1.3异名三角函数的诱导公式
1.3异名三角函数的诱导公式

思考4 思考4:若α为一个任意给定的角,那么 为一个任意给定的角, π −α 的终边与角α的终边有什么对称关 的终边与角α 2 π 的终边 y 2 −α 系?
α的终边 O
x
思考5 关于直线y=x y=x对称 思考5:点P1(x,y)关于直线y=x对称 的点P 的坐标如何? 的点P2的坐标如何?
思考6 设角α 思考6:设角α的终边与单位圆的交点 π ),则 为P1(x,y),则 2 −α 的终边与单 位圆的交点为P ),根据三角函 位圆的交点为P2(y,x),根据三角函 数的定义,你能获得哪些结论? 数的定义,你能获得哪些结论? π 的终边 y 2 −α 公式五: 公式五:
2
sin(
π
2
2
+α) = cosα
cos( +α) = −sin α 2
π
思考4:你能概括一下公式五、六的共同 思考4 你能概括一下公式五、 特点和规律吗? 特点和规律吗? 公式五: 公式五:
sin(
π
2
−α) = cosα −α) = sin α
cos(
π
2
sin(
π
2
公式六: 公式六:
+α) = cosα
π 知识探究( 知识探究(一):2 −α 的诱导公式
思考1 sin(90° 60° 思考1:sin(90°-60°)与sin60° sin60° 的值相等吗?相反吗? 的值相等吗?相反吗? 思考2 sin(90° 60° cos60° 思考2:sin(90°-60°)与cos60°, cos(90° 60° sin60° cos(90°-60°)与sin60°的值分别 有什么关系?据此,你有什么猜想? 有什么关系?据此,你有什么猜想?
1.3三角函数的诱导公式

与角 的三角函数值之间的关系呢?
sin y
P(x,y)
cos x
M'
sin( ) y sin cos( ) x cos
sin( ) tan( ) tan cos( )
O
M
x
P' (x, y)
sin y
M'
O
M
x
cos( ) x cos sin( ) tan( ) tan cos( )
cos x sin( ) y sin
sin( ) sin cos( ) cos tan( ) tan
cos( tan(
2
(公式五)
2
2
我们来研究角 与 2 的三角函数值之间的关系
P' ( y, x)
P(x,y)
M’
y
因为r=1,所以我们得到:
sin y ______,
x sin( ) _____, 2
x cos ______,
-y , cos( ) ____ 2
O
M
x
sin(
2
) cos
cos( tan(
2
sin( ) cos 2 tan( ) cot 2 -sin cos( ) 2
(公式六)
由同角三角函数关系得
) sin ) cot
函数名不变,符号看象限。
注:符号是将
看成锐角时原函数的符号。
1.3三角函数的诱导公式(1)

P1 (x,y)
O
(-x,-y)
x
sin ( a ) = - sin a cos ( a ) = - cosa tan ( a ) = tan a
角∏+a 的终边
角( a )的终边与角a的终边
关于原点对称
思考: ( - a ) 与 a 的终边以及 ( - a ) 与 a 的终边 有什么位置关系?
(公式二)
(公式三)
(公式四)
思考:公式一~四都叫做诱导公式, 他们分别反映了2kπ +α (k∈Z), π +α ,-α ,π-α的三角函数与α 的三角函数之间的关系,你能概括一 下这四组公式的共同特点和规律吗?
三角函数的诱导公式
sin (a 2k ) = sin a Z) (k cos(a 2k ) = cosa (k Z) tan (a 2k ) = tan a (k Z)
反馈演练
1 1、已知 cos(a ) = - , 求 tan(a - 9 ). 2 3 3 2、已知 sin a = , 求 sin - a . 4 2 4
思考: - a 与 a 的终边有什么位置关系?
