Gu Sheng-hua Shanghai Hydrological General Station, Shanghai 200232,China

合集下载

企业信用报告_水经(上海)生物科技有限公司

企业信用报告_水经(上海)生物科技有限公司

基础版企业信用报告
5.10 司法拍卖..................................................................................................................................................10 5.11 股权冻结..................................................................................................................................................10 5.12 清算信息..................................................................................................................................................10 5.13 公示催告..................................................................................................................................................11 六、知识产权 .......................................................................................................................................................11 6.1 商标信息 ....................................................................................................................................................11 6.2 专利信息 ....................................................................................................................................................11 6.3 软件著作权................................................................................................................................................12 6.4 作品著作权................................................................................................................................................12 6.5 网站备案 ....................................................................................................................................................12 七、企业发展 .......................................................................................................................................................12 7.1 融资信息 ....................................................................................................................................................13 7.2 核心成员 ....................................................................................................................................................13 7.3 竞品信息 ....................................................................................................................................................13 7.4 企业品牌项目............................................................................................................................................13 八、经营状况 .......................................................................................................................................................13 8.1 招投标 ........................................................................................................................................................13 8.2 税务评级 ....................................................................................................................................................13 8.3 资质证书 ....................................................................................................................................................14 8.4 抽查检查 ....................................................................................................................................................14 8.5 进出口信用................................................................................................................................................14 8.6 行政许可 ....................................................................................................................................................14

企业信用报告_上海泳晟科技有限公司

企业信用报告_上海泳晟科技有限公司

目录一、企业背景 (5)1.1 工商信息 (5)1.2 分支机构 (5)1.3 变更记录 (5)1.4 主要人员 (5)1.5 联系方式 (6)二、股东信息 (6)三、对外投资信息 (6)四、企业年报 (6)五、重点关注 (7)5.1 被执行人 (7)5.2 失信信息 (8)5.3 裁判文书 (8)5.4 法院公告 (8)5.5 行政处罚 (8)5.6 严重违法 (8)5.7 股权出质 (8)5.8 动产抵押 (8)5.9 开庭公告 (8)5.11 股权冻结 (9)5.12 清算信息 (9)5.13 公示催告 (9)六、知识产权 (9)6.1 商标信息 (9)6.2 专利信息 (9)6.3 软件著作权 (9)6.4 作品著作权 (10)6.5 网站备案 (10)七、企业发展 (10)7.1 融资信息 (10)7.2 核心成员 (10)7.3 竞品信息 (10)7.4 企业品牌项目 (10)八、经营状况 (11)8.1 招投标 (11)8.2 税务评级 (11)8.3 资质证书 (11)8.4 抽查检查 (11)8.5 进出口信用 (11)8.6 行政许可 (11)一、企业背景1.1 工商信息企业名称:上海泳晟科技有限公司工商注册号:310118004237800统一信用代码:91310118MA7AGN0L0U法定代表人:杨菊英组织机构代码:MA7AGN0L-0企业类型:有限责任公司(自然人投资或控股)所属行业:科技推广和应用服务业经营状态:开业注册资本:200万(元)注册时间:2021-09-02注册地址:上海市青浦区北青公路9138号1幢3层营业期限:2021-09-02 至无固定期限经营范围:一般项目:技术开发、技术服务、技术咨询、技术转让、技术推广、技术交流,销售金属制品、五金产品、塑料制品、机电设备、仪器仪表及配件、实验室分析仪器、计算机软硬件及辅助设备。

(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)登记机关:青浦区市场监督管理局核准日期:2021-09-021.2 分支机构截止2022年04月28日,爱企查未找到该公司的分支机构内容。

企业信用报告_上海申丽化工有限公司

企业信用报告_上海申丽化工有限公司
5.1 被执行人 ......................................................................................................................................................8 5.2 失信信息 ......................................................................................................................................................8 5.3 裁判文书 ......................................................................................................................................................8 5.4 法院公告 ......................................................................................................................................................8 5.5 行政处罚 ......................................................................................................................................................8 5.6 严重违法 ......................................................................................................................................................9 5.7 股权出质 ......................................................................................................................................................9 5.8 动产抵押 ......................................................................................................................................................9 5.9 开庭公告 ......................................................................................................................................................9

上海古象化工科技发展有限公司介绍企业发展分析报告

上海古象化工科技发展有限公司介绍企业发展分析报告

Enterprise Development专业品质权威Analysis Report企业发展分析报告上海古象化工科技发展有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:上海古象化工科技发展有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分上海古象化工科技发展有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。

该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。

1.2 企业画像类别内容行业化学原料和化学制品制造业-基础化学原料制造资质增值税一般纳税人产品服务险化学品生产。

(依法须经批准的项目,经相1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.4行政处罚-工商局4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.11产品抽查-工商局4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。

