新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》
高考数学一轮复习专题:平面向量的基本定理及向量坐标运算

5.(教材改编)已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶 点D的坐标为_(_1_,_5_) _. 答案 解析 设 D(x,y),则由A→B=D→C,得(4,1)=(5-x,6-y), 即41= =56- -xy, , 解得xy==15,.
考点自测
1.设e1,e2是平面内一组基底,那么 答案 A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0 B.空间内任一向量a可以表示为a=λ1e1+λ2e2(λ1,λ2为实数) C.对实数λ1,λ2,λ1e1+λ2e2不一定在该平面内 D.对平面内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
A.(4,0)
B.(0,4)
C.(4,-8)
D.(-4,8)
因为向量a=(1,-2),b=(m,4),且a∥b, 所以1×4+2m=0,即m=-2, 所以2a-b=2×(1,-2)-(-2,4)=(4,-8).
∴A→F=A→D+D→F=12a+12b+16a-16b=23a+13b,故选 C.
思维升华
平面向量基本定理应用的实质和一般思路 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三 角形法则进行向量的加、减或数乘运算. (2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该 基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
2021版新高考地区高考数学(人教版)大一轮复习第2讲 平面向量基本定理及坐标表示

第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.共线向量定理应关注的两点(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定. 2.两个结论(1)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.(2)已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33.二、教材衍化1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =( )A .-12B .12C .-2D .2解析:选A .由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A .2.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.解析:设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x ,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5. 答案:(1,5)一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )(5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B .平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A .法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A . 法二:AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .考点一 平面向量基本定理的应用(基础型) 复习指导| 了解平面向量的基本定理及其意义.核心素养:数学运算(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A .13a +512bB .13a -1312bC .-13a -512bD .-13a +1312b(2)(2020·郑州市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.【解析】 (1)DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b解析:选A .由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a+13b ,故选A . 2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →,所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →,又因为OP →=mOA →+OB →,所以OB →=OB →+(m +1)OA →, 依题意OA →,OB →是非零向量且不共线, 所以m +1=0,解得m =-1. 考点二 平面向量的坐标运算(基础型) 复习指导| 1.掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加、减与数乘运算. 核心素养:数学运算已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20).所以M (0,20).又因为CN →=ON →-OC →=-2b , 所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A .3a -2b +c =(23+x ,12+y )=0,故x =-23,y =-12,故选A . 2.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是________.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7).答案:(4,7)3.如图所示,以e 1,e 2为基底,则a =________.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2考点三 平面向量共线的坐标表示(基础型)复习指导| 理解用坐标表示的平面向量共线的条件.核心素养:数学运算角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B .43C .12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ). 因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0, 即2m -3=0,所以m =32.[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D .因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D .2.(2020·河南新乡三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A .13B .-13C .-3D .3解析:选B .法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B .法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B .3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A .⎝⎛⎭⎫-23,-23B .⎝⎛⎭⎫-13,-13C .⎝⎛⎭⎫13,13D .⎝⎛⎭⎫23,23 解析:选A .易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎨⎧x =-23,y =-23,所以E ⎝⎛⎭⎫-23,-23. 4.(2020·河北豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .2 3解析:选A .如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.(多选)(2021·预测)已知等边三角形ABC 内接于⊙O ,D 为线段OA 的中点,则BD →=( )A .23BA →+16BC →B .43BA →-16BC →C .BA →+13AE →D .23BA →+13AE →解析:选AC .如图所示,设BC 的中点为E ,则BD →=BA →+AD →=BA →+13AE →=BA →+13(AB →+BE →)=BA →-13BA →+13×12BC →=23BA →+16BC →.故选AC .6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎨⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 所以A ,B ,M 三点共线.10.如图,在△OBC 中,点A 是线段BC 的中点,点D 是线段OB 上一个靠近点B 的三等分点,设AB →=a ,AO →=b .(1)用向量a 与b 表示向量OC →,CD →;(2)若OE →=35OA →,判断C ,D ,E 三点是否共线,并说明理由.解:(1)因为点A 是线段BC 的中点,点D 是线段OB 上一个靠近点B 的三等分点,所以AC →=-AB →,CB →=2AB →,BD →=13BO →.因为AB →=a ,AO →=b ,所以OC →=OA →+AC →=-AO →-AB →=-a -b ,CD →=CB →+BD →=2AB →+13BO →=2AB →+13(BA →+AO →)=53AB →+13AO →=53a +13b .(2)C ,D ,E 三点不共线. 因为OE →=35OA →,所以CE →=CO →+OE →=CO →+35OA →=-OC →-35AO →=a +b -35b =a +25b ,由(1)知CD →=53a +13b ,所以不存在实数λ,使得CE →=λCD →. 所以C ,D ,E 三点不共线.[综合题组练]1.(多选)已知向量OA →=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1解析:选ABD .各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点即可构成三角形,故选ABD .2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B . 2C . 3D .2解析:选B .因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且P A →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由P A →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=05.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB →|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB →=1×1×⎝⎛⎭⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎨⎧m =54,n =74.所以m +n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线.(1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x +2y的值,并说明理由. 解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y=3.。
新教材高考数学一轮复习第七章7-2平面向量基本定理及向量坐标运算课件新人教版

答案:0
解析:∵e1,e2是平.给出下列三个向量:a=(-2,3),b= 1,
3
−
2
,c=(-1,
1).在这三个向量中任意取两个作为一组,能构成基底的组数为
________.
答案:2
解析:由题意知a∥b,a与c不共线,
μ∈R,则λ=________,μ=________.