2
sin a = y,cos a = x
(6) 324 32 tan
2. 利用公式求解下列三角函数值 7 79 () -420 ) (2) - ) (3) 1 cos( sin( tan( ) 6 6 (4) sin(-1300 )
例题讲解
cos(180 a )sin(a 360 ) 例2、化简 . sin(- a - 180 ) cos(- 180 - a )
(公式二)
(公式三)
完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数诱导公式及推导

三角函数诱导公式:所谓三角函数诱导公式,就是将角n·π/2±α的三角函数转化为角α的;常用公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin2kπ+α=sinα k∈Zcos2kπ+α=cosα k∈Ztan2kπ+α=tanα k∈Zcot2kπ+α=cotαk∈Z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α=-cosαtanπ+α= tanαcotπ+α=cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α=-sinαcos-α= cosαtan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α=-sinαcos2π-α= cosαtan2π-α=-tanαcot2π-α=-cotα公式六:π/2±α与α的三角函数值之间的关系:sinπ/2+α=cosαsinπ/2-α=cosαcosπ/2+α=-sinαcosπ/2-α=sinαtanπ/2+α=-cotαtanπ/2-α=cotαcotπ/2+α=-tanαcotπ/2-α=tanα推算公式:3π/2 ±α与α的三角函数值之间的关系:sin3π/2+α=-cosαsin3π/2-α=-cosαcos3π/2+α=sinαcos3π/2-α=-sinαtan3π/2+α=-cotαtan3π/2-α=cotαcot3π/2+α=-tanαcot3π/2-α=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”;“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切;反之亦然成立“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·π/2±α是第几象限角,从而得到等式右边是正号还是负号;以cosπ/2+α=-sinα为例,等式左边cosπ/2+α中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<π/2+α<π,y=cosx在区间π/2,π上小于零,所以右边符号为负,所以右边为-sinα;符号判断口诀:全,S,T,C,正;这五个字口诀的意思就是说:内任何一个角的四种都是“+”;内只有是“+”,其余全部是“-”;内只有和是“+”,其余全部是“-”;内只有是“+”,其余全部是“-”;也可以这样理解:一、二、三、四指的角所在象限;全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称;口诀中未提及的都是负值;“ASTC”反Z;意即为“all全部”、“”、“”、“”按照将字母Z反过来写所占的象限对应的三角函数为正值;另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正;推导过程:万能公式推导sin2α=2sinαcosα=2sinαcosα/cos2α+sin2α,因为cos2α+sin2α=1再把分式上下同除cos^2α,可得sin2α=2tanα/1+tan2α然后用α/2代替α即可;同理可推导余弦的万能公式;正切的可通过比余弦得到;三倍角公式推导tan3α=sin3α/cos3α=sin2αcosα+cos2αsinα/cos2αcosα-sin2αsinα=2sinαcos2α+cos2αsinα-sin3α/cos3α-cosαsin2α-2sin2αcosα上下同除以cos3α,得:tan3α=3tanα-tan3α/1-3tan2αsin3α=sin2α+α=sin2αcosα+cos2αsinα=2sinαcos2α+1-2sin2αsinα=2sinα-2sin3α+sinα-2sin3α=3sinα-4sin3αcos3α=cos2α+α=cos2αcosα-sin2αsinα=2cos2α-1cosα-2cosαsin2α=2cos3α-cosα+2cosα-2cos3α=4cos3α-3cosα即sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα和差化积公式推导首先,我们知道sina+b=sinacosb+cosasinb,sina-b=sinacosb-cosasinb我们把两式相加就得到sina+b+sina-b=2sinacosb同理,若把两式相减,就得到cosasinb=sina+b-sina-b/2同样的,我们还知道cosa+b=cosacosb-sinasinb,cosa-b=cosacosb+sinasinb所以,把两式相加,我们就可以得到cosa+b+cosa-b=2cosacosb同理,两式相减我们就得到sinasinb=-cosa+b