JOURNALOFHYDRAULICENGINEERING

JOURNALOFHYDRAULICENGINEERING

JOURNAL OF HYDRAULIC ENGINEERINGVol.47No.8,2016(Monthly)C O N TEN TSOptimal operation of flood control for cascade reservoirs based on Parallel Chaotic Quantum Particle Swarm Optimization……ZOU Qiang WANG Xuemin LI Anqiang HE Xiaocong LUO Bin(967)Slope stability analysis by considering rainfall infiltration in multi-layered unsaturated soils…………SHI Zhenming SHEN Danyi PENG Ming ZHANG Lulu ZHANG Fawang ZHENG Xiaozhan(977)Mesoscale numerical analysis on moisture transportin in cracked concrete subjected to drying-wetting cycles………………………………………………………………WANG Licheng BAO Jiuwen(986)Characteristics of Nitrate-N losses through runoff and hydrological tracing in subtropical agricultural catchments……………………………………………………………………………………………………………WANG Rui TANG Jialiang ZHANG Xifeng SHEN Dong ZHAI Longbo ZHU Bo(996)Contribution of hydrological and biological processes to nutrient retentionin an agricultural headwater stream predominated by Phragmites australis…………………………………………………………………………………LI Ruzhong CAO Jingcheng HUANG Qingfei YIN Xiaoxi YAN Xiaosan(1005)Changes in the turbulent characteristics for sediment bed coated by biofilm…………………………………………………CHENG Wei FANG Hongwei HUANG Lei LAI Haojie HE Guojian(1017)Research on river health assessment based on different biological assessmblages………………………………………………………………LI Yanli LI Yanfen ZHAO Li XU Zongxue SUN Wei(1025)Mechanism of the intermittent motion of two-phase debris flows head and the energy character……………………………………………………………………LÜLiqun WANG Zhaoyin CUI Peng(1035)Investigation on hydraulic transients in tailrace tunnel with air inlet and release from the vent………………………………………………………………………………YU Xiaodong ZHANG Jian(1045)Investigating the circle pipe’s roughness with the fractal geometry theory and the practical application ……………………………………………………………………………………ZHANG Landing(1054)Fracture toughness of concrete after carbonation and wet-dry cycle of sulfate solution……………………………………………………ZHANG Tingyi WANG Zili ZHENG Guanghe ZHU Haitang(1062)Bearing mechanism of reinforced concrete penstock with steel liner considering friction-contact behav⁃ior…………………………………………SU Kai ZHANG Wei WU Hegao SHI Changzheng(1070)Discrete and continuous coupling numerical simulation of the impact loading……………………………………………………………………………………JIA Mincai CHEN Chun WU Shaohai(1079)Finite-element simulation and experiment on polymer directional fracturing and grouting for dykes and dams………………………SHI Mingsheng WANG Fuming LIU Heng GUO Chengchao(1087)985 976 99510161016 1024 1034 1044 1053 1061 1069 1078 1086 1092 Page Number in This File水利学报SHUILI XUEBAO 第47卷2016年第8期(月刊)目次[期刊基本参数]CN11-1882/TV *1956*m *A4*128*zh *P *¥30.00*1200*14*2016-08基于并行混沌量子粒子群算法的梯级水库群防洪优化调度研究………………………………………………………………………………………………邹强王学敏李安强何小聪罗斌(967)考虑多层非饱和土降雨入渗的边坡稳定性分析………………………………………………………………………………………………………石振明沈丹祎彭铭张璐璐张发旺郑小站(977)干湿交替下开裂混凝土中水分传输的细观数值分析…………………………王立成鲍玖文(986)亚热带农业小流域暴雨过程硝态氮迁移特征及水文示踪研究………………………………………………………………………………………王芮唐家良章熙锋申东翟龙波朱波(996)芦苇占优势农田溪流营养盐滞留的水文和生物贡献分析………………………………………………………………………………………………………李如忠曹竟成黄青飞殷晓曦严小三(1005)生物膜泥沙床面对水体紊动影响的实验研究…程伟方红卫黄磊赖豪杰何国建(1017)基于不同生物类群的河流健康评价研究………李艳利李艳粉赵丽徐宗学孙伟(1025)两相泥石流龙头的非恒定运动过程及能量特征……………………吕立群王兆印崔鹏(1035)尾水隧洞通气孔进排气瞬态过程研究…………………………………………俞晓东张健(1045)用分形几何理论研究圆管糙率及其实用意义……………………………………………张兰丁(1054)碳化与硫酸盐溶液干湿循环后混凝土断裂韧度…………张廷毅汪自力郑光和朱海堂(1062)考虑摩擦接触特性的钢衬钢筋混凝土管道承载机理研究…………………………………………………………………………………………………………………苏凯张伟伍鹤皋石长征(1070)冲击荷载作用的离散-连续耦合数值模拟……………………………贾敏才陈纯吴邵海(1079)堤坝高聚物定向劈裂注浆试验与有限元模拟……………石明生王复明刘恒郭成超(1087)EDITORIAL BOARDHONORARY PRESIDENTSSUO Lisheng HU Siyi LIU NinCONSULTANTSLU Youmei ZHU Erming GAO Anze ZHANG Zezhen CHEN Bingxin GAO JizhangPRESIDENTKUANG Shang-fuVICE PRESIDENTSWU Hongwei YU Qiyang JIA Jinsheng YANG XiaodongMEMBERSCAI Xuming(U.S.A)CAI Yuebo Chandra Madramootoo(Canada)CHEN Jin CHEN Houqun CHEN Qiuwen CHEN Minjian CHEN Shengshui CHEN Zuyu CHENG Guoyin CHENG Xiaotao DENG Jiaquan Desmond Walling(UK)DU Leigong FANG Hongwei FENG Ping FENG Shaoyuan FNEG Shurong GAN Hong GAO Zhanyi GU Hong GUO Jun GUO Qizhong(U.S.A)GUO Shenglian HAN Qiwei HE Jianbing HU Chunhong HUAI Wenxin HUANG Jiesheng HUANG Qiang HU Zuoliang Hyo-Seop Woo(Korea)JIA Jinsheng James Yang(Sweden)JIANG Naiqian JIE Yuxin JIN Juliang KANG Shaozhong KONG Xianjing KUANG Shangfu LI Jiren LI Jia LI Jiusheng LI Wanhong LI Yun LI Yuanyuan LI Zantang LIAN Jijian Xu Liang(U.S.A)LIU Handong LIU Xiaoyan LIU Yulong LIU Zhiping LU Jinyou LU Wenxi MA Hongqi MA Jianhua NI Jinren NIU Xinqiang Norihisa Matsumoto(Japan)PENG Caide QIN Boqiang Roger Falconer(UK)SHEN Zhenzhong SHU Longcang TIAN Bin WANG Fujun WANG Guangqian WANG Hao WANG Lizhong WANG Renkun WANG Wensheng WANG Xiaohong WANG Yicheng WANG Xiaogang WEI Qiwei WU Hongwei WU Pute WU Zhongru XIA Jun XU Zeping XU Zongxue XU Weilin YANG Dawen YANG Kailin YANG Xiaodong YAO Shuanxi YAO Wenyi YU Qiyang ZHANG Chaoran ZHANG Chunsheng ZHANG Guoxin ZHANG Limin ZHANG Jian ZHANG Jianmin ZHANG Jianyun ZHANG Yongbo ZHANG Zongliang ZHENG Peiming ZHONG Denghua ZHONG Pingan ZHONG Zhiyu ZHOU Xiaoguang ZHU Bofang ZHU Xingming ZUO QitingCHIEF EDITORCHENG XiaotaoDEPUTY CHIEF EDITORSLI Zantang GAN Hong XU ZepingOptimal operation of flood control for cascade reservoirs based on Parallel Chaotic QuantumParticle Swarm OptimizationZOU Qiang,WANG Xuemin,LI Anqiang,HE Xiaocong,LUO Bin(Changjiang Institute of Survey Planning Design and Research,Wuhan430074,China)Abstract:The optimal operation of flood control for cascade reservoirs is a huge-scale complex nonlinear problem,involving a large number of decision variables and complicated constraints,and there are complex coupling relationship among water level and flow rate in each reservoir and each time with high dimension,nonlinear,strong