2010届高中数学专题训练:数系的扩充与复数的引入

合集下载

高中数学专题训练数系的扩充与复数的引入

高中数学专题训练数系的扩充与复数的引入

数学20分钟专题突破数系的扩充与复数的引入一.选择题1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )A .(15),B .(13), C. D.2.已知复数z =1-i,则122--z z z =( ) A .2i B .-2i C .2 D .-23.设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz 等于( ) A.1 B .-i C .±1 D . ±i4.若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是 A 6π B 4π C 3π D 2π 5.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为 ( )A 、4,5p q =-=B 、4,5p q ==C 、4,5p q ==-D 、4,5p q =-=-二.填空题1. 11i i-+表示为a bi +(,)a b R ∈,则a b += 。

2.若复数z 满足z =i (2-z)(i 是虚数单位),则z =3.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值是 .4.若复数21(1)z a a i =-++(a R ∈)是纯虚数,则z = ___三.解答题实数m 分别取什么数时,复数z =(1+i )m 2+(5-2i )m +6-15i 是:(1)实数;(2)虚数;(3)纯虚数;(4)对应点在第三象限;(5)对应点在直线x +y +5=0上;(6)共轭复数的虚部为12.答案:一.选择题1. 【解析】由于0<a <2,故2115a <+<∴(z =。

【答案】C 2. 【解析】将1=-z i 代入得()()221212222111i i z z i z i i i------====------,选B. 【答案】B 3. 【解析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===± 【答案】:D .4. 【解析】:把2π代入验证即得。

高中数学专题 数系的扩充与复数的引入(完整知识点梳理及经典例题答案详解)

高中数学专题   数系的扩充与复数的引入(完整知识点梳理及经典例题答案详解)

复数一. 考纲目标 复数的相关概念,如实部、虚部、纯虚数、共轭复数等, 以及复数的几何意义; 复数的基本运算,复数的四则运算与共轭复数的性质等二. 知识梳理1.复数的有关概念(1)复数的概念形如a +bi(a ,b ∈R)的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +bi 为实数,若b≠0,则a +bi 为虚数,若a =0且b≠0,则a +bi 为纯虚数.(2)复数相等:a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d ∈R).(3)共轭复数:a +bi 与c +di 共轭⇔a =c ;b =-d(a ,b ,c ,d ∈R).(4)复数的模向量OZ →的模r 叫做复数z =a +bi(a ,b ∈R)的模,记作|z|或|a +bi|,即|z|=|a +bi|=a 2+b 2.2.复数的四则运算设z 1=a +bi ,z 2=c +di(a ,b ,c ,d ∈R),则(1)加法:z 1+z 2=a +bi)+(c +di)=(a +c)+(b +d)i ; (2)减法:z 1-z 2=(a +bi)-(c +di)=(a -c)+(b -d)i ;(3)乘法:z 1·z 2=(a +bi)·(c+di)=(a c -bd)+(a d +bc)i ;(4)除法:z 1z 2=a +bi c +di =a +c -c +c -=ac ++bc -i c 2+d 2(c +di≠0). 三. 考点逐个突破1. 复数的有关概念例1.(1)若()2,,x i i y i x y R -=+∈,则复数x yi +=( )A.2i -+B.2i +C.12i -D.12i +.(2) 复数()231ii +-的共轭复数是A .-3-4iB .-3+4iC .3-4iD .3+4i (3) 已知复数231i i --(i 是虚数单位),它的实部和虚部的和是 A .4 B .6 C .2 D .3(4) 已知i 是虚数单位,复数2(1)(1)z x x i =-++是纯虚数,则实数x 的值为A .—1B .1C .±1D .22. 复数的几何意义 例2.(1)已知复数z 1,z 2在复平面上对应的点分别为A(l,2),B(-1,3),则21z z =:A .1+iB .iC .1-iD .一i (2) 复数12ii +-表示复平面内的点位于A .第一象限B .第二象限C .第三象限D .第四象限 (3) 复数311i i -+(i 为虚数单位)的模是3. 复数的运算例3.(1) 数 i (1i)⋅-=A .1i +B .1i -+C .1i -D .1i -- (2)i 为虚数单位,计算3i1i +=+___________.(3)复数i i-12=______。

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。

第四章 第四节 数系的扩充与复数的引入

第四章  第四节  数系的扩充与复数的引入

[题组自测 题组自测] 题组自测 1.若复数 z 满足 +i)z=1-3i,则复数 z 在复平面上的 . 满足(1+ = - , 对应点在 A.第四象限 . C.第二象限 . B.第三象限 . D.第一象限 . ( )
1-3i (1-3i)( -i) - )(1- ) - )( 解析: =-1- , 解析:由已知得 z= = = =- -2i,则 1+i )(1- ) + (1+i)( -i) + )( z 所对应的点为 -1,- ,故 z 对应的点在第三象限. 所对应的点为(- ,- ,-2), 对应的点在第三象限.
a+2i + (a+2i)i + ) 解析: 解析:由题可知 i =b+i,整理可得 i2 =b+i, +, +, =-1, = , 即 2-ai=b+i,根据复数相等可知 a=- ,b=2, - = +, =- 所以 a+b=1. + =
答案: 答案: B
3.若复数z1=4+29i,z2=6+9i,其中 是虚数单位,则 .若复数 是虚数单位, + , + ,其中i是虚数单位 复数(z 的实部为________. 复数 1-z2)i的实部为 的实部为 . 解析:∵z1=4+29i,z2=6+9i, 解析: + , + , =-20- , ∴(z1-z2)i=(-2+20i)i=- -2i, =- + =- 的实部为- ∴复数(z1-z2)i的实部为-20. 复数 的实部为 答案: 答案:-20
答案:B 答案:
)(2+ ) (1+2i)( +i) + )( 3.复数 . 等于 (1-i)2 -) 5 A. 2 5 C. i 2 5 B.- .- 2 5 D.- i .- 2
(
)
)(2+ ) (1+2i)( +i) 2+4i+i+2i2 + )( + ++ 5i 5 解析: 解析: = = =- . 2 (1-i)2 -) -2i -2i

数系的扩充与复数的引入 (2).