-cosa-b/2这样,我们就得到了积化和差的公式:cosasinb=sina+b-sina-b/2sinasinb=-cosa+b-cosa-b/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=x+y/2,b=x-y/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sinx+y/2cosx-y/2sinx-siny=2cosx+y/2sinx-y/2cosx+cosy=2cosx+y/2cosx-y/2cosx-cosy=-2sinx+y/2sinx-y/2三角函数同角三角函数的基本关系式倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin2α+cos2α=11+tan2α=sec2α1+cot2α=c sc2α同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型;倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积;主要是两条虚线两端的的乘积,下面4个也存在这种关系;由此,可得关系式;平方关系在带有阴影线的中,上面两个顶点上的三角的平方和等于下面顶点上的三角的平方;两角和差公式sinα+β=sinαcosβ+cosαsinβsinα-β=sinαcosβ-cosαsinβcosα+β=cosαcosβ-sinαsinβcosα-β=cosαcosβ+sinαsinβtanα+β=tanα+tanβ /1-tanαtanβtanα-β=tanα-tanβ/1+tanαtanβ二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=2tanα/1-tan2αtan1/2α=sin α/1+cos α=1-cos α/sin α半角的正弦、余弦和正切公式sin2α/2=1-cosα/2cos2α/2=1+cosα/2tan2α/2=1-cosα/1+cosαtanα/2=1—cosα/sinα=sinα/1+cosα万能公式sinα=2tanα/2/1+tan2α/2cosα=1-tan2α/2/1+tan2α/2tanα=2tanα/2/1-tan2α/2三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3αcos3α=4cos3α-3cosαtan3α=3tanα-tan3α/1-3tan2α三角函数的和差化积公式sinα+sinβ=2sinα+β/2cosα-β/2sinα-sinβ=2cosα+β/2sinα-β/2 cosα+cosβ=2cosα+β/2cosα-β/2 cosα-cosβ=-2sinα+β/2sinα-β/2三角函数的积化和差公式sinα·cosβ=0.5sinα+β+sinα-βcosα·sinβ=0.5sinα+β-sinα-βcosα·cosβ=0.5cosα+β+cosα-βsinα·sinβ=-0.5cosα+β-cosα-β。
1.3三角函数的诱导公式

三角函数的诱导公式(一)诱导公式一终边相同的角的同一三角函数的值相等,这组公式可这样表达:sin(2kπ+α)=sinα;cosα(2kπ+α)=cosα;tg(2kπ+α)=tgα;ctg(2kπ+α)=ctgα.利用诱导公式一可以把求任意角的三角函数值的问题,转化为求0°~360°(0~2π)间角的三角函数值的问题.学习诱导公式的基本思想方法是化归转化,如果我们能把求90°~360°间的角的三角函数值转化为求0°~90°间的角的三角函数值,那么任意角的三角函数值就都能通过查表来求.(二)诱导公式二、三以原点为圆心,等于单位长的线段为半径作一个圆,这样的圆称为单位圆.下面我们利用单位圆和任意角三角函数的定义来推导诱导公式二、三.设点P(x、y),它关于x轴、y轴、原点对称的点坐标分别是P1(x,-y),P2(-x,-y),P3(-x,-y).任意角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α终边的反向延长线,角180°+α的终边与单位圆的交点P′,是与点P关于点O对称的,所以P′坐标是(-x,-y),又因单位圆半径r=1,由正弦函数和余弦函数的定义可得到因此我们可以得到诱导公式二sin(180°+α)=-sinα,cos(180°+α)=-cosα,tg(180°+α)=tgα,ctg(180°+α)=ctgα.例1求下列各三角函数值(1)tan(4π/3)(2)sin225°答案:(1) 3 (2)2/2我们再来研究角α与-α的三角函数值之间的关系.任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点p′,从图上可观察得到P与P′关于x轴成轴对称.我们得到sinα(-α)=-y,cos(-α)=x,从而得到诱导公式三sin(-α)=-sinα,cos(-α)=cosα,tg(-a)=-tgα,ctg(-α)=-ctgα.例2求下列各三角函数值(1)sin(-405°) (2)ctg2π/3答案:例2、-2/2;-3/3。
高一数学1.3三角函数的诱导公式

y
,
P(x,y)
Ox
sin sin
cos cos
tan tan
sin 2k sin
公式一: cos 2k cos tan 2k tan k Z
二若与的终边关于原点对称,则两角的函数关系怎样?