1
答案:
4
3
-
4
1
解析:由题意知,CO= (CD +
2
1
1
= CB + CA
4
2
1
1
= (AB − AC)+ CA
4
2
1
3
= AB − AC,
4
4
1
3
∴λ= ,μ=- .
4
4
CA)
类题通法
(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则
(x,y) ,其中a在x轴上的坐标是x,a在y轴上的坐标是y.
_________
3.平面向量的坐标运算
向量的加
法、减法
向量的数乘
向量坐标
的求法
(x1+x2,y1+y2),
设a=(x1,y1),b=(x2,y2),则a+b=_______________
(x1-x2,y1-y2)
a-b= _____________
1.平面内的任何两个向量都可以作为一组基底.( × )
2.一个平面内有无数多对不共线向量可作为表示该平面内所有向
量的基底.( √ )
3.平面向量的基底不唯一,只要基底确定后,平面内的任何一个
向量都可被这组基底唯一表示.( √ )
高考数学一轮复习 第五章 平面向量 第2讲 平面向量的基本定理及向量坐标运算 理-人教版高三全册数学

第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ).A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴.答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ).A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8).答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D.答案 D4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ).A.14B.12C .1D .2 解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2)解析 因为AC =AB +BC =(4,6),所以选A.答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),∴⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.∴a 在基底m ,n 下的坐标为(0,2).答案 D二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a ||b |, 又|b |=5,|a |=2 5.∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2).答案 (-4,-2)9.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C三点共线,则1a +2b的最小值为________. 解析 AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1.∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b ) =4+b a +4a b ≥4+2 b a ·4a b=8. 当且仅当b a =4a b ,即a =14,b =12时取等号. ∴1a +2b的最小值是8. 答案 810.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.解析 由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形.设D (x ,y ),则有AB →=DC →,即(6,8)-(-2,0)=(8,6)-(x ,y ),解得(x ,y )=(0,-2).答案 (0,-2)三、解答题11.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标. 解析 设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有 ⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧ -1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,和⎩⎪⎨⎪⎧ x 2=-2,y 2=0. 所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4).12.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得k =λ=-13,∴当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ).∵λ=-13<0,∴k a +b 与a -3b 反向.法二 由法一知k a +b =(k -3,2k +2),a -3b =(10,-4),∵k a +b 与a -3b 平行∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13,此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ).∴当k =-13时,k a +b 与a -3b 平行,并且反向.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cosθ,t ), (1)若a ∥AB →,且|AB →|=5|OA →|,求向量OB →的坐标;(2)若a ∥AB →,求y =cos 2θ-cos θ+t 2的最小值.解 (1)∵AB →=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0.∴cos θ-1=2t .①又∵|AB →|=5|OA →|,∴(cos θ-1)2+t 2=5.②由①②得,5t 2=5,∴t 2=1.∴t =±1.当t =1时,cos θ=3(舍去),当t =-1时,cos θ=-1,∴B (-1,-1),∴OB →=(-1,-1).(2)由(1)可知t =cos θ-12,∴y =cos 2θ-cos θ+cos θ-124=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝⎛⎭⎪⎫cos θ-352-15, ∴当cos θ=35时,y min =-15. 14.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 (1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎪⎨⎪⎧ 1+3t <0,2+3t >0.∴-23<t <-13. (2)因为OA →=(1,2),PB →=(3-3t,3-3t ).若OABP 为平行四边形,则OA →=PB →,∵⎩⎪⎨⎪⎧ 3-3t =1,3-3t =2无解.所以四边形OABP 不能成为平行四边形.。
高考数学新版一轮复习教程学案:第54课平面向量的基本定理与坐标运算.doc