数系的扩充与复数的引入 (2).

课堂教学单元教案科目:高二数学课题:数系的扩充与复数的引入一.数学分析:(1)复数系是在实数系的基础上扩充儿得到的,为了帮助学生了解学习复数的必要性,了解实际需求和数学内部的矛盾在数系扩充中的作用,本章从一个思考问题开始,在问题情境中简单介绍了由实数系扩到复数系的过程,这样不仅可以激发学生的学习复数的欲望,而且也可以比较自然的引入复数的学习之中。

复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数形式展开的,虚数单位、实部、虚部、复数相等的充要条件、以及虚数,纯虚数等概念的理解都应促进对复数实质的理解,即复数实际上一有序的实数对。

类比实数可以用数轴上的点表示,把复数在直角坐标系中表示出来,就得到了复数的集合表示。

用复平面内的点或平面向量表示复数,不仅使抽象的复数得到直观形象的表示,而且也使数和形得到了有机的结合。

(2)复数代数形式的四个运算,及复数代数形式的加法,减法,乘法和除法,重点是加法和乘法。

复数加法和乘法的法则是规定的,是具有其合理性的;这种规定与实数的加法,乘法的法则是一致的,而且实数的加法,乘法的有关运算仍然成立的。

二.学情分析:1.知识掌握上,高二年级的学生已经学过实数的扩充,已经有一定基础,但是扩充的过程可能会有所遗忘,所以首先应该进行适当的引入复习,同时高二的学生已经掌握了一些分析思考的能力,所以教学中通过问题的提出到解决过程有意识地进一步应用、提高学生的这些能力;2.心理上,多数学生感觉到数学过于枯燥繁琐,而且刚刚学的一章内容“推理与证明”又是数学中的难点,所以学生对新的一块内容可能也带有异样情绪,因此在引入、学习时要能让学生们能够感兴趣并且愿意去了解;3.学生学习本节内容可能存在的知识障碍:学生学习本节内容可能会遇到一些障碍,如对复数的理解,复数的引入是否具有实际意义,复数的引入是否具有实际应用,复数相等条件的理解等。

所以教学中对复数概念的讲解中尽量以简单明白、深入浅出的分析为主,在引入后花少许时间对复数的实际意义、复数的实际应用作以解释。

【高中数学】练习题:数系的扩充与复数的引入(含详解)

【高中数学】练习题:数系的扩充与复数的引入(含详解)

【高中数学】练习题:数系的扩充与复数的引入(含详解)一、选择题1.(2011·辽宁高考)a 为正实数,i 为虚数单位,|a +i i|=2,则a =( ) A .2 B. 3 C. 2 D .12.(2012·武汉模拟)若复数2-b i 1+2i(b ∈R)的实部与虚部互为相反数,则b 等于( ) A. 2 B.23 C .-23 D .23.(2012·皖南八校联考)复数z 满足z =2-i 1-i,则z 等于( ) A .1+3i B .3-i C. 32-12i D. 12+32i 4.(2012·广东六校联考)若(1+2a i)i =1-b i ,其中a 、b ∈R ,i 是虚数单位,则|a +b i|=( ) A.12+i B. 5 C.52 D.54 5.定义:若z 2=a +b i(a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,则复数-3+4i 的平方根是( )A .1-2i 或-1+2iB .1+2i 或-1-2iC .-7-24iD .7+24i 二、填空题 6.在复平面内,复数1+i 与-1+3i 分别对应向量OA 和OB ,其中O 为坐标原点,则|AB |=________.7.设复数z 满足|z |=5且(3+4i)z 是纯虚数,则z =________.三、解答题8.计算:(1)(-1+i )(2+i )i 3(2)(1+2i )2+3(1-i )2+i (3)1-i (1+i )2+1+i (1-i )2.9.实数m 分别取什么数值时?复数z =(m 2+5m +6)+(m 2-2m -15)i(1)与复数2-12i 相等;(2)与复数12+16i 互为共轭;(3)对应的点在x 轴上方。