constraint characteristics.Therefore,the evolution with traditional methods are difficult to directly solve or have low computational efficiency with premature convergence.This research tried to adopt Quantum Particle Swarm Optimization(QPSO)for cascade reservoirs optimal operation of flood control,and in order to improve the convergence effect and global search capability of QPSO,three improvements were presented for QPSO,such as population initialization with chaotic theory,adaptive activation mechanism and chaotic local search for elite particles.Furthermore,with the aim of reducing the computational time,a multi-core parallel computation technology was also employed.Overall,on the basis of above three im⁃provements and multi-core parallel computation technology,Parallel Chaotic Quantum Particle Swarm Optimi⁃zation(PCQPSO)was proposed in the paper.Then test function demonstrated the practicability,stability and high effectiveness of PCQPSO.Finally,the case study based on PCQPSO shows that PCQPSO is fast convergence efficiency,high precision,and the outcomes of this research based on PCQPSO offer new in⁃sights to carry out an efficient strategy for optimal operation of cascade reservoirs flood control.Key words:cascade reservoirs;flood control optimal operation;Quantum Particle Swarm Optimization;cha⁃otic search;multi-core parallel computationSlope stability analysis by considering rainfall infiltration in multi-layered unsaturated soils SHI Zhenming1,2,SHEN Danyi1,2,PENG Ming1,2,ZHANG Lulu3,4,ZHANG Fawang5,ZHENG Xiaozhan6(1.Department of Geotechnical Engineering,Tongji University,Shanghai200092,China;2.Ministry of Education Key Laboratory of Geotechnical and Underground Engineering,Tongji University,Shanghai200092,China;3.State Key Laboratory Ocean Engineering,Shanghai Jiaotong University,Shanghai200240,China;4.Department of Civil Engineering,Shanghai Jiaotong University,Shanghai200240,China;5.Institute of karst geology,CAGS,Guilin541004,China;6.Guangdong Geologic Survey Institute,Guangzhou510440,China)Abstract:Rainfall is one of the major causes for slope failures.Rainfall infiltration reduces the slope resis⁃tance by largely lowering the matrix suction.The paper presents a method slope stability analysis of multi-layered unsaturated soils.Firstly,the Green-Ampt infiltration model is improved to calculate the infil⁃tration depth in multi-layered unsaturated soils.Then,the soil strength parameters are estimated with con⁃sideration of rain infiltration.Finally,stability analysis is conducted by using of strength reduction method with ABAQUS.The method is applied to the case study of the Dafushan landslide in Guanzhou and found that the shallow slip surface in the simulation is close to the real case.Slope stability analyses are further conducted with different rainfall intensity and lasting period.It is found from the analysis that the slide sur⁃face is most probably located in wetting front or at the interface between the soils and bedrock.The long term and low density antecedent rainfall makes larger infiltration depth and deep seated slope failure;the short term and high density antecedent rainfall usually cause smaller infiltration depth and shallow seated slope failure;with the increase of rainfall intensity,rainfall duration,the infiltration depth increases,and then aggravate the slope failure.Key words:rainfall infiltration;unsaturated soils;infiltration depth;strength parameters;slope stabilityMesoscale numerical analysis on moisture transportin cracked concrete subjected to drying-wetting cyclesWANG Licheng,BAO Jiuwen(State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian116024,China)Abstract:For the splash and tidal zone of marine concrete structures,there are two main existing forms of the moisture involving both gas and liquid phases,which exist within the pores of concrete.Based on the unsaturated flow theory of capillary absorption by concrete,the one-dimensional nonlinear differential equation for moisture transport in cracked concrete subjected to drying-wetting cycles is developed.With consideration of the transport hysteresis during drying and wetting period,the models accounting for moisture transport coefficients during this process in an individual crack are respectively proposed.In terms of the mesoscale methodology that the cracked concrete is treated as a four-phase composite material consisting of coarse aggregate,mortar,interfacial transition zone(ITZ)and crack,the two-dimensional lattice network model with a single crack is adopted to conduct the numerical simulation of moisture transport in cracked concrete subjected to drying-wetting pared with the existing experimental results,the proposed models are utilized to verify the transport theory of drying-wetting cycle in cracked concrete.Furthermore,by means of the above numerical models,the effect of drying-wetting cyclic mechanism(i.e.,the ratio of drying-wetting time and cyclic times)and crack width on water distribution of cracked concrete are numeri⁃cally carried out and reasonably analyzed.The numerical results suggest that water content distribution pro⁃files within the crack and in the location perpendicular to crack direction depend on the ratio of drying-wet⁃ting time and cycles for the constant crack width.For the crack width ranging between0.05-0.3mm,water content within the crack and perpendicular to crack direction decreases with the increase of crack width.Key Words:drying-wetting cycles;cracked concrete;moisture;mesoscale lattice model;crack widthContribution of hydrological and biological processes to nutrient retentionin an agricultural headwater stream predominated by Phragmites