其对应的数学公式怎样?
y
α
P(x,y) o
x Q(-x,-y)
问题提出
t
p
1 2
5730
1.任意角α的正弦、余弦、正切是怎样
定义的?
sin y
y
α的终边
cos x P(x,y)
tan y (x 0)
Ox
x
2.如何将任意角的三角函数值,转化为
00~900范围内的三角函数值,是我们需
要研究和解决的问题.
同名三角函数的诱导公式
若与的终边相同, 则两角的函数关系怎样?
4.利用诱导公式,可以求任意角的三 角函数,其基本思路是:
任意负角的 三角函数
任意正角的 三角函数
锐角的三角 函数
0~2π的角 的三角函数
这是一种化归与转化的数学思想.
(3)sin(- 16 )
3
(2)sin 11
3
(4)cos(-2040 )
例2 已知cos(π+x)= 1 ,求下列
各式的值:
3
(1)cos(2π-x); (2)cos(π-x).
例3 已知 cos( ) 2 ,求 sin ( 2 )
的值
6
3
3
例4 已知 sin (30 ) 1 ,求
1
P(-x,y)
o
x
-α
sin sin
第一章 1.3(二) 三角函数的诱导公式(二)

§1.3 三角函数的诱导公式(二)学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.知识点一 诱导公式五 诱导公式五知识点二 诱导公式六 诱导公式六知识点三 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α. 2.诱导公式记忆规律:公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”. 公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.1.诱导公式五、六中的角α只能是锐角.( × ) 提示 诱导公式五、六中的角α是任意角.2.诱导公式五、六与诱导公式一~四的主要区别在于函数名称要改变.( √ ) 提示 由诱导公式一~六可知其正确. 3.sin ⎝⎛⎭⎫k π2-α=±cos α.( × )提示 当k =2时,sin ⎝⎛⎭⎫k π2-α=sin(π-α)=sin α.4.口诀“符号看象限”指的是把角α看成锐角时变换后的三角函数值的符号.( × ) 提示 应看原三角函数值的符号.题型一 利用诱导公式求值例1 已知cos ⎝⎛⎭⎫α+π6=35,求sin ⎝⎛⎭⎫α+2π3的值. 考点 异名诱导公式 题点 诱导公式六 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35. 反思感悟 对于这类问题,关键是要能发现它们的互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4-α与π4+α等互余,π3+θ与2π3-θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.跟踪训练1 已知cos ⎝⎛⎭⎫α+π4=23,则sin ⎝⎛⎭⎫π4-α的值等于( ) A.23 B .-23 C.53 D .±53 考点 异名诱导公式 题点 诱导公式五 答案 A解析 因为⎝⎛⎭⎫α+π4+⎝⎛⎭⎫π4-α=π2,所以sin ⎝⎛⎭⎫π4-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4 =cos ⎝⎛⎭⎫α+π4=23. 题型二 利用诱导公式证明三角恒等式例2 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos αsin α =-sin αcos α=-tan α=右边.∴原等式成立.反思感悟 利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法: (1)从一边开始,使得它等于另一边,一般由繁到简. (2)左右归一法:即证明左右两边都等于同一个式子.(3)整合法:即针对题设与结论间的差异,有针对性地进行变形,以消除其差异,简言之,即化异为同.跟踪训练2 证明:sin (2π-α)cos ⎝⎛⎭⎫π3+2αcos (π-α)tan (α-3π)sin ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫7π6-2α=-cos α. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 因为左边=sin (-α)cos ⎝⎛⎭⎫π3+2α(-cos α)tan αcos αsin ⎣⎡⎦⎤3π2-⎝⎛⎭⎫π3+2α=sin αcos αcos ⎝⎛⎭⎫π3+2αsin αcos αcos α⎣⎡⎦⎤-cos ⎝⎛⎭⎫π3+2α=-cos α=右边,所以等式成立.诱导公式的综合应用典例 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简与求值 解 (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.[素养评析] (1)解决此类问题时,可先用诱导公式化简变形,将三角函数的角统一后再用同角三角函数关系式,这样可避免公式交错使用而导致的混乱.(2)掌握运算法则,探究运算思路,求得运算结果,通过运算促进数学思维的发展,提升数学运算的数学核心素养.1.已知sin α=513,则cos ⎝⎛⎭⎫π2+α等于( ) A.513 B.1213 C .-513 D .-1213 考点 异名诱导公式 题点 诱导公式六 答案 C解析 cos ⎝⎛⎭⎫π2+α=-sin α=-513. 2.已知sin ⎝⎛⎭⎫α+π3=13,则cos ⎝⎛⎭⎫π6-α等于( ) A .