10.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值.题组专练:【题组一】复数的有关概念及复数的几何意义11.(2010·广州模拟)若复数a +3i 1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A .-6 B .13 C.32 D.1312.设a 是实数,且a 1+i+1+i 2是实数,则a 等于 ( ) A.12B .1 C.32 D .2 13.(2009·江苏高考)若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________.【题组二】复数相等14.(2009·全国卷Ⅰ)已知z 1+i =2+i ,则复数z =( ) A .-1+3i B .1-3i C .3+i D .3-i 15.已知m 1+i=1-n i ,其中m 、n 是实数,i 是虚数单位,则m +n i =( ) A .1+2iB .1-2iC .2+iD .2-i 16.如果实数b 与纯虚数z 满足关系式(2-i)z =4-b i(其中i 为虚数单位),那么b 等于( )A .8B .-8C .2D .-2 【题组三】复数的代数运算17.(2010·连云港模拟)复数3+2i 2-3i -3-2i 2+3i=( ) A .0 B .2 C .-2iD .2i 18.(2009·浙江高考)设z =1+i(i 是虚数单位),则2z+z 2=( ) A .-1-iB .-1+iC .1-iD .1+i19.计算:(1)(2+2i)4(1-3i)5(2)-23+i 1+23i +(21-i )2010 (3)(1+i 1-i )6+2+3i 3-2i . 【题组四】复数的综合应用20.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,5)B .(1,3)C .(1,5)D .(1,3)21.已知z 1,z 2为复数,(3+i)z 1为实数,z 2=z 12+i,且|z 2|=52,则z 2= . 22.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z 1+z 2是实数,求实数a 的值.参考答案:一、选择题1.解析:由已知|a +i i |=2得|a +i i|=|(a +i)·(-i)|=|-a i +1|=2, ∴1+a 2=2,∵a >0,∴a = 3.答案:B2.解析:2-b i 1+2i =(2-b i )(1-2i )(1+2i )(1-2i )=2-2b -(4+b )i 5, 由题意得2-2b 5-4+b 5=0,得b =-23. 3.解析:∵z =2-i 1-i=(2-i )(1+i )2=3+i 2,∴z =32-12i. 4.解析:由(1+2a i)i =1-b i 得,a =-12,b =-1, 所以|a +b i|=a 2+b 2=52. 答案:C5.解析:设(x +y i)2=-3+4i ,则⎩⎪⎨⎪⎧x 2-y 2=-3,xy =2, 解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =-1,y =-2. 答案:B二、填空题6.解析:由题意知A (1,1),B (-1,3), 故|AB |=(-1-1)2+(3-1)2=2 2.答案:2 27.解析:设z =a +b i(a 、b ∈R),则有a 2+b 2=5.*于是(3+4i)z =(3a -4b )+(4a +3b )i.由题设得⎩⎪⎨⎪⎧ 3a -4b =04a +3b ≠0得b =34a 代入*得a 2+⎝⎛⎭⎫34a 2=25,a =±4,∴⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =-4,b =-3. ∴z =4-3i 或z =-4+3i.答案:±(4-3i) 三、解答题8.解:(1)(-1+i )(2+i )i 3=-3+i -i=-1-3i. (2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i=i (2-i )5=15+25i. (3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. 9.解:(1)根据复数相等的充要条件得⎩⎪⎨⎪⎧ m 2+5m +6=2,m 2-2m -15=-12.解之得m =-1. (2)根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16.解之得m =1. (3)根据复数z 对应点在x 轴上方可得m 2-2m -15>0,解之得m <-3或m >5.=⎝⎛⎭⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. 又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.11.解析:∵a +3i 1+2i =(a +3i)(1-2i)(1+2i)(1-2i)=6+a +(3-2a )i 5是纯虚数,∴6+a =0,即a =-6. 答案:A12.解析:∵a 1+i+1+i 2=a (1-i)2+1+i 2=1+a 2+1-a 2i ∈R , ∵a ∈R ,∴1-a 2=0,解得a =1. 答案:B13.解析:(z 1-z 2)i =(-2+20i)i =-20-2i ,故(z 1-z 2)i 的实部为-20.答案:-2014.解析:由已知得z =(1+i)(2+i)=1+3i ,∴z =1-3i.答案:B15.解析:m 1+i=m (1-i)2=m 2-m 2i =1-n i , ∴m 2=1,n =m 2=1. 故m =2,n =1,则m +n i =2+i.答案:C16.解析:∵z 为纯虚数,∴可设z =a i(a ≠0),由(2-i)z =4-b i ,得(2-i)a i =4-b i ,∴2a i +a =4-b i ,∴⎩⎪⎨⎪⎧a =4-b =2a ,即b =-8. 答案:B17.解析:3+2i 2-3i -3-2i 2+3i =(3+2i)(2+3i)(2-3i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i 13--13i 13=i +i =2i. 答案:D18.解析:2z +z 2=21+i+(1+i)2=2(1-i)2+1+i 2+2i =1+i.19.解:(1)原式=16(1+i)4(1-3i)4(1-3i)=16(2i)2(-2-23i)2(1-3i)=-644(1+3i)2(1-3i)=-16(1+3i)×4=-41+3i=-1+3i. (2)原式=i(1+23i)1+23i+[(21-i )2]1005=i +(2-2i )1005=i +i 1005=i +i 4×251+1=i +i =2i. (3)原式=[(1+i)22]6+(2+3i)(3+2i)(3)2+(2)2=i 6+6+2i +3i -65=-1+i. 20.解析:|z |=a 2+1,∵0<a <2,∴1<a 2+1< 5.答案:C21.解析:z 1=z 2(2+i),(3+i)z 1=z 2(2+i)(3+i)=z 2(5+5i)∈R ,∵|z 2|=52,∴|z 2(5+5i)|=50,∴z 2(5+5i)=±50,∴z 2=±505+5i =±101+i=±(5-5i). 答案:±(5-5i)22.解:z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =(3a +5+21-a)+[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0.解得a =-5或a =3.∵分母a +5≠0,∴a ≠-5,故a =3.。

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)(2)

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)(2)