australisLI Ruzhong,CAO Jingcheng,HUANG Qingfei,YIN Xiaoxi,YAN Xiaosan (School of Resources and Environmental Engineering,Hefei University of Technology,Hefei230009,China)Abstract:To examine the contribution of hydrological and biological processes to nutrient retention in a headwater stream with growing lots of aquatic macrophytes,eight field tracer experiments were conducted at an agricultural headwater stream reach,predominated by Phragmites australis,in the Nanfeihe River from September2014to June2015.Such three typical hydrodynamic parameters as Reynolds numbers(Re),Froude numbers(Fr),and Manning roughness coefficient(n)of stream flows were calculated firstly accord⁃ing to the hydraulic data.Subsequently,both the practical and relative contributions of hydrological and bio⁃logical processes to NH4+and PO43-retention as well as the total retention ratios of the two nutrients were estimated quantitatively.Study results show that the stream reach displayed striking turbulence characteris⁃tics over the eight tracer experiments and its flow status belonged to subcritical flow.The values of n ranged from0.066to0.112,with a mean value of0.089.The proportional NH4+and PO43-retention ranged from9.17%to28.27%and5.75%to17.79%,with the averages of14.68%and12.53%,respectively.The practical contribution rates of hydrological and biological factors to NH4+retention were10.12%and4.57%,respectively,and10.12%and2.41%for PO43-,respectively.The relative contributions of hydrological and biological processes to NH4+retention were72.51%and27.49%,respectively,and81.42%and18.58%for PO43-,respectively.The findings mentioned above indicate that hydrological process has a greater impact on the retention of NH4+and PO43-for the studied stream reach.Moreover,relationship between the hydrody⁃namic parameters(i.e.Q,Re and Fr)and the Manning roughness coefficient(n)could be expressed by using power functions,but no obvious relationship has been found between the practical retention ratio(i.e.ηNH4,ηPO4)and the following hydrodynamic parameters as n and Re.Key words:agricultural stream;nutrient retention;aquatic macrophyte;tracer experiment;hydrodynamic parameterCharacteristics of Nitrate-N losses through runoffand hydrological tracing in subtropical agricultural catchments WANG Rui1,2,TANG Jialiang1,ZHANG Xifeng1,SHEN Dong1,ZHAI Longbo1,2,ZHU Bo1(1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu610041,China;2.University of Chinese Academy of Sciences,Beijing100049,China)Abstract:In order to understand the hydrological pathways of nitrate-N in subtropical agricultural catch⁃ments,this study was carried out at a nested agricultural headwater catchment in Hilly area of purple soil. Rainfall,discharge,δ18O,nitrate-N were monitored continuously in two storms.End member mixing analy⁃sis(EMMA)model was applied to quantify the contributions from different water sources.The results show that:(1)Surong catchment has the highest nitrate-N concentrations,while Wanan has the lowest nitrate-N,indicating that nitrate-N decreased with lager catchment size attribute to water dilution effect from other small watersheds which are dominated by woodland;(2)Subsurface flow from sloped croplands contributes to peak nitrate-N concentrations increased during the recession period of storm flow.The results of EMMA show that bothδ18O and nitrate-N successfully traced subsurface flow replenishment process during the flow recession period.But intense human activity might lead a certain deviation.In sum,nitrate-N has the poten⁃tial to be environmental indicator and hydrologic tracer simultaneously during storm events for small agricul⁃tural catchments.But its application in more storm events at multiple sites remains to be further validated. Key words:agricultural catchments;nitrate-N;storms runoff;hilly area of purple soil;hydrological tracingChanges in the turbulent characteristics for sediment bed coated by biofilm CHENG Wei1,2,FANG Hongwei1,2,HUANG Lei1,2,LAI Haojie1,2,HE Guojian1,2(1.Department of Hydraulic Engineering,Tsinghua University,Beijing100084,China;2.State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing100084,China)Abstract:Biofilm growth on the sediment bed will change the turbulent characteristics and influence the sediment incipient,suspension and transportation.In this study,sediment with median size d50<0.1mm is used to investigate the change of turbulent characteristics with and without biofilm coating on the bed un⁃der the same discharge.Acoustic Doppler Velometer(ADV)is used to obtain the instantaneous velocity in the vertical direction.Mean velocity,Reynold stress,turbulent intensity distribution and bursting events above the bed are analyzed and compared between the biofilm-coated bed and the bed without biofilm,the influence of which on the sediment transportation is also discussed.Results show that with biofilm coated,the mean velocity in vertical direction increase and the bed resistance decrease,Reynold stress and turbu⁃lent intensity also decrease near the bed,which may change the vertical distribution of suspended sedi⁃ment.Bursting events analysis shows a disadvantage of sediment incipient by the coated biofilm.Key words:sediment transport;biofilm;turbulent characteristicResearch on river health assessment based on different biological assessmblages LI Yanli1,LI Yanfen2,ZHAO Li1,XU Zongxue3,SUN Wei1(1.Institute of Resources&Environment,Henan Polytechnic University,Jiaozuo454000,China;2.Institute of Chemical and Environment Engineering,Jiaozuo College,Jiaozuo454000,China;3.College of Water Sciences,Beijing Normal University,Beijing100875,China)Abstract:In this study,a multimetric index based on fish and macroinvertebrate