-13 B.13 C.233 D .-233考点 异名诱导公式 题点 诱导公式五 答案 B解析 因为sin ⎝⎛⎭⎫α+π3=13, 所以cos ⎝⎛⎭⎫π6-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3 =sin ⎝⎛⎭⎫α+π3=13. 3.(2018·泰安高一检测)若sin(3π+α)=-12,则cos ⎝⎛⎭⎫7π2-α等于( ) A .-12 B.12 C.32 D .-32考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A4.(2018·江西赣州联考)设tan α=3,则sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α等于( )A .3B .2C .1D .-1 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 答案 B 解析sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α=-sin α-cos αcos α-sin α=-tan α-11-tan α=-3-11-3=2.5.求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、证明 证明 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.1.诱导公式的分类及其记忆方式 (1)诱导公式分为两大类:①α+k ·2π,-α,α+(2k +1)π(k ∈Z )的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,为了便于记忆,可简单地说成“函数名不变,符号看象限”.②α+π2,-α+π2的三角函数值,等于α的异名三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”.(2)以上两类公式可以归纳为:k ·π2+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后在前面加上一个把α看成锐角时原函数值的符号.2.利用诱导公式求任意角的正弦、余弦函数值,常采用“负角化正角,大角化小角,最后转化成⎝⎛⎭⎫0,π2内的三角函数值”这种方式求解. 用诱导公式把任意角的三角函数转化为0到π2之间的角的三角函数的基本步骤:一、选择题1.已知cos α=14,则sin ⎝⎛⎭⎫α+π2等于( ) A.14 B .-14 C.154 D .-154 考点 异名诱导公式 题点 诱导公式六 答案 A解析 sin ⎝⎛⎭⎫α+π2=cos α=14. 2.已知sin θ=15,则cos(450°+θ)的值是( )A.15B .-15C .-265D.265.考点 异名诱导公式 题点 诱导公式六 答案 B解析 cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( ) A .1 B .sin 2α C .-cos 2α D .-1 考点 异名诱导公式的综合 题点 异名诱导公式的综合应用 答案 C解析 因为sin ⎝⎛⎭⎫α+π2=cos α, cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α, tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α, 所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.4.已知sin(π+α)=12,则cos ⎝⎛⎭⎫α-32π的值为( ) A.12 B .-12C.32D .-22考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A解析 由sin(π+α)=12,得sin α=-12,所以cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α=12. 故选A.5.已知α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β=-5,tan(π+α)+6sin(π+β)=1,则sin α等于( ) A.355B.377C.31010D.13考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 C解析 由题意,得⎩⎪⎨⎪⎧-2tan α+3sin β=-5,tan α-6sin β=1,解得tan α=3,又α为锐角,sin 2α+cos 2α=1, 可得sin α=31010.6.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cosA +C2=sin B D .sinB +C 2=cos A2考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 D解析 ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cosA +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 7.计算:sin 21°+sin 22°+sin 23°+…+sin 289°等于( ) A .89 B .90 C.892D .45考点 异名诱导公式 题点 诱导公式五 答案 C解析 ∵sin 21°+sin 289°=sin 21°+cos 21°,sin 22°+sin 288°=sin 22°+cos 22°=1,…,∴sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 23°+cos 22°+cos 21°=44+12=892.