高考数学新版一轮复习教程学案第 54 课平面向量的基本定理与坐标运算1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加、减与数乘运算;理解用坐标表示的平面向量共线的条件.1.阅读:必修 4 第 74~ 81 页 .2. 解悟:①平面向量基本定理;②平面向量的坐标表示;③结合第78 页例 4 能得到什么一般性的结论吗?3. 践习:在教材空白处,完成第82 页习题第7~16 题 .基础诊断1.→(4, 6) . 设向量 AB = (2, 3),且点 A 的坐标为 (2, 3),则点 B 的坐标为解析:设点→→→,3)= (x- 2, y- 3),所以B 的坐标为 (x, y), AB =OB- OA = (x, y)-(2x- 2= 2,x= 4,解得故点 B 的坐标为 (4,6).y- 3=3,y= 6,2. 已知向量 a= (1,1), b= (- 1,1) ,c= (4,2),则用向量 a,b 表示向量 c=3a- b.x-y= 4,解析:设 c= xa+yb,所以 (4, 2)= x(1, 1) +y(- 1, 1)= (x- y, x+ y),所以x+y= 2,x= 3,解得故 c=3a- b.y=- 1,3. 如图所示,设 O 是平行四边形→→ABCD 两对角线的交点,给出下列向量组:① AD 与 AB ;→→→→→→②DA 与BC;③CA与DC;④ OD 与 OB . 其中,可作为该平面内其他向量的基底的是①③.(填序号 )解析:因为→→ → →AD与 AB , CA与 DC不共线,所以可以作为该平面内其他向量的基底;因为→ → →→.DA 与 BC , OD与 OB共线,所以不可作为该平面内其他向量的基底,故选①③4. 已知向量 a= (3,1), b= (1, 3), c= (k,7) ,若 (a- c)∥ b,则 k= 5 .解析:由题意得 a- c=(3 -k,1-7)= (3- k,- 6).因为 (a- c)∥ b,所以 3(3- k)- (- 6)× 1=0,解得 k= 5.范例导航考向 ?平面向量的基本定理例 1 如图所示,在△OCB 中, C 是以 A 为中点的点→两B 的对称点, D 是将 OB分为 2∶ 1部分的一个内分点,DC 和 OA 交于点→→E,设 OA =a, OB= b.(1)→ →用 a 和 b 表示向量 OC, DC ;(2) →→若 OE=λOA ,求实数λ的值 .解析: (1)→→由题意知, A 是 BC 的中点,且 OD =2OB.3→ →→由平行四边形法则得 OB+ OC=2OA,→→→所以 OC= 2OA - OB= 2a- b.→ →→ 2 5b. DC= OC-OD = (2a- b)- b= 2a-33(2)由图可知,所以存在实数→→EC与 DC共线,→→t,使 EC =tDC .→ →→→ 5b,因为 EC= OC- OE= (2a- b)-λa=(2 -λ)a- b, DC = 2a-35所以 (2-λ)a- b= 2ta- tb,32-λ= 2t,4所以 5 解得λ= .-1=-t, 534故实数λ的值为5.→ 3 →在△ ABC 中, P 为边 BC 上一点,且 BP= PC.2→ →→2→ 3 →;(1) 用 AB, AC为基底表示 AP=AB+ AC5 5→ 3 →→→3→→5→→3→→2→ 解析:因为 BP = PC ,所以 AP -AB =(AC - AP),所以2AP =AB + AC ,即 AP = AB +22 253 →5AC.→ →→→ 3 →(2) 用 AB , PC 为基底表示 AP =AB +PC W.2→→ →→ 3 →解析: AP = AB +BP =AB + PC.2考向 ?平面向量的坐标运算例 2 已知向量 a = (3, 2),b = (- 1, 2), c = (4, 1).(1) 求满足 a =mb +nc 的实数 m ,n 的值;(2) 若 (a + kc)∥ (2b - a),求实数 k 的值;(3) 若 d 满足 (d - c)∥(a + b),且 |d - c|= 5,求 d 的坐标 .解析: (1) 由题意得 (3,2) =m(- 1,2) +n(4, 1), - m + 4n = 3,5,m =9所以 解得82m +n = 2,n = ,9 58故 m 的值为 , n 的值为 .9 9(2) a + kc = (3+ 4k , 2+ k), 2b - a =(- 5, 2),由题意得 2× (3+ 4k)- (-5)× (2+ k)= 0,16解得 k =- 13.(3) 设 d = (x , y),则 d - c = (x - 4,y - 1). 又 a + b = (2, 4), |d - c|= 5,4( x - 4)- 2( y - 1)= 0, 所以( x - 4)2+( y - 1) 2= 5,x = 3, x = 5, 解得 或y =- 1 y = 3,所以 d 的坐标为 (3,- 1)或 (5, 3).→ → →已知点 A(2,3),B(5 ,4),C(10,8),若 AP = AB + λAC(λ∈ R),则当点 P 在第二象限时,λ的取值范围为解析:设点-4,-5.58P 的坐标为 → →→(x , y).因为 AP = AB + λAC ,所以 (x - 2, y -3)= (3, 1)+ λ(8, 5)x -2= 3+ 8λ, x = 5+ 8λ,5+8λ<0 , =(3 + 8λ,1+ 5λ),所以 即 因为点 P 在第二象限, 所以y -3= 1+ 5λ, y = 4+ 5λ.4+ 5λ>0 ,45解得- 5<λ<- 8.考向 ?平面向量基本定理的综合应用例 3 如图,已知△ ABC 的面积为14,D ,E 分别为边 AB ,BC 上的点,且 AD ∶ DB = BE ∶ EC→ → → → → →=2∶ 1, AE 与 CD 交于点 P.设存在 λ和 μ,使得 AP = λAE , PD = μCD , AB = a ,BC = b.(1) 求 λ及 μ的值;→ (2) 用 a , b 表示 BP ;(3) 求△ PAC 的面积 .解析: (1)→ → = b ,因为 AB = a , BC→→ 1a +b.所以 AE = a +2b , DC =3 3→→2→ → 1又因为 AP = λAE = λ(a +3b), DP = μDC =μ3a + b , → → → → → 1AP = AD + DP = 2AB + DP = 2a + μ a +b ,333212b ,所以 a + μ 3 a + b = λa +3 32+ 1λ= 6,λ=33μ,7所以2解得4μ= 3λ, μ= 7.→ → → 621 4(2) BP =BA + AP =- a + 7 a +3b =- 7a +7b.(3) 设△ ABC 、△ PAB 、△ PBC 的高分别为 h 、 h 1、h 2.→→4,因为 h 1∶h = |PD |∶ |CD |= μ=7 4所以 S △ PAB = 7S △ ABC = 8.→→ 1又因为 h 2∶ h = |PE|: |AE|= 1- λ= 7, 所以 S △PBC =1△7S ABC = 2,所以 S △ PAC = S △ ABC - S △ APB - S △ PBC = 4.