at the levels of communi⁃ty structure and function for the Hun-Taizi River basin(MMI-HT)was developed to assess river health. First,an index of land use,water and habitat quality(ILWHQ)was calculated to evaluate the environmen⁃tal quality in the studied sites.Then,core metrics were selected using a stepwise procedure(the analysis of the range of index value distribution,stepwise regression analysis,Pearson correlation)that evaluated metric stability,responsiveness to stressors.Finally,ration scoring method was used to score multimetric in⁃dex in the Hun-Taizi River(MMI-HT).Eight metrics(Cyprinidae species,Proportion of benthic species,Proportion of omnivore species,Proportion of individuals as tolerant species,Proportion of demersal eggs species,Proportion of individuals as demersal eggs species,EPT,Proportion of clingers)were selected to construct MMI-HT.Generally,macroinvertebrate metrics were more sensitive to coarse substrate,electric conductivity and suspended solid,whereas,fish metrics were more sensitive to fine substrate,dissolved oxy⁃gen,chloride,nitrogen,Permanganate index,water temperature,land use and perturbations of hydrological processes.Two groups responded differently to multiple stressors.The results showed that nine sites were in excellent condition,six were in good condition,seven in normal condition,seven in poor condition,and six in very poor condition in the Taizi River basin.There was no site in excellent condition,five in good condition,four in normal condition,five in poor condition,and five in very poor condition in the Hun Riv⁃er basin.These findings indicate that ecosystem health is worse in the Hun River than that in the Taizi River.Key words:multimetric assessment;fish;macroinvertebrate;land use index;riverMechanism of the intermittent motion of two-phase debris flows headand the energy characterLÜLiqun1,WANG Zhaoyin1,CUI Peng2(1.State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing100084,China;2.Mountain Hazard and the Earth's Surface Processes Key Laboratory,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu610041,China)Abstract:A typical two-phase debris flow exhibits a high and steep flow head consisting of rolling boul⁃ders and cobbles and intermittent or fluctuating moving velocity.The relative motion between the solid phase and the liquid phase is obvious.The motion of a two-phase debris flow depends on not only the rhe⁃ological properties of the flow,but also the energy transmission between the solid and liquid phases.In ad⁃dition to the rheological characteristics of two-phase debris flow,energy transfer between liquid phase and solid phase plays an important role.Energy analysis method was used to study the energy transfer mecha⁃nism between the two phase flows and simulate the motion of two-phase flow.This paper analyzed the inter⁃mittent feature of two-phase debris flows based on videos of field debris flows and flume experiments.The experiments showed that the height of the head of the two-phase debris flow increased gradually at the initi⁃ation stage and reached equilibrium at a certain distance.The height growth and the velocity of the flow head showed fluctuating characteristics.Physical equations were established and the analyses proved that the average velocity of the two-phase debris flow head was proportional to the gully slope and flood discharge,and inversely proportional to the volume of the debris flow head.Key words:two-phase debris flow;intermittent motion;unsteady flow;flow power;energy dissipation.Investigation on hydraulic transientsin tailrace tunnel with air inlet and release from the ventYU Xiaodong1,2,ZHANG Jian2(1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan430072,China;2.College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing210098,China)Abstract:Based on the one-dimensional hydraulic transients and the method of characteristics(MOC),the mathematical model of the vent in the tail race tunnel is established by using the Discrete Free-Gas Cavity Model(DGCM),and the thermodynamic properties of the gas is taking into account as well.A cor⁃responding numerical model has been developed using the data of a real hydropower station,and the phe⁃nomenon of air inlet-two phase flow-air releases is investigated during transient process.The results show that air inlet can effectively relieve the negative pressure in the tunnel,but air releases can lead to a large impact pressure,which comes from the water column rejoin after the separation by the air,resulting in the direct water hammer.When the area of the vent is large,the impact pressure decreases with the in⁃crease of the area,when the area of the vent is small,the impact pressure increases with the increase of the area.According to its characteristics,the structure of a new type of vent is presented,i.e.,the vent is fully open when the air flows in,and the vent is partly open when the air flows out.When the air re⁃leases area is about10%of the air inlet area,the pressure oscillation is small.Key words:hydropower station;hydraulic transients;vent;tailrace tunnel;air pocketInvestigating the circle pipe’s roughness withthe fractal geometry theory and the practical applicationZHANG Landing(Nanjing Hydraulic Research Institute,Nanjing210029,China)Abstract:The author analyzes the important effects of equivalent roughness K S in calculating the friction losses of turbulent flow,based on the existing theoretical and experimental research achievements of resis⁃tance laws,as well as depicts the situation of calculating the friction losses and applicationin China’s hy⁃draulic engineering.For the case of circle pipe’s roughness,the author researches on the fractal