高中数学恒成立与存在性问题的探究
高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题

1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.
高中数学x恒成立、存在性问题解决办法

恒成立、存在性问题解决办法总结1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
适合于高一学生的恒成立和存在性问题全解析

.
。
解 题 技 巧 与 方 法
始 瓣
. . _ _ 一・
●
遘
一攀羹 J 凰 壁 薄褒J 题垒藤橇
◎李 伟 ( 湖 北省 十堰 市竹 溪县 一 中 4 4 2 3 0 0 )
恒 成 立 和 存 在 性 问 题 是 高 中 数 学 的 一 类 很 重 要 的 题 型, 如何清楚地 掌握 它 , 对 很 多 高 一 学 生 来 讲 是 比 较 困 难
一
2 . 如 果 两个 函数 的定 义 域 不 同 设函数, ( ) , g ( ) 对 任 意 ∈[ “ , b ] ,
_ 厂 ( ) ≥g ( ) 恒成立 , 则_ 厂 ( ) …. ≥g ( ) 即 可.
[ c , d ] 都 有
4≤ ~3≤1, 需 分 一4≤ 一3<0, 一3=0, 0≤ 一3<1三
需 F( ) … ≥0即可 . 例3 l , < ) = 一3 + 4 , g ( )= 2 x+m, 在 ∈[ 0, 3 ] j = f ( ) ≥g ( ) 恒成立 , 求 m 的范 围.
)= 一4 x+1 , 在 R 上 的值 不 恒 大 于
当 a< 0时 , 显然不恒成立 , 舍 去. 当 a >0时 , 只 需 △< 0即 可 , . ‘ . ( 2 a一 4 ) 一 4 a< 0,
‘
) ≥g ( )
.
.
1<a<4 . 即 口∈( 1, 4) .
成立 , 则_ 厂 ( )一 g ( ) ≥0恒 成 立 , 令F ( )- - f ( )一g ( ) , 只
变 式 一 函数 厂 ( x )= + ( 。一4 ) + 4— 3 n在 R上 的 值恒大于 0 , 求 a的 取值 范 围.
浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题高中数学的学习中,恒成立与存在性是两个基本概念,也是学习和教学中一个重要的问题。
在高中数学课堂上,恒成立与存在性是非常重要的知识点,其研究内容也是极其庞大的,学生们需要正确理解这两个重要的概念,在实际应用中有效地利用。
本文将从概念界定、定义、历史背景等方面,对高中数学中“恒成立”和“存在性”问题进行浅谈。
首先,了解恒成立和存在性的定义和概念界定,以及它们之间的关系。
高中数学中,所谓的“恒成立”是指在某些条件下,某个数学定理或结论的正确性可以永远保持不变,不会因为任何环境的改变而改变,只要条件满足,定理的正确性就不会改变。
同时,“存在性”指的是某种数学定理或公式的真实存在,无论它到底是否正确,它都可以被实际检验,也就是说它是真实存在的。
其次,要正确理解恒成立与存在性的历史背景。
这两个概念在数学史上有着悠久的历史,早在古希腊和罗马时期,“恒成立”就成为了数学的基本理念,是一种对数学理论的基本信念。
而到了中世纪,数学家们发现存在性也是一种非常重要的概念,为了避免科学谬误,数学家们逐渐发现存在性也很重要。
此外,可以在高中数学学习和教学中更好地引申和应用这两个概念。
在高中数学教学中,要让学生更深刻地理解恒成立与存在性的区别,并且熟练掌握关于他们的基本概念,以便在实际的学习和应用中准确地使用这两个概念。
此外,教师还应当采取适当的方法引导学生在学习中不断检验和深入思考,以便他们能够更好地应用这两个概念,而不是单纯的熟记而已。
最后,再次强调,“恒成立”与“存在性”是高中数学学习和教学中一个重要的问题,非常值得我们重视。
正确理解这两个概念,正确掌握如何在数学研究中应用,不仅可以提高学生高中数学学习的素质,也为他们研究更深入的数学问题打下基础。
思维提升:本真数学教学的课堂价值取向——函数的恒成立与存在性问题研究教学实录与反思