若 a , b 是一组基底,向量 c = xa + yb(x ,y ∈R),则称 ( x ,y)为向量 c 在基底 a , b 下的坐标,现已知向量 α在基底 p = (1,- 1), q =(2, 1)下的坐标为 (- 2, 2),则 α在另一组基底 m = (- 1, 1), n = (1,2)下的坐标为(0, 2) .解析:因为 α在基底 p , q 下的坐标为 (-2, 2), 即 α=- 2p + 2q =- 2(1,- 1)+ 2(2, 1)=(2 ,4). 令 α= xm + yn ,则 (2, 4)= x(- 1, 1)+ y(1, 2) = (- x + y , x + 2y),- x + y = 2, x = 0,所以 解得y = 2,x + 2y = 4,所以 α在基底 m , n 下的坐标为 (0,2).自测反馈1. 已知 a , b 不共线,且 c = λa + b ,d = a + (2λ- 1)b ,若 c 与 d 同向,则实数 λ的值为1 .解析:因为 c 与 d 同向,所以设 c = kd(k>0),所以 λa + b = k[a + (2λ- 1)b] =ka + k(2λ-λ= k ,解得 λ= 1 11)b ,所以或 λ=- .因为 k>0 ,所以 λ= 1.k ( 2λ- 1)= 1,22.→3 ,-4 .已知点 A(1 , 3), B(4 ,- 1),则与 AB 同方向的单位向量为55→→→同方向的解析:由题意得, AB = (3,- 4),所以 |AB |=32+(- 4)2= 5,所以与 AB→13 4单位向量 e = AB,- .→ = (3,- 4)=5 55|AB|→ → → → → →→3. 如图,已知 |OA|= |OB |=1,OA 与 OB 的夹角为 120°,OC 与 OA 的夹角为 30°,若OC=→→λ2 .λOA + μOB ( λ, μ∈ R),则 =μ解析:如图,根据平行四边形法则将向量→ → →OC 沿OA 与OB 方向进行分解 .由题意可知∠ OCD→μλ=90°,所以在 Rt △ OCD 中, sin ∠ COD =CD=μ|OB|→ = = sin 30 =° 1,所以 = 2.ODλ 2 μλ|OA|4. 已知平行四边形 ABCD 中 A( - 1,0),B(3 ,0),C(1,- 5),则点 D 的坐标为 (- 3,-5).→ →解析:由题意可知,AD =BC.设点 D 的坐标为 (x , y),所以 (x + 1, y)= (- 2,- 5),所x+ 1=- 2,解得x=- 3,以故点 D 的坐标为 (-3,- 5).y=- 5,y=- 5,1.向量的线性运算 (加法、减法、实数与向量的积 )可转化为坐标运算,借助坐标运算讨论平行共线、向量表示等,可使问题简单,目标明确.2. 应用等价转化思想处理问题,如点共线转化为向量共线,基底的转化等.3.你还有哪些体悟,写下来:4.。
考点31平面向量基本定理及坐标表示(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版

考点31平面向量基本定理及坐标表示(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算4.理解用坐标表示的平面向量共线的条件.【知识点】1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任一向量a ,一对实数λ1,λ2,使a =.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个 .2.平面向量的正交分解把一个向量分解为两个 的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =,a -b =,λa =,|a |=.(2)向量坐标的求法①若向量的起点是坐标原点,则 坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →= ,|AB →|=.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ .常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33)..【核心题型】题型一 平面向量基本定理的应用(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【例题1】(2024·湖南衡阳·三模)在三角形ABC 中,点M 在平面ABC 内,且满足(,)BM BA BC l m l m =+ÎR uuuu r uuu r uuu r ,条件:3P AM MC =uuuu r uuu u r,条件:221Q m l -=,则P 是Q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【变式1】(2024·河北·模拟预测)在边长为1的正三角形ABC 中,13A A DB =uuu u u ru r ,13BE BC =uuu r uuu r ,AE 与CD 交于点F ,则CD BF ×=uuu r uuu r( )A .1B .0C .12-D .【变式2】(2023·陕西咸阳·模拟预测)在ABC V 中,点D 是BC 的中点,点E 在AD 上,且13BE BA BC l =+uuu r uuu r uuu r ,AE xBA yBC =+uuu r uuu r uuu r,则x y l -=.【变式3】(2023·广东佛山·模拟预测)在ABC V 中,2AB =,BC =,M 点为BC 的中点,N 点在线段AC 上且13AN AC =,2BN =.(1)求AC ;(2)若点P 为AM 与BN 的交点,求MPN Ð的余弦值.题型二 平面向量的坐标运算(1)利用向量的坐标运算解题,主要是利用加法、减法、数乘运算法则,然后根据“两个向量相等当且仅当它们的坐标对应相等”这一原则,化归为方程(组)进行求解.(2)向量的坐标表示使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.【例题2】(2023·广东佛山·二模)已知ABCD Y 的顶点()1,2--A ,()3,1B -,()5,6C ,则顶点D 的坐标为( )A .()1,4B .()1,5C .()2,4D .()2,5【变式1】(2024·全国·模拟预测)在平面直角坐标系xOy 内,已知点()()1,1,1,2A AB -=-uuu r ,则OB =uuu r( )A .()2,3-B .()0,1-C .()2,3-D .()0,1【变式2】(多选)(2022·海南·模拟预测)用下列1e u r ,2e u ur 能表示向量()3,2a =r 的是( )A .()16,4e =u r ,()29,6e =u u rB .()11,2e =-u r,()25,2e =-u u r C .()13,5e =u r,()26,10e =u u r D .()12,3e =-u r,()22,3e =-u u r 【变式3】(2023·全国·模拟预测)在平行四边形ABCD 中,点()0,0A ,()4,4B -,()2,6D .若AC 与BD 的交点为M ,则DM 的中点E 的坐标为,题型三 向量共线的坐标表示平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).