二、填空题8.(2018·锦州高一检测)已知cos ⎝⎛⎭⎫5π12+α=13,且-π<α<-π2,则cos ⎝⎛⎭⎫π12-α= . 考点 异名诱导公式 题点 诱导公式五 答案 -223解析 因为-π<α<-π2,所以-7π12<5π12+α<-π12.又cos ⎝⎛⎭⎫5π12+α=13>0. 所以sin ⎝⎛⎭⎫5π12+α=-1-cos 2⎝⎛⎭⎫5π12+α=-223. 由⎝⎛⎭⎫π12-α+⎝⎛⎭⎫5π12+α=π2, 得cos ⎝⎛⎭⎫π12-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫5π12+α =sin ⎝⎛⎭⎫5π12+α=-223. 9.(2018·吉林长春外国语学校)化简sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )= .考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简 答案 0 解析sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )=(-sin x )(-cos x )(-sin x )cos x -sin x (-cos x )sin x cos x=-1+1=0.10.tan(45°+θ)·tan(45°-θ)= . 考点 题点答案 1解析 原式=sin (45°+θ)cos (45°+θ)·sin (45°-θ)cos (45°-θ)=sin (45°+θ)cos (45°+θ)·sin[90°-(45°+θ)]cos[90°-(45°+θ)]=sin (45°+θ)cos (45°+θ)cos (45°+θ)sin (45°+θ)=1.11.给出下列三个结论,其中正确结论的序号是 . ①sin(π+α)=-sin α成立的条件是角α是锐角; ②若cos(n π-α)=13(n ∈Z ),则cos α=13;③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 考点 综合应用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 ③解析 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13,当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误.若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确.三、解答题12.(2018·银川高一检测)已知cos ⎝⎛⎭⎫π2+α=35, 求⎣⎡⎦⎤sin ⎝⎛⎭⎫α+32π·sin ⎝⎛⎭⎫32π-α·tan 2()2π-α·tan ()π-α÷⎣⎡⎦⎤cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 解 因为cos ⎝⎛⎭⎫π2+α=35,所以sin α=-35, 所以cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=(-cos α)(-cos α)tan 2α(-tan α)sin α(-sin α)=tan α=±34. 13.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式求值解 ∵sin ⎝⎛⎭⎫-π2-α=-cos α,cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α,∴sin α·cos α=60169,即2sin α·cos α=120169.①又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713,③sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.14.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)等于() A .2 B .-2 C .0 D.23考点题点答案 B15.(2018·湖北孝感八校联考)已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝⎛⎭⎫3π2-α-sin (-α)的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式化简、求值解 ∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴-sin(π-α)=2cos(-α),∴sin α=-2cos α,且cos α≠0.∴原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π 知识探究( 知识探究(一):2 −α 的诱导公式
思考1 sin(90° 60° 思考1:sin(90°-60°)与sin60° sin60° 的值相等吗?相反吗? 的值相等吗?相反吗? 思考2 sin(90° 60° cos60° 思考2:sin(90°-60°)与cos60°, cos(90° 60° sin60° cos(90°-60°)与sin60°的值分别 有什么关系?据此,你有什么猜想? 有什么关系?据此,你有什么猜想?