一、选择题1.设复数z 满足1z =,则1z i -+的最大值为( ) A .21- B .22- C .21+ D .22+ 2.若复数z 的虚部小于0,|z |5=,且4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i - 3.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101- B .21- C .101+ D .21+4.设复数,在复平面内对应的点关于实轴对称,若,则等于 A .4iB .C .2D . 5.已知复数,满足,那么在复平面上对应的点的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线 6.已知复数z 满足()(13)10z i i i ++=,其中i 为虚数单位,则z =( )A 3B 6C .6D .3 7.若复数1a i a i -+为纯虚数,则实数的值为 A .i B .0 C .1 D .-18.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ).A .椭圆B .两条直线C .圆D .一条直线9.2(1)1i i+=-( ) A .1i + B .1i - C .1i -+ D .1i -- 10.已知3(0)z a i a =>且||2z =,则z =( )A .13iB .13iC .23iD .33i + 11.已知复数(3)(2)z m i i =+-+在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .(,1)-∞B .2,3⎛⎫-∞ ⎪⎝⎭C .2,13⎛⎫ ⎪⎝⎭D .2,(1,)3⎛⎫-∞⋃+∞ ⎪⎝⎭12.已知i 为虚数单位,a R ∈,若2i a i -+为纯虚数,则复数23z a i =的模等于( )A .17B .3C .11D .2二、填空题13.设11()()()()11n n i i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 14.已知35z i -=,则2z +的最大值为_________.15.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________.16.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 17.已知i 为虚数单位,计算1i 1i -=+__________. 18.复数21z i=-,则z z -对应的点位于第__________象限 19.设i 是虚数单位,1i 2ia ++是纯虚数,则实数a 的值是________. 20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+(1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.在复平面内,复数21i z i =+(i 为虚数单位)的共轭复数z 对应点为A ,点A 关于原点O 的对称点为B ,求:(Ⅰ)点A 所在的象限;(Ⅱ)向量OB 对应的复数.23.设复数z a i =+(i 是虚数单位,a R ∈,0a >),且10z =.(Ⅰ)求复数z ;(Ⅱ)在复平面内,若复数1m i z i ++-()m R ∈对应的点在第四象限,求实数m 的取值范围.24.复数2(21)(1),z a a a i a R =--+-∈.(1)若z 为实数,求a 的值;(2)若z 为纯虚数,求a 的值;(3)若93z i =-,求a 的值.25.已知复数(1)m 取什么值时,z 是实数?(2)m 取什么值时,z 是纯虚数?26.已知复数z 满足(2)z i a i -=+()a R ∈.(1)求复数z ;(2)a 为何值时,复数2z 对应点在第一象限.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 如图所示,复数满足1z =时轨迹方程为复平面内的单位圆, 而()11z i z i -+=--表示z 与复数1i -所对应的点在复平面内的距离,结合圆的性质可知,1z i -+的最大值为()2211121+-+=+.本题选择C 选项.2.C解析:C【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为2||45z m =+=1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解. 3.A解析:A【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解.【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径, 即22min 11(21)1101z i ++=++-=-,故选:A【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D【解析】【分析】利用复数的运算法则可得:,再利用几何意义可得.【详解】,复数,在复平面内对应的点关于实轴对称,,则. 故选:D .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 5.D解析:D【分析】把复数z 代入|z ﹣1|=x ,化简可求z 在复平面上对应的点(x ,y )的轨迹方程,推出轨迹.【详解】已知复数z=x+yi (x ,y ∈R ,x≥),满足|z ﹣1|=x ,(x ﹣1)2+y 2=x 2即y 2=2x ﹣1那么z 在复平面上对应的点(x ,y )的轨迹是抛物线.故选D .【点睛】本题考查复数的基本概念,轨迹方程,抛物线的定义,考查计算能力,是基础题.6.D解析:D【解析】分析:由()()1310z i i i ++=,,可得10i 13iz i =-+,利用复数除法法则可得结果. 详解:因为()()1310z i i i ++=, 所以()()()2210i 13i 10i 30i 10i 13i 13i 13i 19i z i i i --+=-=-=-++-- 30+10i 310i =-=,所以3z =,故选D. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7.C解析:C【解析】分析:由题意首先设出纯虚数,然后利用复数相等的充分必要条件整理计算即可求得最终结果. 详解:不妨设()1a i ki k R i-=∈+,则:()21a i ki i ki ki k ki -=+=+=-+, 由复数相等的充分必要条件可得:1a k k =-⎧⎨-=⎩,即11a k =⎧⎨=-⎩, 即实数a 的值为1.本题选择C 选项.点睛:本题主要考查复数的分类,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.8.A解析:A【分析】转化复数方程为复平面点的几何意义,然后利用椭圆的定义,即可判定,得到答案.【详解】 由题意,复数4z i z i ++-=的几何意义表示:复数z 在复平面上点到两定点(0,1)和(0,1)-的距离之和等于4,且距离之和大于两定点间的距离,根据椭圆的定义,可知复数z 对应点的轨迹为以两定点(0,1)和(0,1)-为焦点的椭圆, 故选A .【点睛】本题主要考查了复数的几何意义的应用,其中解答中熟记复数的表示,以及复数在复平面内的几何意义是解答的关键,注重考查了分析问题和解答问题的能力,属于基础题. 9.C解析:C【分析】由题意结合复数的运算法则计算其值即可.【详解】由复数的运算法则有:()()()()()22121(1)21111112i i i i i i i i i i i i i +++====+=-+---+. 故选C .【点睛】本题主要考查复数的除法运算,复数的乘法运算等知识,意在考查学生的转化能力和计算求解能力.10.B解析:B【解析】【分析】利用复数求模公式得到关于a 的方程,解方程后结合题意即可确定z 的值.【详解】根据复数的模的公式,可知234a +=,即21a =,因为0a >,所以1a =,即1z =,故选B .故答案为B .【点睛】本题主要考查复数的模的运算法则,复数的表示方法等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B【分析】根据复数的几何意义建立不等式关系即可.