命题点1 利用向量共线求参数【例题3】(2024·陕西渭南·三模)已知向量()2,m l =r ,()2,4n l =--r ,若m r与n r 共线且反向,则实数l 的值为( )A .4B .2C .2-D .2-或4【变式1】(2024·浙江·模拟预测)已知向量()4,a m =r ,()2,2b m =r ,若a b r r ∥,则m =( )A .4或2B .2-C .2D .2或2-【变式2】(2024·四川绵阳·模拟预测)已知向量()3,4a =r ,()2,b k =r,且()//a b a +r r r ,则实数k = .【变式3】(2023·四川成都·一模)已知向量()sin ,1a x =r,),2b x =-r ,函数()()f x a b a =+×r r r .(1)若//a b r r ,求cos2x 的值;(2)a ,b ,c 为ABC V 的内角A ,B ,C 的对边,2a =,且()12f A =,求ABC V 面积的最大值.命题点2 利用向量共线求向量或点的坐标【例题4】(2024·全国·模拟预测)已知()4,2M -,()6,4N --,且12MP MN =-uuu r uuuur ,则点P 的坐标为( )A .()1,1B .()9,1-C .()2,2-D .()2,1-【变式1】(2024·江苏南京·二模)已知向量()1,2a =r ,(),3b x x =+r .若a b rr P ,则x =( )A .6-B .2-C .3D .6【变式2】(2023·山东青岛·一模)已知()0,0O ,()1,2A ,()3,1B -,若向量m OA uuu r r ∥,且mr 与OB uuu r 的夹角为钝角,写出一个满足条件的m r的坐标为 .【变式3】(2024·河南信阳·模拟预测)抛物线E :24y x =的焦点为F ,直线AB ,CD 过F 分别交抛物线E 于点A ,B ,C ,D ,且直线AD ,BC 交x 轴于N ,M ,其中()2,0N ,则M 点坐标为.【课后强化】【基础保分练】一、单选题1.(2024·全国·模拟预测)如图所示,在边长为2的等边ABC V 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE FB ×=uuu r uuu r( )A .B .12-C .34D .122.(2024·河北承德·二模)在ABC V 中,D 为BC 中点,连接AD ,设E 为AD 中点,且,BA x BE y ==uuu r uuu r r r ,则BC =uuu r( )A .42x y+r r B .4x y-+r r C .42x y--r r D .42y x-r r 3.(2024·河北秦皇岛·二模)已知向量(),23a m m =+r ,()1,41b m =+r ,则“34m =-”是“a r 与br 共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.(2024·四川·模拟预测)已知向量()2,1a =r ,(),2b x =r ,若//a b r r ,则x =( )A .4B .2C .1D .1-二、多选题5.(2024·全国·模拟预测)已知向量()(),1,4,2a x b ==r r ,则( )A .若a b r r∥,则2x =B .若a b ^rr ,则12x =C .若3x =,则向量a r 与向量b rD .若=1x -,则向量b r 在向量a r上的投影向量为6.(23-24高三上·山东枣庄·期末)设()1,3m =-r,()1,2n =r ,则( )A .210m n -=r rB .()2m n m-^r r rC .若()2m n -r r P ()km n +r r ,则12k =-D .n r 在m r上的投影向量为12mr 三、填空题7.(2023·河南郑州·模拟预测)已知点O 为坐标原点,()1,1OA =uuu r ,()3,4OB =-uuu r,点P 在线段AB 上,且1AP =uuu r,则点P 的坐标为 .8.(2024·陕西安康·模拟预测)已知平面向量()()3,4,3a b m ==r r ,.若向量2a b -r r与a b +r r 共线,则实数m 的值为.9.(2023·河南开封·模拟预测)已知两点(1,2)A -,(2,4)B ,若向量(2,)a m =r与AB uuu r垂直,则m =.四、解答题10.(2024·湖北·二模)如图,O 为坐标原点,F 为抛物线22y x =的焦点,过F 的直线交抛物线于,A B 两点,直线AO 交抛物线的准线于点D ,设抛物线在B 点处的切线为l .(1)若直线l 与y 轴的交点为E ,求证:DE EF =;(2)过点B 作l 的垂线与直线AO 交于点G ,求证:2||AD AO AG =×.11.(2022·北京·三模)如图四棱锥P ABCD -中,PAD V 是以AD 为斜边的等腰直角三角形,BC AD ∥,AB AD ^,222AD AB BC ===,PC =E 为PD 的中点.(1)求证:直线CE ∥平面PAB(2)求直线PB 与平面PAC 所成角的正弦值.(3)设F 是BE 的中点,判断点F 是否在平面PAC 内,并证明结论.【综合提升练】一、单选题1.(2024·安徽合肥·模拟预测)已知向量(2,)a t =r,(1,2)b =r ,若当1=t t 时,a b a b ×=×r r r r ,当2=t t 时,a b ^rr ,则( )A .14t =-,21t =-B .14t =-,21t =C .14t =,21t =-D .14t =,21t =2.(2024·山西·模拟预测)已知向量()2,a x =r ,()1,3b =-r ,若a b ∥r r,则a b +=r r ( )A B .C .3D 3.(2024·重庆·三模)已知向量(2,3),(1,21)a b m m ==-+r r ,若//a b rr ,则m =( )A .3B .18C .18-D .5-4.(2024·浙江温州·三模)平面向量()(),2,2,4a m b ==-r r,若()a ab -r r r ∥,则m =( )A .1-B .1C .2-D .25.(2024·辽宁·二模)已知平行四边形ABCD ,点P 在BCD △的内部(不含边界),则下列选项中,AP uuu r可能的关系式为( )A .1355AP AB AD=+uuu r uuu r uuu rB .1344AP AB AD =+uuu r uuu r uuu rC .2334AP AB AD =+uuu r uuu r uuu r D .2433AP AB AD=+uuu r uuu r uuu r6.(2024·全国·模拟预测)在ABC V 中,点D 满足20BD AD +=uuu r uu r ru .若3CA =uuu r π4ACD Ð=,则CB =uuu r ( )A .4B .C .D .7.(2023·全国·模拟预测)在ABC V 中,点D 是线段AB 上靠近B 的四等分点,点E 是线段CD 上靠近D 的三等分点,则AE =uuu r( )A .2133CA CB-+uuur uuu r B .1526CA CB-uuur uuu r C .5162CA CB -+uuu r uuu r D .1233CA CB-+uuur uuu r 8.(2024·山东泰安·模拟预测)已知向量()2,3a =-r ,()3,b m =r ,且a b r r∥,则m =( )A .2B .