2
sin(
公式六: 公式六:
π
2
+α) = cosα +α) = −sin α
cos(
π
2
cos( +α) = −sin α 2
π
例
证证:
3π − α ) = − cos α (1) sin ( 2 3π (2) cos( − α ) = − sin α 2
理论迁移
例1 化简: 化简:
11 π sin(2π -α)cos(π +α)cos( +α)cos( -α) 2 2 9π cos(π -α)sin(3π -α)sin(- π -α)sin( +α) 2
1.3
三角函数的诱导公式 第二课时
问题提出
1.诱导公式一、 1.诱导公式一、二、三、四分别反映了 诱导公式一 2kπ+α(k∈Z)、 )、π 、-α 2kπ+α(k∈Z)、π+α、-α、 的三角函数之间的关系, π-α与α的三角函数之间的关系,这 四组公式的共同特点是什么? 四组公式的共同特点是什么?
思考4 思考4:若α为一个任意给定的角,那么 为一个任意给定的角, π −α 的终边与角α的终边有什么对称关 的终边与角α 2 π 的终边 y 2 −α 系?
α的终边 O
x
思考5 关于直线y=x y=x对称 思考5:点P1(x,y)关于直线y=x对称 的点P 的坐标如何? 的点P2的坐标如何?
思考6 设角α 思考6:设角α的终边与单位圆的交点 π ),则 为P1(x,y),则 2 −α 的终边与单 位圆的交点为P ),根据三角函 位圆的交点为P2(y,x),根据三角函 数的定义,你能获得哪些结论? 数的定义,你能获得哪些结论? π 的终边 y 2 −α 公式五: 公式五:
π
例2 的值
已知
2 cos( −α) = 6 3
π
,求
2π sin (α − ) 3
1 例3 已知 sin (30 −α) = ,求 3 1 cos(60 +α) + 的值. 的值. tan(30 −α) 1+ sin (60 +α)
课堂小结:异名三角函数的诱导公式 课堂小结: π sin ( −α) = cosα 2 公式五: 公式五: π cos( −α) = sin α
sin(
π
2
+α) = cosα
cos( +α) = −sin α 2
π
思考2 思考2:
π
2 π
2
+α 与
π
2
−α 有什么内在联系? 有什么内在联系?
+α = π − (
π
2
−α)
思考3:根据相关诱导公式推导, 思考3 根据相关诱导公式推导, π π 分别等于什么? sin( +α) , cos( +α) 分别等于什么? 公式六: 公式六:
2
sin(
π
2
2
+α) = cosα
cos( +α) = −sin α 2
π
思考4:你能概括一下公式五、六的共同 思考4 你能概括一下公式五、 特点和规律吗? 特点和规律吗? 公式五: 公式五:
sin(
π
2
−α) = cosα −α) = sin α
cos(
π
2
sin(
π
2
公式六: 公式六:
+α) = cosα
(y, P2(y,x) α的终边 O
sin(
π
P1(x , y) x
2
−α) = cosα
cos( −α) = sin +α 的诱导公式
2
思考1 sin(90° 60° 思考1:sin(90°+60°)与cos60°, cos60° cos(90° 60° sin60° cos(90°+60°)与sin60°的值分别 有什么关系?据此,你有什么猜想? 有什么关系?据此,你有什么猜想?
sin( −α) = cosα 2 cos( −α) = sinα 2
π
π
思考3 如果α为锐角, 思考3:如果α为锐角,你有什么办法证 π π 证 sin( −α) = cosα, cos( −α) = sinα ?
2 2
a
c α b π b sin( −α) = = cosα
2 c π a cos( −α) = = sinα 2 c
函数同名,象限定号. 函数同名,象限定号.
2.对形如π 2.对形如π-α、π+α的角的三角函 对形如 数可以转化为α角的三角函数, 数可以转化为α角的三角函数,对形如 π π − α、 + α 的角的三角函数与α角的三角 的角的三角函数与α 2 2 函数,是否也存在着某种关系, 函数,是否也存在着某种关系,需要我 们作进一步的探究. 们作进一步的探究.