【详解】(3)(2)(32)(1)z m i i m m i =+-+=-+-,若复数在复平面内对应的点在第三象限,则32010m m -<⎧⎨-<⎩,解得23m <, 所以m 的取值范围是2(,)3-∞,故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.12.D解析:D【分析】先根据纯虚数概念得a ,再根据模的定义求结果.【详解】 因为()()221221a a i i a i a --+-=++为纯虚数,所以21020a a ,-=+≠,即12a =,因此21z a ==,所以2z =,选D.【点睛】本题考查纯虚数以及复数的模,考查基本分析求解能力,属基础题.二、填空题13.8【分析】化简得到计算结合复数乘方的周期性得到得到答案【详解】根据的周期性知子集个数为故答案为:【点睛】本题考查了复数的运算集合的子集意在考查学生的计算能力和综合应用能力周期性的利用是解题的关键 解析:8【分析】化简得到()()()n ni f n i =+-,计算结合复数乘方的周期性得到{}{}|()2,0,2x x f n ==-,得到答案.【详解】()()()()()()()()22111()()()()()1111111n n n n n n i i i f n i i i i i i i i i -+-=+=+-+-=+-++-+, ()()00(0)2i f i =+-=,()()11(1)0i f i =+-=,()()22(2)2i f i =+-=-, ()()33(3)0i f i =+-=,()()44(4)2i f i =+-=,根据n i 的周期性知{}{}|()2,0,2x x f n ==-,子集个数为328=.故答案为:8.【点睛】本题考查了复数的运算,集合的子集,意在考查学生的计算能力和综合应用能力,周期性的利用是解题的关键. 14.【分析】利用复数模的几何意义及圆的性质求解【详解】满足的对应点在以为圆心5的半径的圆上表示点到的距离∴的最大值为故答案为:【点睛】本题考查复数模的最值解题关键是掌握复数模的几何意义利用复数差的模表示5【分析】利用复数模的几何意义及圆的性质求解.【详解】 满足35z i -=的z 对应点Z 在以(0,3)C 为圆心,5的半径的圆上,2z +表示点Z 到(2,0)A -的距离,AC =∴AZ 5+.5.【点睛】本题考查复数模的最值,解题关键是掌握复数模的几何意义,利用复数差的模表示复平面上两点间的距离,结合点到圆的位置关系求解更加简便.15.【分析】根据复数的运算可得再利用模的计算公式即可求解【详解】由题意复数满足则则的模为【点睛】本题主要考查了复数的运算以及复数模的计算其中解答中熟记复数的运算法则以及复数模的计算公式是解答的关键着重考 解析:【分析】 根据复数的运算可得11i z i i +==-,再利用模的计算公式,即可求解. 【详解】由题意,复数z 满足(1)1z i i -=+,则()()()()11121112i i i i z i i i i +++====--+, 则z 的模为1z i ==.【点睛】本题主要考查了复数的运算以及复数模的计算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查了运算与求解能力,属于基础题. 16.【解析】【分析】把等式两边同时乘以直接利用复数的除法运算求解再根据共轭复数的概念即可得解【详解】由得∴复数的共轭复数为故答案为【点睛】本题考查了复数代数形式的乘除运算复数的除法采用分子分母同时乘以分 解析:122i - 【解析】【分析】 把等式两边同时乘以11i +,直接利用复数的除法运算求解,再根据共轭复数的概念即可得解.【详解】由()1z i i +=,得(1)111(1)(1)222i i i i i z i i i -+====+++-.∴复数z 的共轭复数为122i - 故答案为122i -. 【点睛】本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.17.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为解析:i -【解析】分析:根据复数除法法则求解. 详解:复数1i (1)(1)2i i 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi18.二【解析】则对应的点位于第二象限解析:二【解析】()()()2121111i z i i i i +===+--+,则1z z i -=+(1位于第二象限. 19.【解析】由题意可得:满足题意时:解得:解析:2-【解析】 由题意可得:()()()()21i 21i 222212i 2i 2555a i a ai i ai a a i i +-++--+-===+++- , 满足题意时:2052105a a +⎧=⎪⎪⎨-⎪≠⎪⎩ ,解得:2a =- . 20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =.【解析】【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解.【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-; (2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(Ⅰ)位于第四象限;(Ⅱ)-1+i.【分析】(I )利用复数的运算法则、几何意义即可得出.(II )利用复数的几何意义即可得出.【详解】解:(Ⅰ)z ()()()2i 1i 2i 1i 1i 1i -===++-1+i ,所以z =1﹣i , 所以点A (1,﹣1)位于第四象限.(Ⅱ)又点A ,B 关于原点O 对称.∴点B 的坐标为B (﹣1,1).因此向量OB 对应的复数为﹣1+i .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 23.(Ⅰ)3i z =+.(Ⅱ)﹣5<m <1【解析】试题分析:(Ⅰ)根据复数的模长公式进行化简即可.(Ⅱ)根据复数的几何意义进行化简求解. 试题(Ⅰ)∵z a i =+,10z =,∴2110z a =+=, 即29a =,解得3a =±,又∵0a >,∴3a =,∴3z i =+.(Ⅱ)∵3z i =+,则3z i =-,∴()()()()151311122m i i m i m m z i i i i i ++++-+=-+=+--+ 又∵复数1m i z i++-(m R ∈)对应的点在第四象限, ∴502{102m m +>-< 得5{1m m >-< ∴﹣5<m <1点睛:本题考查的是复数的运算和复数的概念,首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a+bi)(c+di)=(ac−bd)+(ad+bc)i,(a,b,c ∈R). 其次要熟悉复数相关基本概念,如复数a+bi(a,b ∈R)的实部为a 、虚部为b 、模为22a b +对应点为(a,b)、共轭复数为a−bi24.(1)1a =;(2)21-=a ;(3)2-=a . 【解析】试题分析:(1)复数(,)z a bi a b R =+∈为实数的条件0b =;(2)复数z 为纯虚数的条件0,0a b =≠;(3)两复数相等的条件:实部、虚部分别对应相等.试题解:(1)若z 为实数,则01=-a ,得1=a . (2)若z 为纯虚数,则⎩⎨⎧≠-=--010122a a a ,解得21-=a . (3)若i 39-=z ,则⎩⎨⎧-=-=--319122a a a ,解得2-=a .考点:1.复数为实数、纯虚数的条件;2.两复数相等的条件.25.(1);(2)3【解析】试题分析:本题考查了复数的基本概念,明确实数的条件是复数的虚部是0,且分式的分母有意义第二问明确复数是纯虚数的条件是虚部不为0而实部为0.试题(1)解当时,z 为实数 (2)解:当时,z 为纯虚数考点:复数是实数,纯虚数的条件. 26.(1)3z ai =-(2)30a -<<【详解】(1)由已知得21a i z ai i +-==-,∴3z ai =-. (2)由(1)得2296z a ai =--,∵复数2z 对应点在第一象限,∴290{60a a ->->,解得30a -<<.。