-2C .92D .92-二、多选题9.(2024·江西景德镇·三模)等边ABC V 边长为2,2AD DC =uuu r uuu r ,AE EB =uuu r uuu r,BD 与CE 交于点F ,则( )A .2133BD BA BC=+uuu r uuu r uuu r B .12CF CE=uuu r uuu r C .1BD CE ×=-uuu r uuu rD .BD uuu r 在BC uuu r 方向上的投影向量为56BCuuur10.(2024·山东济南·二模)如图,在直角三角形ABC 中,AB BC ==AO OC =,点P 是以AC 为直径的半圆弧上的动点,若BP xBA yBC =+uuu r uuu r uuu r,则( )A .1122BO BA BC =+uuu r uuu r uuu r B .1CB BO ×=uuu r uuu rC .BP BC ×uuu r uuu r最大值为1D .B ,O ,P 三点共线时2x y +=11.(2024·湖北武汉·模拟预测)已知向量()()cos ,sin ,3,4a b q q ==-r r,则下列命题为真命题的是( )A .若//a b rr ,则4tan 3q =-B .若a b ^rr ,则3sin 5q =C .a b -rr 的最大值为6D .若()0a a b ×-=r r r ,则a b -=rr 三、填空题12.(2022·黑龙江·一模)已知向量()3,4a =-r ,2AB a =uuu r r,点A 的坐标为()3,4-,则点B 的坐标为 .13.(2020高三上·全国·专题练习)已知向量(),2a x =v ,()2,1b =v ,且//a b v v ,则a =v14.(2023·上海徐汇·三模)函数()ln y x =-沿着向量a r 平移后得到函数()ln 12y x =-+,则向量a r的坐标是.四、解答题15.(2023·吉林·一模)已知向量),cos a x x =r,()cos ,cos b x x =r.(1)若//a b r r且()0,πx Î,求x ;(2)若函数()12=×-r r f x a b ,求()f x 的单调递增区间.16.(2023·安徽滁州·模拟预测)已知ABC V 的内角A B C ,,的对边分别为a b c ,,,向量(),,p a c b =-u r()si n si n ,si n si n q C B A B =++r,且p q u r r ∥.(1)求角C ;(2)若c ABC =V ABC V 的周长.17.(2020·山东济宁·模拟预测)已知向量()1,1a =r,()2,b m =r ,R m Î.(1)若//a b r r,求m 的值;(2)若a b ^r r,求m 的值;(3)若a r 与b r夹角为锐角,求m 的取值范围.18.(2023·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()2cos cos cos2c a A B b A A B =-£.(1)求A ;(2)若D 是BC 上的一点,且:1:2,2BD DC AD ==,求a 的最小值.19.(2023·福建福州·三模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知()sin cos sin A A C C a=+,2c =.(1)求B ;(2)D 为AC 的中点,234BD BC =,求ABC V 的面积.【拓展冲刺练】一、单选题1.(2024·河南·模拟预测)已知向量()2,1AB =-uuu r ,()3,2AC =uuu r ,点()1,2C -,则点B 的坐标为( )A .()2,1--B .()0,5C .()2,5-D .()2,1-2.(2024·山东济南·一模)已知(),1a m =r ,()31,2b m =-r ,若//a b r r ,则m =( )A .1B .1-C .23D .23-3.(2024·陕西榆林·二模)若向量()()0,1,,2,AB CD m AB ==-uuu r uuu r uuu r P CD uuu r ,则m =( )A .1-B .2C .1D .04.(2024·全国·模拟预测)已知O 为平面直角坐标系的原点,向量(1,3),(2,1),(1,2)OA AB AP ==--=-uuu r uuu r uuu r ,设M 是直线OP 上的动点,当MA MB ×uuu r uuu r 取得最小值时,OM =uuuu r ( )A .11,2æöç÷èøB .11,2æö--ç÷èøC .(2,1)D .(2,1)--二、多选题5.(2023·全国·模拟预测)已知向量(1,2),(2,1)a b ==-r r .若()//()xa b a xb --r r r r ,则x =( )A .1-B .0C .1D .26.(2024·辽宁葫芦岛·二模)已知向量a r ,b r ,c r 为非零向量,下列说法正确的有( )A .若a b ^r r ,b c ^r r ,则a c^r r B .已知向量()1,2a =r ,()23,2a b +=r r ,则()1,2b =r C .若a b a c ×=×r r r r ,则b r 和c r 在a r 上的投影向量相等D .已知2AB a b =+uu r u r r ,56BC a b =-+uuu r r r ,72CD a b =-uuu r r r ,则点A ,B ,D 一定共线三、填空题7.(2024·山东潍坊·三模)已知向量()()()1,2,4,2,1,a b c l ==-=r r r ,若()20c a b ×+=r r r ,则实数l =8.(23-24高三下·陕西西安·阶段练习)已知向量()1,1a =-r ,()2,1b =r ,则()a ab ×-=r r r 9.(2023·上海普陀·二模)设x 、R y Î,若向量a r ,b r ,c r 满足(,1)a x =r ,(2,)b y =r ,(1,1)c =r ,且向量a b -r r 与cr 互相平行,则||2||a b +r r 的最小值为 .四、解答题10.(2023·河南洛阳·一模)已知函数2()cos 2sin 2f x x x x p æö=-+ç÷èø,在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()3f A =.(1)求角A ;(2)若b =3,c =2,点D 为BC 边上靠近点C 的三等分点,求AD 的长度.11.(2023·江苏·三模)已知椭圆E :221164x y +=,椭圆上有四个动点A ,B ,C ,D ,//CD AB ,AD 与BC 相交于P 点.如图所示.(1)当A ,B 恰好分别为椭圆的上顶点和右顶点时,试探究:直线AD 与BC 的斜率之积是否为定值?若为定值,请求出该定值;否则,请说明理由;(2)若点P 的坐标为()8,6,求直线AB 的斜率.。
高考数学大一轮复习 平面向量的基本定理及坐标表示 理资料

本定理及坐标表示 课件 理
第四章 平面向量
第二节 平面向量的基本定理及坐标表示
• [考情展望] 1.考查用平面向量的坐标运算进行向量的线性运算.2.考 查应用平面向量基本定理进行向量的线性运算.3.以向量的坐标运算及共 线向量定理为载体,考查学生分析问题和解决问题的能力.
