机的腐蚀和对环境的污染,并提高了可靠性。
(3),为使主机以外的其他机械设备均用淡水,且用一个系统进行冷却,就形成中央冷却系统。
同时,若有部分设备单独用海水冷却,则称混合式冷却水系统。
(蒸汽货泵系统的真空冷凝器还在独立使用海水直接冷却)(4),在柴油机的淡水冷却系统中,有高温水回路和低温水回路。
如采用高低温水的混合来调节参数,则属于混流式。
如高低温回路各自分开,则为独立式。
(5),在独立式中央冷却水系统中,高温水热交换器可以用低温淡水冷却(称为独立I型),高温水热交换器用海水冷却(称为独立II型)。
(6),在独立式中央冷却系统(I型)中,对某些船舶,他的中央冷却器也可以设计为用自流海水冷却(利用船舶航行的速度),这种称为自流式中央冷却系统。
返回目录2,系统形式的选择;对柴油机的冷却水系统形式,各柴油机制造厂都有规定和推荐(MAN和瓦锡兰机型多数在GUIDE指导文件内),设计时应按照厂商推荐的系统并考虑下列因素进行选择。
(1)低速柴油机的冷却水系统;1)常规冷却水系统和中央冷却水系统均可选用,两种系统的优缺点对比见表2,船东,特别是大型航运公司,毫无例外选用中央冷却水系统。
出于效率,长期航运费用,常规维护都是极为有利的。
2)中央冷却系统中,基本推荐采用独立式中央冷却水系统(瓦锡兰的苏尔寿柴油机也有推荐采用混流式中央冷却水系统)。
独立式中央冷却水系统必须设置高温水冷却器,对高温水的调节比混流式稳定可靠。
3)对航速较高的集装箱船,船东提出或者经过与船东协商,可选用自流式中央冷却水系统,以进一步提高航行的经济性。
(2)中速柴油机的冷却系统通常按照柴油制造厂的推荐系统进行设计。
大同小异,各个系列的柴油冷却系统各有特色。
大部分中速柴油机制造厂推荐的系统均为主机的中央冷却系统,同时为保证该系统完全符合预定要求,制造厂还能供应系统的附属设备(包含水泵,冷却器等)。
所推荐的系统中有混流式中央冷却水系统,也有独立式中央冷却水系统。
设计时必须符合柴油机制造厂的推荐系统。
(3)全船动力装置冷却水系统;1)低速机动力装置:a,常规冷却系统,除了为主机设置缸套淡水冷却泵,海水冷却泵;另外需要为辅助柴油机、空压机、空调、冷藏、大气冷凝器、真空冷凝器等装置配置海水泵;b,中央冷却系统,应设计成包括主机在内的整个动力装置的中央冷却水系统,所有设备均用淡水冷却,包括辅助柴油机、空压机、空调、冷藏、大气冷凝器、真空冷凝器等装置;(如今因为真空冷凝器只是在装货卸货时开启,使用频率较低,故设置真空冷凝器为独立的海水冷却,降低淡水冷却的系统负荷和成本)2)中速机动力装置:a,主机采用制造厂推荐的独立的中央冷却水系统,而辅助柴油机和其他机械设备用各自的冷却系统(案例:半潜船,主机独立一套,辅助设备独立一套,各自分开)b,包括主机在内的所有机械设备设计成整套中央冷却水系统,(案例:目前凝析油轮,所有设备采用统一的中央板冷,并且高低温混流,要点是平衡主机和辅助设备之间的水量和出口水压)表2返回目录3,冷却水系统实例;手上的实船案例:同样的系统有细微的差别TORM11.4万吨:独立式中央冷却水系统;OK凝析油船:混流式中央冷却水系统OK5万吨半潜船:分别独立式中央冷却水系统OKHAFNIA 75000(有发电机缸套水为主机停车暖缸):独立式中央冷却水系统海工拖船:直接海水冷却的系统;OK海工船,中央冷却水系统OK集装箱船;自流式冷却水系统返回目录4,中央冷却系统热平衡计算;在初步热平衡计算之后,在中央板冷热交换功率和中央冷却水泵排量,主冷却海水泵排量理论值的基础上,按照规格书要求百分比的量进行订货。
(1) 热平衡计算的基本公式(用于理论计算足够,这个阶段不用考虑系统的自然损失,把整个系统当成对外完全热绝缘);*H T Q C ∆=其中:温升/温降T ∆- 度(℃)热交换量H – 千卡(kcal )介质流量Q – 千克/小时(kg/h )介质比热C – 千卡/千克*开(kcal/kg*k )单位换算常数: 1 kW=860 kcal/h淡水密度1000kg/m3海水密度1025 kg/m3这个公式用于热平衡计算的总表格,属于理论计算。
(2) 计算步骤,冷却系统形式确定后,需要进行热平衡计算。