characteris⁃tics of roughness of pipe’s inner wall with the fractal geometry theory,and gives the mathematical model of the fractal dimension and numerical examples.The author also demonstrates the relationship between the fractal dimension and equivalent roughness K S,the calculation methods of fractal dimension of pipe rough⁃ness in longitudinal and transverse are discussed respectively,then gives way to apply the turbulent resis⁃tance laws and research achievements provided by the former to engineering practice directly.Key words:fractal geometry;circle pipe;equivalent roughness;fractal dimension;friction lossesFracture toughness of concrete after carbonation andwet-dry cycle of sulfate solutionZHANG Tingyi1,2,WANG Zili1,2,ZHENG Guanghe1,2,ZHU Haitang3(1.Yellow River Institute of Hydraulic Research,Zhengzhou450003,China;2.Research Center on Levee Safety&Disaster Prevention,the Ministry of Water Resources,Zhengzhou450003,China;3.School of Water Conservancy and Environment Zhengzhou University,Zhengzhou450002,China)Abstract:In this paper,the effects of deteriorations is studied,such as carbonation and wet-dry cycle in sulfate solution,upon fracture toughness of concrete.Through the three-point bending test on the notched beams of concrete after carbonation and wet-dry cycle in sulfate solution,the effects of carbon⁃ation time(t)and wet-dry cycle number(n)upon the fracture toughness of concrete were studied.The re⁃sults show that carbonation and wet-dry cycle deteriorate the fracture toughness to some extent.Degradation factor(R)is less than1.Fracture toughness decreases as t(or n)increases.R significantly decreases as(or n)increases,and statistical analysis indicates that t and n meet the relation of exponential function with R respectively.Because of the obvious interaction between carbonation and wet-dry cycle,the individual ef⁃fect of carbonation(or wet-dry cycle)is more serious than the alternate one.Based on the test results,the calculation model is established for calculating fracture toughness of concrete deterioration.This model is helpful to analyze the crack propagation and fracture toughness of concrete deterioration.Key words:carbonation;sulfate solution;wet-dry cycle;concrete;fracture toughnessBearing mechanism of reinforced concrete penstock with steel liner consideringfriction-contact behaviorSU Kai1,ZHANG Wei2,WU Hegao1,SHI Changzheng1(1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan430072,China;2.Civil Engineering and Architecture College of Guangxi University,Nanning530004,China)Abstract:Coulomb friction model is employed to simulate the friction-contact behavior between steel liner and reinforced concrete when a numerical model of reinforced concrete penstock with steel liner located on the downstream surface of concrete dam is built up.The critical pressure of concrete crack initiation,con⁃crete crack propagation law,penstock deformation characteristic and stresses distribution of steel are ana⁃lyzed upon the friction-contact model(FCM).Some impressive conclusions can be achieved from the re⁃sults:the concrete crack propagation law of FCM meets the experiments’results well;the differences of tensile stress of the steel liner between the crown and the bottom are less than the traditional node shared model when FCM model is adopted;the width of the concrete crack of FCM model ranges from0.3to 0.4,larger than traditional node shared model;non-uniformities of both the displacement around the pen⁃stock crown and the steel liner tensile stresses increase with the friction while tensile stresses values and strain non-uniformities of the cross-crack-reinforcement decrease when the friction are larger.The results in⁃dicate that the rebar stresses are less while the non-uniform of liner stresses are greater when the combina⁃tions between steel liner and surrounding concrete are enhanced.Key words:penstock;reinforced concrete penstock with steel liner;friction-contact behavior;bearing mechanismDiscrete and continuous coupling numerical simulation of the impact loadingJIA Mincai1,2,CHEN Chun1,2,WU Shaohai3(1.Department of Geotechnical Engineering,Tongji University,Shanghai200092,China;2.Key Laboratory of Geotechnical and Underground Engineering.of Education Ministry,Tongji University,Shanghai200092,China;3.China Railway Eryuan Engineering Group Co.Ltd.,Chengdu610031,China)Abstract:Dynamic compaction and impact rolling have been widely used in hydraulic engineering(e.g. port engineering and dam engineering).The research about complex dynamic characteristics mainly depends on laboratory model tests and engineering experience,while the numerical method was rarely bin⁃ing the discrete element method(DEM)and finite difference method(FDM),a discrete and continuous coupling model was established to simulate dynamic compaction.The hysteretic damping model of the PFC2D is used in the important area,while the surrounding area is simulated with Mohr-Coulomb model of FLAC2D.According to the force equilibrium principle,the resultant force and bending moment acting on the boundary wall are distributed to the boundary node of continuous model.Due to the fact that the coupled boundary could not bear tensile stress,adjustment is made to transfer the boundary surface stresses,and the velocity of boundary wall is determined by the velocity of boundary node.The numerical results were compared with those of laboratory tests and the feasibility of the coupling simulation was validated,which provides a new method for dynamic improvement and stability analysis of dam and port.Key words:impact load;discrete element method;finite difference method;discrete and continuous cou⁃pling;dynamic characteristics。