名师叮嘱 素养培优
• 学方法 提能力 启智培优
• [思想方法] 待定系数法在向量运算中的应用
• 根据向量之间的关系,利用待定系数法列出一个含有待定系数的恒等 式,然后根据恒等式的性质求出各待定系数的值或消去这些待定系数, 找出原来那些系数之间的关系,从而使问题得到解决.
[典例] 如图所示,在△OAB中,O→C=14O→A,O→D=12O→B,AD与 BC交于点M,设O→A=a,O→B=b,利用a和b表示向量O→M.
解得 λμ==2332,,
所以λ+μ=43.
(2)在平行四边形ABCD中,M,N分别为DC,BC的中点,已知
A→M=c,A→N=d,试用c,d表示A→B,A→D. [解析] 解法一:设A→B=a,A→D=b, 则a=A→N+N→B=d+-12b,① b=A→M+M→D=c+-12a.② 将②代入①,得a=d+-12c+-12a, ∴a=43d-23c=23(2d-c),代入②,得
(4)a=(1,3),b= 底.( )
13,1
,则a,b可作为平面向量的一组基
• 答案:(1)√ (2)√ (3)√ (4)×
• 2.( ·广东)已知向量a=(1,2),b=(3,1),则b-a=( ) • A.(-2,1) B.(2,-1) • C.(2,0) D.(4,3)
• 解析:b-a=(3,1)-(1,2)=(2,-1),故选B.
高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.在平行四边形ABCD中,E和F分别是CD和BC的中点.若 AC AE AF,其中λ ,μ ∈R,则λ +μ =________.
【解析】 选择 AB,AD 作为平面向量的一组基底,
则 AC AB AD,AE 1 AB AD,AF AB 1 AD,
2
2
又 AC AE AF (1 )AB ( 1 )AD, 于是得
C.- 1 a- 5 b
3 12
B. 1 a- 13 b
3 12
D.- 1 a+ 13 b
3 12
【解析】选C. DE DC CE
1 BC 3 CA 34
1 (AC AB) 3 AC
3
4
1 AB 5 AC 1 a 5 b.
3 12
3 12
【一题多解微课】 解决本题还可以采用以下方法: 选C.不妨设∠BAC=90°,取直角坐 标系xOy,设A(0,0),B(1,0),C(0,1), 则a=(1,0),b=(0,1),
【题组练透】 1.已知平面向量a=(1,1),b=(1,-1),则向量 1 a- 3 b
22
=()
A.(-2,-1) C.(-1,0)
B.(-2,1) D.(-1,2)
【解析】选D.因为a=(1,1),b=(1,-1),所以 1 a- 3 b
22
=
1 2
(1,1)-
3 (1,-1)=
2
(1 , 1) (3 , 3) =(-1,2).
3
3
【解析】选B.因为a∥b,所以-2x-3(y-1)=0,化简得
2x+3y=3,又因为x,y均为正数,
所以 3 2 = ( 3 2) 1(2x+3y)
xy xy 3
1 (6 9y 4x 6) 1 (12 2
平行四边形法则可知: AM AB AC
2
BA CA a b .
2
2
答案:- a b
2
题组二:走进教材
1.(必修4P101A组T5改编)已知向量a=(4,2),b=(x,3),
且a∥b,则x的值是 ( )
A.-6
B.6
C.9
D.12
【解析】选B.因为a∥b,所以4×3-2x=0,所以x=6.
()
(2)同一向量在不同的基底下的表示是相同的. ( ) (3)在△ABC中,设 AB =a, BC =b,则a与b的夹角为 ∠ABC. ( ) (4)若a,b不共线,且λ 1a+μ 1b=λ 2a+μ 2b,则λ 1=λ 2, μ 1=μ 2. ( )
【解析】(1)×.因为一组不共线的向量可以作为一组 基底,所以平面内的任意两个向量都可以作为一组基底 错误. (2)×.由平面向量基本定理可知,平面内的任意向量都 可以由一组基向量唯一线性表示,而同一向量在不同的 基底下的表示是不同的.
2.(必修4P101A组T2改编)已知三个力F1=(-2,-1),
F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为
使物体保持平衡,现加上一个力F4,则F4等于( )
A.(-1,-2)
B.(1,-2)
C.(-1,2)
D.(1,2)
【解析】选D.根据力的平衡原理有F1+F2+F3+F4=0, 所以F4=-(F1+F2+F3)=(1,2).
4.平面向量共线的坐标表示 向量共线的充要条件的坐标表示 若a=(x1,y1),b=(x2,y2),则a∥b⇔_x_1y_2_-_x_2_y_1=_0_.