本章测试(第五章数系的扩充与复数的引入

本章测试(第五章数系的扩充与复数的引入

本章总结知识结构专题总结专题一复数的概念1.虚数单位i 的平方等于-1,实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.2.形如a+bi(a 、b ∈R )的数,叫做复数.全体复数所成的集合叫做复数集,一般用字母C 表示.3.复数表示成a+bi 的形式叫做复数的代数形式.4.对于复数a+bi,当且仅当b=0时,它是实数a;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数;a 与b 分别叫做复数a+bi 的实部与虚部. 【例1】 (2005天津高考,理2) 若复数iia 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A.-2B.4C.-6D.6 思路分析:因为iia 213++是纯虚数,所以,只要使其实部为零,虚部不为零即可,因此,要先化简i i a 213++,对其进行分母实数化,即i i a 213++=i aa i i i i a 52356)21)(21()21)(3(-++=-+-+,令其实部56+a =0且虚部523a-≠0,得a=-6. 答案:C【例2】 (2006四川高考,理2) 复数(1-i)3的虚部为( )A.3B.-3C.2D.-2 思路分析:将复数(1-i)3展开,整理得1-3i+3i 2-i 3=-2-2i,其虚部为-2.答案:D【例3】 (2005福建高考,理1) 复数z=i-11的共轭复数是( ) A.21+21i B.2121-i C.1-i D.1+i 思路分析:可先求共轭复数,再化简;也可先化简,再求共轭复数.即i i i i z 21211111)11(-=+=-=-=;或者是,因为z=i -11=21)1)(1(1ii i i +=+-+,21)21(i i z -=+==2121-i.答案:B专题二复数的四则运算1.两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+bi)±(c+di)=(a±c)+(b±d)i.2.设z 1=a+bi,z 2=c+di 是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i;它们的商(a+bi)÷(c+di)=2222dc adbc d c bd ac +-+++i(c+di≠0). 3.在进行复数除法运算时,通常先把(a+bi)÷(c+di)写成dic bia ++的形式,再把分子与分母都乘分母的共轭复数(c-di).【例4】 (2007海南、宁夏高考,文15) i 是虚数单位,i+2i 2+3i 3+…+8i 8=______________.(用a+bi 的形式表示,a,b ∈R ) 思路分析:对任何n ∈N *,都有i 4n +1=i,i 4n +2=-1,i 4n +3=-i,i 4n =1.所以,i+2i 2+3i 3+…+8i 8=i-2-3i+4+5i-6-7i+8=4-4i.答案:4-4i【例5】 (2006广东高考,理10) 对于任意的两个实数对(a,b)和(c,d),规定(a,b)=(c,d)当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad),运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q ∈R ,若(1,2)⊗(p,q)=(5,0)则(1,2)⊕(p,q)=( )A.(4,0)B.(2,0)C.(0,2)D.(0,-4)思路分析:这是一个新定义型的信息迁移题,通过观察,我们不难发现,这个“⊗”运算,其实就是复数的乘法运算,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i,它与(a,b)⊗(c,d)=(ac-bd,bc+ad)完全对应.因此,在解题时,就将其作为复数乘法运算来处理.由(1,2)⊗(p,q)=(p-2q,2p+q)=(5,0),得⎩⎨⎧-==⇒⎩⎨⎧=+=-.2,1,02,52q p q p p p 所以(1,2)⊕(p,q)=(1,2)⊕(1,-2)=(2,0). 答案:B【例6】 (2005山东高考,理)22)1(1)1(1i ii i -+++-=( ) A.i B.-I C.1 D.-1 思路分析:本题要充分利用速算式(1±i)2=±2i,即i ii i i i i i i i i 2112121)1(1)1(122---=-++-=-+++-=-1. 答案:D专题三复数方程解复数方程时,可以综合利用解实数方程的相关技巧和复数的特有性质.【例7】 (2006上海高考,理5) 若复数z 同时满足z-z =2i,z =iz(i 为虚数单位),则z =_______________.思路分析:将z =iz 代入z-z =2i,得z-iz=2i,然后,对z 进行化简,我们观察可知,式z=ii-12中分子为2i,因此,分子分母同乘以1-i,则分母立刻可得-2i.当然也可以进行分母实数化化简.z=)1)(1()1(212i i i i i i ---=-=-1+i. 答案:-1+i【例8】 (2006上海春季高考,18) 已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z=ω5+|ω-2|,求一个以z 为根的实系数一元二次方程. 思路分析:先将ω求出并化简,并将其代入z=ω5+|ω-2|化简,发现这一虚数如果是一个实系数的一元二次方程的根,那必定还有一个共轭复数根.然后利用韦达定理即可求得以z 为根的实系数一元二次方程. 