3 教 学 实录
3 . 1 自然 串发 , 本 真梳 理 师: 在 研 究 函数 问题时 , 我 们经 常会 遇到 恒成 立 与存在 性 问题 , 谁 能 告 诉 我 解 决 这 类 问题 的方
法?
至最 值 问题或 值域 问题 , 以此 来 处 理 恒成 立 与存
在性 问题 .
2 设 计 理 念
审视 现 实 的数 学 课 堂 , 基 于功 利 性 的需 要 和 认识 的偏 差 , 课 堂 中去 数学 化现 象 十分普 遍 , 快 速 度、 大容 量 、 高难 度 的训 练让 学 生 不 能慢 中求 悟 、
一
生: 好像 可 以转化 为极 值 问题 来解决 . 生: 好像 可 以通过 分离 参数 来解 决. 师: 很好 . 用 上述 两种 方法 能不 能解 决所 有 的 这 一类 问题 ? 今 天 这一 节 课 , 我们 一 起 来 研究 这 类 问题 的解 法 , 我 们 从 一 次 函数 和 二 次 函数 开
研究 课.
过在 课 堂 上 设 计 题 根 问 题 , 然 后 就 此 问 题 进 行
“ 联” “ 串” “ 变” , 通 过层 层 问题 的设置 , 点燃 学 生 的 思维 火花 , 循 序渐进 地 发展 学生 的数 学素 养 , 最终 达 到对 问题本 质 的理解 和掌 握 . 函数 的 恒成 立 与 存 在性 问题 , 是 学生 在 复 习
授课 对 象
学 生 来 自四星 级 高 中普通 班 , 基
函数 和导 数 后的一 个 专 题 , 是 函数 性 质 的综 合 应 用, 涉及 到一 次 函数 、 二 次 函数 等 函数 的图 象 、 性
质, 渗透 着换 元 、 化归、 数形结 合 、 函数与 方程 等思
高中数学素能培优(二) 恒成立与能成立问题

例2(2024·山东潍坊模拟)已知函数f(x)=log3 9 ·log3(3x),函数g(x)=4x-2x+1+5.
(1)求函数f(x)的最小值;
(2)若存在实数m∈[-1,2],使不等式f(x)-g(m)≥0成立,求实数x的取值范围.
1
2 3
2
令 =t,则 t∈(0, ],- 2 − +1=-3t2-2t+1,
3
2
2
5
1
5
2
2
令 g(t)=-3t -2t+1,t∈(0, ],则 g(t)的最小值为 g =- ,所以 2-4m ≤- ,
3
3
3
3
33Biblioteka 3222
整理可得(3m +1)(4m -3)≥0,解得 m ≥ 4,即 m≥ 2 或 m≤- 2 .
2
因为
2
y= -x
7
在(1,4)内单调递减,所以值域为(- ,1),所以
2
2
-x
在(1,4)内能成立,
a 的取值范围是(-∞,1).
命题点3
更换主元法
解决含参数不等式恒成立(能成立)的某些问题时,若能适时的把主元变量
和参数变量进行“换位”思考,往往会使问题降次、简化,方便问题的求解.
例5已知当a∈[2,3]时,不等式ax2-x+1-a≤0恒成立,求x的取值范围.
1
例 1(2024·江西南昌模拟)已知函数 f(x)=x -ax+a ,若在区间[ ,a]上,
高考数学恒成立问题和存在性问题的类型及方法处理

高考数学恒成立问题和存在性问题的类型及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点 问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法1. 构造一次函数利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)2. 构造二次函数利用二次函数的图像与性质及二次方程根的分布来解决。
放缩思想在恒成立和存在性问题中的运用

放缩思想在恒成立和存在性问题中的运用作者:邓国平来源:《知识窗·教师版》2016年第02期“恒成立”与“存在性”是数学高考的重点与热点之一,通常由不等式、函数、方程、数列等相互结合起来,是培养学生数学能力的良好素材,其解题思想就是放缩思想。
本文结合例题,逐一剖析放缩思想在解题中的应用。
一、恒成立问题和存在性问题的基本类型第一,恒成立问题的转化。
①恒成立;恒成立。
②能成立;能成立。
第二,设函数、,对任意的∈,存在∈,使得≥,则≥。
第三,设函数、,对任意的∈,存在∈,使得≤,则≤。
第四,设函数、,存在∈,存在∈,使得≥,则≥。
第五,设函数、,存在∈,存在∈,使得≤,则≤。
第六,设函数、,对任意的∈,存在∈,使得=。
设在区间上的值域为,在区间上的值域为,则⊂。
二、先分离参数,再放缩,后构造函数题型例1.若≤1,不等式恒成立,求实数的范围。
分析:求的范围,关键是利用参数分离的方法把参数分离出来。
解:令∈∈∞,原不等式可变为。
即只要,∵()2≤,∴。
评析:该题先采用分离变量,再运用恒成立的方法处理,从而得到变量的取值范围。
在解答这类问题时,学生可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等知识求出函数的最值。
三、注意恒成立问题与存在性问题的区别例2.已知函数∈,。
①若∀∈,均有≤,求的取值范围;②∀1∈,∃2∈,使得≤成立,求的取值范围。
解:①构造函数,则≥0≥,≥∈∞。
②原问题可转化为≤,而,。
恒成立问题与存在性问题是高中数学的常见问题,经常与参数的范围紧密联系在一起。
在教学过程中,教师可以运用函数的性质和图像,结合换元思想、化归思想、数形结合思想、函数与方程等展开教学。
总而言之,在数学教学过程中,要想提高恒成立问题与存在性的教学效果,教师必须注意以下两方面:第一,激发学生数学学习的兴趣。
众所周知,学习兴趣是学习动力的源泉,是构成学习动机最真实、最活跃的心理成分。