【常用结论】 1.向量共线的充要条件有两种: ①a∥b⇔a=λ b(b≠0). ②a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0. 2.两向量相等的充要条件:它们的对应坐标相等.
2
【解析】由
OD
=
1 (OA OB CB) 2
=
1 (OA OC) 2
Байду номын сангаас
,知点D
是线段AC的中点,故D(2,2),所以 BD =(-2,2),故| BD|=
22 22 2 2.
答案:2 2
5.已知正△ABC的边长为2 3 ,平面ABC内的动点P,M满 足| AP |=1, PM MC,则| BM|2的最大值是________.
3.(必修4P102 T3改编)设e1,e2是不共线的两个向量, 且λ 1 e1+λ 2 e2=0,则λ 1+λ 2 =________. 【解析】因为e1,e2是不共线的两个向量,且λ 1 e1+ λ 2 e2=0,所以λ 1 =λ 2 =0,所以λ 1+λ 2 =0. 答案:0
考点一 平面向量的坐标运算
【解析】建立平面直角坐标系如图所示,
则B(- 3 ,0),C( 3 ,0),A(0,3),则点P 的轨迹方程为x2+(y-3)2=1.设P(x,y),
M(x0,y0),则x=2x0-
3 ,y=2y0,代入圆的方程得
(x0
3 )2 2
(y0
3 2
)2
1,所以点M的轨迹方程为
4
(x
3 )2 (y 3 )2 1,
命题角度1 利用向量共线求参数问题 【典例】已知向量a=(2,-1),b=(-1,m),c=(-1,2),若 (a+b)∥c,则m=________.
【解析】因为a=(2,-1),b=(-1,m),所以a+b=(1,m-1). 因为(a+b)∥c,c=(-1,2),所以2-(-1)·(m-1)=0.所以 m=-1. 答案:-1
2
2
1 2
1 2
1, 解得
1,
2, 3 所以 2, 3
4 3
.
答案: 4
3
考点三 共线向量的坐标表示及其应用 【明考点·知考法】
向量共线的坐标表示,将向量共线问题运算简单化, 因其运用广泛成为高考命题的热点,试题常以选择题、 填空题的形式出现,考查利用共线求参数值,以及共线 与其他知识的综合应用.
2.平面向量的坐标表示 (1)在平面直角坐标系中,分别取与x轴、y轴方向相同 的两个单位向量i,j作为基底,对于平面内的一个向量a, 由平面向量基本定理知,有且只有一对实数x,y,使得 a=xi+yj,这样,平面内的任一向量a都可由_x_,_y_唯一确定,
因此把有序数对_(_x_,_y_)_叫做向量a的坐标,记作a=(x,y), 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标. (2)若A(x1,y1),B(x2,y2),则 AB =_(_x_2-_x_1_,_y_2_-_y_1)_.
(3)×.由向量夹角的定义可知:a与b的夹角为∠ABC的
补角.
(4)√.因为λ1a+μ1b=λ2a+μ2b,所以(λ1-λ2)a=(μ2
-μ1)b,当λ1-λ2≠0时,a=
2 1 1 2
b,所以a与b共线,与
已知a,b不共线矛盾.
2.若 AB =(1,2), BC =(3,4),则 AC = ( )
22 2 2
2.(2015·全国卷Ⅰ)已知点A(0,1),B(3,2),向量 AC =
(-4,-3),则向量 BC = ( )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
【解析】选A. AB =(3,1), AC =(-4,-3), BC = AC - AB = (-4,-3)-(3,1)=(-7,-4).
考点二 平面向量基本定理及其应用 【典例】(1)如图所示,矩形ABCD的对角线相交于点O, E为AO的中点,若 DE AB AD (λ ,μ 为实数),则 λ 2+μ 2= ( )
A. 5
B. 1
C.1
8
4
D. 5
16
【解析】选A. DE 1 DA 1 DO 1 DA 1 DB 1 DA
2
2
2
4
2
1 (DA AB) 1 AB 3 AD,所以λ = 1 ,μ =- 3 ,故λ 2+
4
44
4
4
μ 2= 5 .
8
(2)在△ABC中,点D,E分别在边BC,AC上,且 BD 2DC,CE
3EA,若 AB =a, AC =b,则 DE = ( )
A. 1 a+ 5 b
3 12
3.平面向量的坐标运算
(1)若a=(x1,y1),b=(x2,y2),则a±b=(x1±x2,y1±y2). (2)若a=(x,y),则λ a=_(_λ__x_,_λ__y_)_.
(3)设A(x1,y1),B(x2,y2),则| AB |=___x_2__x_1_2___y_2__y_1__2 .
第二节 平面向量的基本定理及向量坐标运算
【知识梳理】 1.平面向量基本定理 (1)定理:如果e1,e2是同一平面内的两个_不__共__线__向量, 那么对于这一平面内的任意向量a,有且只有一对实数 λ 1,λ 2,使a=_λ__1e_1_+_λ__2_e_2 .
(2)基底:_不__共__线__的向量e1,e2叫做表示这一平面内所有 向量的一组基底.
3.注意向量坐标与点的坐标的区别: (1)向量与坐标之间是用等号连接. (2)点的坐标,是在表示点的字母后直接加坐标. (3) AB 是用B点的横纵坐标减去A点的横纵坐标,既有方 向的信息也有大小的信息,其向量位置不确定. (4)点的坐标含有横坐标和纵坐标,点是唯一的.
【基础自测】 题组一:走出误区 1.判断正误(正确的打“√”,错误的打“×”) (1)平面内的任意两个向量都可以作为一组基底.