也可设ω=a+bi(a 、b ∈R ),利用复数相等的定义,求出ω=2-i,以下和前面的思路分析内容相同. 解法1:∵ω(1+2i)=4+3i,∴ω=ii 2134++=2-i,∴z=i -25+|-i|=3+i,若实系数一元二次方程有虚根z=3+i,则必有共轭虚根z =3-i,∵z+z =6,z·z =10,∴所求的一个一元二次方程可以是x 2-6x+10=0. 解法2:设ω=a+bi(a 、b ∈R ).则a+bi-4=3i-2ai+2b,得⎩⎨⎧-==-,23,24a b b a ∴⎩⎨⎧-==,1,2b a ∴ω=2-i,以下同解法一.【例9】 (2005高考全国Ⅲ,理13) 已知复数z 0=3+2i,复数z 满足z·z 0=3z+z 0,则z=_________________. 思路分析:可将z·z 0=3z+z 0中的z 用z 0表示出来,并将z 0=3+2i 代入,再进行化简,即得,z=i i i z z 231223300-=+=-. 答案:1-23i 专题四复数的几何意义复数的几何意义,有两个方面:一是用点来表示复数,复数集C 和复平面内所有的点所成的集合是一一对应的,即复数z=a+bi复平面内的点Z(a,b),这是复数的一个几何意义.二是用向量来表示复数,重点在于复数对应点的轨迹问题. 【例10】 (2005辽宁高考,理1文1) 复数z=ii++-11-1.在复平面内所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 思路分析:将复数z=ii++-11-1化简为a+bi(a,b ∈R)的形式,从而可判断其对应点的位置.z=i i ++-11-1=)1)(1()1)(1(i i i i -+-+--1=22i -1=-1+i,可知其在复平面内所对应的点为(-1,1),应为第二象限.答案:B【例11】 (2005浙江高考,理4) 在复平面内,复数ii+1+(1+3i)2对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 思路分析:将复数ii+1+(1+3i)2化简为a+bi(a,b ∈R )的形式,从而可判断其对应点的位置. i i +1+(1+3i)2=)1)(1()1(i i i i -+-+1+23i-3=23-+(23+21)i,显然,其所对应点在第二象限.答案:B本章测试(时间:120分钟 满分:150分)一、选择题(本大题共10个小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项符合要求)1.复数z 是实数的充分而不必要条件是( )A.|z|=zB.z=zC.z 2是实数D.z+z 是实数 答案:A思路分析:注意题目是求充分不必要条件而不是充要条件,即当满足条件时z 为实数,但复数z 为实数时该条件不一定成立. 当z =i 时,z 2=-1,故C 项不成立.当z 为虚数且非纯虚数时,z+z 是实数,故D 项不成立.若z=z ,设z=a +bi ,则z =a-bi,则复数相等得b=0,∴复数z 为实数;反之,若复数z 为实数,则必有z=z ,故B 项是充要条件.当|z|=z,设z=a +bi ,由复数相等得b=0,∴复数z 为实数;反之,若复数z 为实数且a<0时,得不出|z|=z.故正确答案是A 项.2.设复数z 满足关系式z +|z|=2+i,那么z 等于( ) A.43-+i B.43-i C.43--i D.43+i答案:D思路分析:设出复数由复数相等解方程组即可.设z=x+yi(x,y ∈R ),则x+yi +22y x +=2+i,∴⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧==++.1,43,1,222y x y y x x 解得∴z =43+i,∴应选D 项. 3.若z 2+z +1=0,则z 2002+z 2003+z 2005+z 2006的值是( )A.2B.-2C.21-+23i D.21-±23i 答案:B思路分析:由z 2+z +1=0,不难联系到立方差公式,从而将z 得出.将z 2+z +1=0两边乘以(z-1)得z 3-1=0,即z 3=1(z≠1).则z 4=z,z 2002=(z 3)667·z =z,于是原式=z 2002(1+z +z 3+z 4)=z(2+2z)=2(z +z 2)=-2.故选B 项. 4.复数z,a,x 满足x=azza --1,且|z|=1,则|x|等于( ) A.0 B.1 C.|a| D.21 答案:B思路分析:由|z|=1得z z =1,将分母中的1代换,便可与分子约分,否则问题很复杂. 由|z|=1得|z|2=1,即z z =1,∴x=za z z z a az z z z a 1)(-=--=--=-z,∴|x|=|-z|=1,故答案选B 项.5.以复平面内的点(0,-1)为圆心,1为半径的圆的方程是( ) A.|z-1|=1 B.|z+1|=1 C.|z-i|=1 D.|z+i|=1 答案:D思路分析:结合复数减法的几何意义来解.设复数为z=x+yi(x,y ∈R ),则|z+i|=22)1(++y x ,∴|z+i|=1表示以(0,-1)为圆心,1为半径的圆.故答案选D 项.6.若复数z 满足|z +3+4i|≤6,则|z|的最小值和最大值分别为( )A.1和11B.0和11C.5和6D.0和1 答案:B思路分析:由复数减法的几何意义知,满足条件的点的集合为圆面,|z|即圆面上的点对应复数的模,利用数形结合及解决圆上点的最值办法转化为到圆心的距离减加半径即可. ∵方程|z +3+4i|≤6是以(-3,―4)为圆心,6为半径的圆及其内部, ∴原点满足方程,故|z|的最小值为0,而|z|的最大值为6+|3+4i|=6+5=11.