企业信用报告_上海汇申化工有限公司

企业信用报告_上海汇申化工有限公司

基础版企业信报告
5.10 司法拍卖..................................................................................................................................................10 5.11 股权冻结..................................................................................................................................................11 5.12 清算信息..................................................................................................................................................11 5.13 公示催告..................................................................................................................................................11 六、知识产权 .......................................................................................................................................................11 6.1 商标信息 ....................................................................................................................................................11 6.2 专利信息 ....................................................................................................................................................11 6.3 软件著作权................................................................................................................................................11 6.4 作品著作权................................................................................................................................................11 6.5 网站备案 ....................................................................................................................................................12 七、企业发展 .......................................................................................................................................................12 7.1 融资信息 ....................................................................................................................................................12 7.2 核心成员 ....................................................................................................................................................12 7.3 竞品信息 ....................................................................................................................................................12 7.4 企业品牌项目............................................................................................................................................12 八、经营状况 .......................................................................................................................................................12 8.1 招投标 ........................................................................................................................................................13 8.2 税务评级 ....................................................................................................................................................13 8.3 资质证书 ....................................................................................................................................................13 8.4 抽查检查 ....................................................................................................................................................13 8.5 进出口信用................................................................................................................................................13 8.6 行政许可 ....................................................................................................................................................13

企业信用报告_上海古象化工有限公司

企业信用报告_上海古象化工有限公司
5.1 被执行人 ....................................................................................................................................................11 5.2 失信信息 ....................................................................................................................................................11 5.3 裁判文书 ....................................................................................................................................................11 5.4 法院公告 ....................................................................................................................................................11 5.5 行政处罚 ....................................................................................................................................................11 5.6 严重违法 ....................................................................................................................................................11 5.7 股权出质 ....................................................................................................................................................11 5.8 动产抵押 ....................................................................................................................................................12 5.9 开庭公告 ....................................................................................................................................................12

企业信用报告_上海盛善化工科技有限公司

企业信用报告_上海盛善化工科技有限公司

目录一、企业背景 (5)1.1 工商信息 (5)1.2 分支机构 (5)1.3 变更记录 (5)1.4 主要人员 (7)1.5 联系方式 (7)二、股东信息 (7)三、对外投资信息 (8)四、企业年报 (8)五、重点关注 (9)5.1 被执行人 (9)5.2 失信信息 (9)5.3 裁判文书 (9)5.4 法院公告 (10)5.5 行政处罚 (10)5.6 严重违法 (10)5.7 股权出质 (10)5.8 动产抵押 (10)5.9 开庭公告 (10)5.11 股权冻结 (11)5.12 清算信息 (11)5.13 公示催告 (11)六、知识产权 (11)6.1 商标信息 (11)6.2 专利信息 (11)6.3 软件著作权 (11)6.4 作品著作权 (11)6.5 网站备案 (12)七、企业发展 (12)7.1 融资信息 (12)7.2 核心成员 (12)7.3 竞品信息 (12)7.4 企业品牌项目 (12)八、经营状况 (12)8.1 招投标 (13)8.2 税务评级 (13)8.3 资质证书 (13)8.4 抽查检查 (13)8.5 进出口信用 (13)8.6 行政许可 (13)一、企业背景1.1 工商信息企业名称:上海盛善化工科技有限公司工商注册号:310116003274490统一信用代码:913101163326264992法定代表人:董献芹组织机构代码:33262649-9企业类型:有限责任公司(自然人投资或控股)所属行业:专业技术服务业经营状态:开业注册资本:100万(元)注册时间:2015-04-24注册地址:上海市金山区山阳镇龙皓路585弄14号1745室营业期限:2015-04-24 至 2025-04-23经营范围:许可项目:货物进出口;技术进出口。

