2016中考数学核心考点:有理数_考点解析

合集下载

中考数学知识点复习:有理数乘除法知识点_考点解析

中考数学知识点复习:有理数乘除法知识点_考点解析

中考数学知识点复习:有理数乘除法知识点_考点解析
中考数学知识点复习:有理数乘除法知识点有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
有理数除法法则: 
除以一个数等于乘以这个数的倒数;注意:零不能做除数.
有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .。

中考数学有理数考点:有理数的基础知识.doc

中考数学有理数考点:有理数的基础知识.doc

中考数学有理数考点:有理数的基础知识为您整理“中考数学有理数考点:有理数的基础知识”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。

中考数学有理数考点:有理数的基础知识1、正数(positionnumber):大于0的数叫做正数。

2、负数(negationnumber):在正数前面加上负号-的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)9、有理数减法法则:减去一个数,等于加这个数的相反数。

表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

中考数学核心考点

中考数学核心考点

中考数学核心考点中考数学核心考点包括以下几个方面:一、数与式1.有理数及其运算:掌握正数、负数、整数、分数、小数等概念,以及有理数的加、减、乘、除和乘方运算。

2.实数及其性质:理解实数的概念,掌握实数的运算和比较大小的方法。

3.代数式:掌握代数式的概念和性质,能够进行代数式的化简和求值。

4.方程式:掌握一元一次方程、二元一次方程组的解法,能够进行简单的方程求解。

二、方程与不等式1.方程:掌握一元一次方程、二元一次方程组的解法,能够进行简单的方程求解。

2.不等式:掌握一元一次不等式(组)的概念和解法,能够进行简单的不等式求解。

3.应用题:能够利用方程和不等式解决实际应用问题,如工程问题、行程问题等。

三、函数及其图像1.函数:理解函数的概念,掌握函数的表示方法和性质。

2.一次函数:掌握一次函数的图象和性质,能够进行简单的分析和应用。

3.反比例函数:掌握反比例函数的图象和性质,能够掌握简单问题的求解。

4.二次函数:掌握二次函数的图象和性质,能够进行简单的分析和应用。

5.三角函数:理解三角函数的概念和性质,掌握三角函数的运算和应用。

6.图像:能够根据函数解析式画出函数的图像,根据图像分析函数的性质。

四、几何与图形1.图形的基本性质:掌握线段、角、三角形、四边形等基本图形的性质和定理。

2.图形的相似与全等:理解相似图形和全等图形的概念,掌握相似和全等的性质和定理。

3.图形的变换:理解平移、旋转和轴对称等图形变换的概念,掌握变换的基本性质和应用。

4.视图与投影:理解视图与投影的概念,能够正确画出简单几何体的三视图和展开图。

5.解直角三角形:掌握解直角三角形的方法,能够进行简单的问题解决。

6.圆的性质与判定:理解圆的性质和判定方法,能够进行简单的问题解决。

7.立体图形:理解立体图形的概念,掌握常见立体图形的性质和定理。

8.图形与坐标:掌握平面直角坐标系的概念,能够根据坐标确定点的位置和根据点的位置求出坐标。

9.综合与实践:了解生活中的数学问题,如测量、建筑、设计等,能够运用所学知识解决实际问题。

初中数学第一章有理数知识点归纳总结

初中数学第一章有理数知识点归纳总结

初中数学第一章有理数知识点归纳总结初中数学第一章主要涉及有理数的概念、运算规则、绝对值和相反数等知识点。

下面将对这些知识点进行归纳总结。

1.有理数的概念:有理数是整数和分数的统称,包括正整数、负整数、零,以及正分数和负分数。

有理数可以用分数形式表示,也可以用小数形式表示。

2.整数的概念:整数包括正整数、负整数和零。

正整数表示数量时为正,负整数表示数量时为负,零表示没有数量。

3.分数的概念:分数由分子和分母组成,分子表示被分成的份数,分母表示总的份数。

分数可以表示一个数在单位等分之中的一部分。

4.有理数的比较:有理数可以通过大小进行比较。

对于两个有理数a和b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b。

5.有理数的加法与减法:有理数的加法和减法满足以下性质:-相同符号的两个数相加或相减,绝对值较大的数保留符号,结果的符号与原来的符号相同。

-不同符号的两个数相加或相减,绝对值较大的数保留符号,结果的符号与绝对值较大的数的符号相同。

6.有理数的乘法与除法:有理数的乘法和除法满足以下性质:-两个正数相乘或相除的结果为正数。

-两个负数相乘或相除的结果为正数。

-一个正数与一个负数相乘或相除的结果为负数。

-任何数除以零的结果为零。

7.绝对值:一个数的绝对值表示这个数离零的距离。

如果一个数是正数,那么它的绝对值就等于它本身;如果一个数是负数,那么它的绝对值等于它的相反数。

8.相反数:一个数与它的相反数的和为零。

一个数的相反数可以通过改变符号获得,正数变为负数,负数变为正数。

9.有理数的绝对值与相反数的关系:一个有理数的绝对值等于它的相反数的绝对值。

10.混合运算:混合运算指在一个表达式中同时包含加减乘除等不同的运算符号。

在混合运算中,先进行括号内的计算,然后进行乘除法运算,最后进行加减法运算。

11.近似数与精确数:在实际计算中,有时候需要使用近似数来代替精确数。

中考数学专题训练第1讲有理数(知识点梳理)