步骤如下:1) 确定流程图;(或者是冷却系统流向图)2) 将主机及其他设备的已知参数输入流程图;3) 输入环境参数;(通常规格书定义的参数)4) 进行第一次预算,初步确定其余参数;5) 初步确定配套设备的规格;6) 由中央冷却制造厂进行详细设计(通常是板冷厂家计算),最终确定冷却器等配套设备的规格;对于中央板冷的污垢系数看规格书要求,通常设置在15%;7)注意:因为海水在温度上升时,盐析现象加重,为避免过快的盐析,板冷的海水出口计算温度通常选在44℃及以下。
(3)计算实例;(计划采用现有船型:凝析油船)(4)计算要点;1)各个关键点的温度值选择:需要控制中央板冷海水出口的温度防止盐析发生,盐析温度范围在50℃到55℃。
另,为了机械部件冷却热应力正常,柴油机的淡水进出口温差控制在10℃到15℃之间,具体以厂家指导文件为准。
2)主机及各机械设备的热交换量及冷却水流量可按照设备厂家规定。
3)轴系中间轴承的热交换量取主机功率的0.5%-1.0%。
4)海水温度32℃(除非规格书另外指定,或者有专门的冬季工况要求),低温冷却淡水温度为36℃(除非主机厂家有特殊要求,MAN机指导文件建议实际调试尽可能低)。
5)中央冷却器,海水冷却泵及低温淡水冷却泵的配置有几种方案,见表:返回目录5,冷却水系统的主要设备配置要点(1)冷却器通常,在常规冷却系统中多采用管壳式冷却器(也有部分采用板式冷却器),而在中央冷却系统中则采用板式冷却器,但是自流式冷却器为管壳式。
其他设备中的冷却器(如齿轮箱滑油冷却器,大气冷凝器,制冷机组冷凝器等)均采用管壳式。
1)板式冷却器船舶设计时通常由板式冷却器厂家对其进行计算和选型(板数,流动形式,阻力,液泵所需功率等)。
由于所选的板数,流动形式与液流阻力、所需液泵的功率有密切关系,而板数多少与价格相关,阻力大小影响营运费用,故此用户向板冷制造厂家提供有关参数(发热交换量,进出口参数,介质流量)后,制造厂有责任进行计算并作出最佳选择,然后交给设计部门和船厂认可。
对冷却介质为海水的板式冷却器,板材为钛合金。
而非海水则用不锈钢AISI316(American Iron and Steel Institute ). 2) 管壳式冷却器 通常,由该设备制造厂进行计算,选型(流向)。
但在估算冷却面积时可用下述公式 1000***W Q A h t η=∆ 其中 A – 管壳式冷却器冷却面积(m 2) Q W – 热交换量(KW ) η– 清洁系数(另称污垢系数)0.85-0.9 h – 传热系数(W/m 2*K ) 对淡水冷却器 h=3500-4000 对滑油冷却器 h=256-410 对各个管壳式冷却器厂家来说,h 的数值不同,可以用最终结果和系统参数反推厂家的h 系数。
△t – 对数平均温差(K ),计算公式如下:()()1222122121''2'2.31*'2t t t t t t t t g t t t +⎛⎫-- ⎪⎝⎭∆=-+- 多数管壳式热交换器按照混合流设计,上述公式中:t ’1 – 被冷却介质出口温度(℃)t ’2 – 被冷却介质进口温度(℃)t 2 – 冷却介质出口温度(℃)t 1 – 冷却介质进口温度(℃)△t 也可以用其他公式计算:2121''22t t t t t +-∆=-t ’1 – 被冷却介质进口温度(℃)t ’2 – 被冷却介质出口温度(℃)t 2 – 冷却介质进口温度(℃)t 1 – 冷却介质出口温度(℃)(2) 冷却水泵1) 对常规冷却系统,不论海水冷却泵,低温淡水冷却泵,高温淡水冷却泵均以1+1形式配置,即一台常用,一台备用。
2) 对中央冷却系统,冷却水泵的配置见前表格。
(3)缸套水预热器缸套水预热器可用蒸汽(有辅助锅炉),热水(可以用发电机缸套水),电等方式。
1)MAN低速机要求缸套水出口温度最低为50℃,预热水量最少是10%缸套水冷却泵排量,加热器加热能力是主机L1点功率的1%。
在这种情况下能使主机缸套水在12H内升温35℃。
2)SULZER低速级要求缸套水出口温度最少为60℃,预热水量为5%缸套水冷却泵排量。
对加热器的加热能力则与加热时间和环境温度有关。
预热时间一般为6H,环境温度40℃,加热能力为每缸9KW。