(依法须经批准的项目,经相关部门批准后方可开展经营活动,具体经营项目以相关部门批准文件或许可证件为准)一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;化工产品销售(不含许可类化工产品);日用化学产品销售;塑料制品销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)
Cs = 4σ E G
(3) (4)
where E =
N − a a + n −l 1 a ( ) ( ) (EX − xm )ϕ (xm ) − + EX x m ϕ x m ∑ ∑ N m =1 n − l m = a +1
G=
N − a a + n −l 1 a 2 ( (EX − xm )2 ϕ (xm ) EX − x m ) ϕ ( xm ) + ∑ ∑ N m =1 n − l m = a +1
EX =
N −a 1 a xm + ∑ N m =1 n−λ
a +n−λ
m = a +1
∑x
m

1
(1)
2 N − a a+n−λ xm 1 a xm 2 2 CV = ( − 1 ) + ( − 1 ) ∑ ∑ n − λ m=a+1 EX N −1 m=1 EX
1
single weighted function moments through numerical integral, and two weighted function moment method .By using the evaluation standard of ideal sample fitting, they have obtained a conclusion that two new weighted function methods are better than original one. In terms of Monte-Carlo experiment by Chen Y.F. [4][6], the conclusion of the comparison of above weighted function moment methods are contrary to that of [2][3]. In other words, the above two modified weighted function moment methods are not better than the original one. In this case, Chen (1992,1994) developed an effective weighted function moment method based on the original one which may consider historical flood series. Therefore, the application scope have been widely extended. Now the problem of weighted function moment method still exists, i.e. the parameter Cv is estimated by conventional moment method, which causes a negatively bias of the estimation of Cv. In order to overcome it, a weighted function moment method based on L-moment is proposed in the paper. According to the Monte-Carlo experiment, the new one of weighted function moment is better than the original one.
Key words: Weighted function moment method; L-moment; bias, efficiency; Pearson-III distribution.
1 INTRODUCTION
The weighted function moment method is first developed by a Chinese hydrologist--Ma Xiufeng in 1984[1]. It may overcome a defect of conventional moment method in the estimation of the parameter Cs in a Pearson-III distribution. The defect is that Cs is negatively biased due to the existing of error for calculation of moments, especially for higher moment. So Chinese hydrologists are paying a good deal of attention to its development, and some researches have been carried out for modifying it. The use of Pearson-III distribution (or its log-version) in hydrological modelling is well known, as is reviewed for instance by Bobee [9]. Rasmussen et al [10], Durrans [11], and Wu et al [12] have studied the L-Moments method as an estimation method for the unknown parameters of the Pearson-III distribution. On the basis of Ma Xiufeng ‘s research, Liu Zhizhong and Liu Guangwen [2][3] developed two new modified weighted function moment methods, called
(5)
φ (x) is the probability density function of the normal distribution with mean EX and
standard deviation σ . σ = EXCv .
2
When the value of Cs calculated by equation (3) is less than 4, the final value of Cs is estimated by equation (6) E= r r +1 ) ( 2 r / e ) r * r Γ ( ) − 2Γ ( 2 2 2 2π Γ(r ) 1 (6)
In order to overcome the defect of WF1 in the estimation of parameter CV, the parameter CV is not yet estimated by the moment method in equation (2),but it is estimated by moment[7], because the estimation of Cv by L-moment has a very good unbiased feature. Estimation formula of CV by L-moment is as follows: Let X represent a series with historical flood in which the maximum return period is N, the length of recorded series (systematic) is n, the number of historical floods is a , the number
2 WEIGHTED FUNCTION MOMENTS METHOD (In brief, called WF1)
The principle and derivation of weighted function moments method with a simple sample refers to [1], the parameter estimation formulae with the consideration of historical flood information developed by Chen [4][6] are listed as follows: Let X represent a series with historical floods in which the maximum return period is N; the length of recorded series (systematic) is n, the number of historical floods is a, the number of historical floods in the recorded series is l, { x m ,m=1,2,…,(n+l-a)} is the series in descending order (from highest to lowest).
GIS & RS in Hydrology, Water Resources and Environment, Volume 1, Chen et al. (eds)
A New Weighted Function Moment Method Based on L-momentswith an Application to Pearson-III
Chen Yuan-fang, Xu Shengbin Department of Hydrology and Water Resources, Hohai University, Nanjing ,210024,China, E-mail: yf.chen@ Gu Sheng-hua Shanghai Hydrological General Station, Shanghai 200232,China Sha Zhi-gui Hydrological Bureau, YangtzeWater Resources Commission, Wuhan 430010,China Van Gelder Pieter Faculty of Civil Engineering and Geosciences, Delft 2600 GA, The Netherlands Abstract: A defect of a weighted function moment method for Pearson –III distribution developed by Chinese hydrologist MA Xiufeng is that the parameter of Cv is negatively biased, especially when the population parameter Cv0 is large. In order to overcome it, a new weighted function moment method is proposed, where the parameter Cv is estimated by the L-moment method. Monte-Carlo calculations show that the new weighted function moment method based on L-moment is better than the conventional one with respect to the bias of the quantiles and the parameter Cv, but the effectiveness of the quantiles and the parameter Cv of above two estimation methods are almost the same.
相关文档
最新文档