中考数学专题训练第1讲有理数(知识点梳理)

有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。

正数的前面的“+”可以省略不写。

2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。

3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。

4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。

考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。

2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。

(2)正数和零统称为非负数;负数和零统称为非正数。

4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。

5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。

数轴的三要素即原点、正方向和单位长度。

6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。

考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。

0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。

3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。

4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。

有理数的知识点及经典题型总结讲义(全)

有理数的知识点及经典题型总结讲义(全)

一对一七年级数学教师辅导讲义④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

初中数学基础知识点总结之有理数

初中数学基础知识点总结之有理数

Word 文档1 / 1初中数学基础知识点总结之有理数数学的学习在于不断地练习,勤加锻炼思维规律能力,下面是我给大家带来的初中数学基础学问点〔总结〕之有理数,希望能够关怀到大家! 初中数学基础学问点总结之有理数1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

2、确定值:①在数轴上,一个数所对应的点与原点的距离叫做该数的确定值。

②正数的确定值是他的本身、负数的确定值是他的相反数、0的确定值是0。

两个负数比较大小,确定值大的反而小。

3、有理数的运算:加法:①同号相加,取相同的符号,把确定值相加。

②异号相加,确定值相等时和为0;确定值不等时,取确定值较大的数的符号,并用较大的确定值减去较小的确定值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,确定值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N 个相同因数A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次数。

混合顺序:先算乘法,再算乘除,最终算加减,有括号要先算括号里的。

平方根:①假如一个正数X 的平方等于A ,那么这个正数X 就叫做A 的算术平方根。

②假如一个数X 的平方等于A ,那么这个数X 就叫做A 的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。

立方根:①假如一个数X 的立方等于A ,那么这个数X 就叫做A 的立方根。

第一章 有理数知识点、考点、难点总结归纳

第一章 有理数知识点、考点、难点总结归纳

第一章有理数知识点、考点、难点总结归纳大家好,今天我们来聊聊有理数这个知识点。

有理数是我们日常生活中经常会遇到的一种数,它们可以表示为两个整数的比值,比如1/2、3/4等等。

有理数在数学中非常重要,因为它们可以帮助我们解决很多问题。

有理数有哪些知识点呢?下面我们就来一一梳理。

我们来说说有理数的基本概念。

有理数包括正有理数、负有理数和零。

正有理数就是大于零的有理数,比如1/2、3/4等等;负有理数就是小于零的有理数,比如-1/2、-3/4等等;零是有理数,但它既不大于零也不小于零。

我们来看一下有理数的运算。

有理数的加法、减法、乘法和除法都很简单,我们可以通过以下几个例子来说明。

例一:正有理数相加。

假设我们有两个正有理数a和b,那么它们的和就是a+b。

例如,1/2+1/3=5/6。

例二:正有理数相减。

假设我们有两个正有理数a和b,那么它们的差就是a-b。

例如,3/4-1/2=1/4。

例三:正有理数相乘。

假设我们有两个正有理数a和b,那么它们的积就是a*b。

例如,1/2*3/4=3/8。

例四:正有理数相除。

假设我们有两个正有理数a和b(b≠0),那么它们的商就是a/b。

例如,3/4÷1/2=3/2=1.5。

有理数的运算还有很多其他的形式,比如负有理数的加法、减法、乘法和除法等。

但是这些都比较复杂,我们以后再学吧。

除了基本的运算之外,有理数还有一些重要的性质和定理。

比如,有理数的相反数是它的负倒数;有理数的绝对值是它的大小;有理数的平方根有两个,一个是正的,一个是负的;有理数的小数部分可以无限精确地表示为分数形式等等。

这些性质和定理在解决一些实际问题时非常有用。

我们来说说有理数的解题方法。

其实,有理数的解题方法和其他类型的题目差不多。

我们需要先理解题目的意思,然后根据题目的要求选择合适的方法进行计算。

有时候,我们还需要运用一些特殊的技巧来简化计算过程。

只要我们掌握了有理数的基本知识和解题方法,就可以轻松地解决很多数学问题了!今天我们就来聊到这里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学核心考点:有理数_考点解析
为了能更好更全面的做好复习和迎考准备,确保将所涉及的2016中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了2016中考数学核心考点的内容。

一、重点
正、负数的概念;
正确理解数轴的概念和用数轴上的点表示有理数;
有理数的加法法则;
除法法则和除法运算。

二、难点
负数的概念、正确区分两种不同意义的量;
数轴的概念和用数轴上的点表示有理数;
异号两数相加的法则;
根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

三、知识点、概念总结
1.正数:比0大的数叫正数。

2.负数:比0小的数叫负数。

3.有理数:
(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类:
绝对值的问题经常分类讨论;
7.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数8.互为倒数:乘积为1的两个数互为倒数;
注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

9. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。

10.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b)+c=a+(b+c)。

提供的2016中考数学核心考点,是我们精心为大家准备的,希望大家能够合理的使用!。

相关文档
最新文档