故答案选B 项. 7.设f(n)=(i i -+11)n +(ii +-11)n(n ∈N ),则集合{x|x=f(n)}中元素个数是( ) A.1 B.2 C.3 D.无穷多个答案:C思路分析:应先将i i -+11,i i+-11化简,再根据i 的周期性来解. 化简f(n)= i i -+11)n +(ii +-11)n(n ∈N )=i n +(-i)n .由i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i,给n 赋值发现集合{x|x=f(n)}={0,-2,2},故选C 项.8.若方程x 2+x+m=0有两个虚根α、β,且|α-β|=3,则实数m 的值为…( ) A.25 B.25- C.2 D.-2 答案:A思路分析:实系数一元二次方程不能简单地利用韦达定理来解,应由方程的根适合方程及相关知识来解. ∵方程x 2+x+m=0为实系数一元二次方程,且有两个虚根α、β,∴α、β互为共轭复数. 设α=a+bi,则β=a-bi, 由|α-β|=3,得b =±23.当b=23时,α=a+23i,代入方程得(a+23i)2+(a+23i)+m=0, 即(a 2+a+m-49)+(3a+23)i =0,∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=+=-++.25,21.0233,0492m a a m a a 得出故选A 项.9.在复平面内,若复数z 满足|z +1|=|1+iz|,则z 在复平面内对应点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线 答案:A思路分析:设复数z=x+yi(x,y ∈R ),求模,用几何意义来解即可.设z=x+yi(x,y ∈R),|x+1+yi|=22)1(y x ++,|1+iz|=|1+i(x+yi)|=22)1(x y +-,则22)1(y x ++=22)1(x y +-.∴复数z=x+yi 对应点(x,y)的轨迹为到点(-1,0)和(0,1)距离相等的直线.故答案选A 项.10.已知|z 1|=|z 2|=1,|z 1-z 2|=2,则|z 1+z 2|=( )A.2B.2C.3D.5答案:A 思路分析:由向量加减法的几何意义知,|z 1-z 2|是以z 1,z 2对应的向量为邻边的平行四边形的一对角线长,则|z 1+z 2|为另一对角线长. 由向量的平行四边形法则,知∠z 1Oz 2=90°,∴对应的四边形为正方形.∴|z 1+z 2|=2.故答案选A 项.二、填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中横线上)11.设i yi i x -+-=+1231(x,y ∈R ),则x=_________,y=___________. 答案:53 59-思路分析:此题是复数相等的应用,将等式两边整理后列方程组求解即可. 由已知得)1)(1()1()2)(2()2(3)1)(1()1(i i i y i i i i i i x +-+++-+=-+-, 整理得:i y y i x x )253(25622+++=-. ∴⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧+=-+=.59,53,2532,2562y x y x y x 解得∴答案为x=53,y=59-. 12.设ω=21-+23i,A={x|x=ωk +ω-k ,k ∈Z },则集合A 中的元素有__________-个. 答案:2思路分析:此题是ω3=1,ω2=ω的周期性的应用.∵ω3=1,设n ∈Z ,∴k=3n 时x=2;k=3n+1时x=-1;k=3n+2时x=-1,故有2个元素. 13.(2007上海高考,理9文10) 对于非零实数a,b,以下四个命题都成立: ①a+a1≠0;②(a+b)2=a 2+2ab+b 2;③若|a|=|b|,则a=±b;④若a 2=ab,则a=b. 那么,对于非零复数a,b,仍然成立的命题的所有序号是_____________. 答案:②④思路分析:熟练掌握复数代数形式的四则运算是关键.我们也可以利用特例法进行一一验证.①不成立,例如,a=i,则a+a 1=i+i1=0;③不成立,例如,a=i,b=1,则|a|=|b|,而a≠±b. 14.(2007重庆高考,理11) 复数322ii+的虚部为_____________. 答案:54思路分析:化简542)2)(2()2(222223ii i i i i i i i +-=+-+=-=+,所以其虚部为54. 15.(2007海南、宁夏高考,理15) i 是虚数单位,ii43105++-=___________.(用a+bi 的形式表示,a,b ∈R ) 答案:25)43)(105()43)(43()43)(105(43105i i i i i i i i -+-=-+-+-=++-=1+2i. 思路分析:1+2i三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知复数z=3232++-x x x +(x 2+2x-3)i ,求实数x,使:(1)z 是实数;(2)z 是虚数;(3)z 是纯虚数.解:解方程3232++-x x x =0得x=1或x=2;解x 2+2x-3=0得x=-3或x=1.答:x=1时z 是实数;x≠-3且x≠1时z 是虚数;x=2时z 是纯虚数.思路分析:复数z=a+bi 表示实数的条件是b=0,表示虚数的条件是b≠0,表示纯虚数的条件是a=0且b≠0.17.(本小题满分12分)已知复数z 的实部和虚部分别是a 和1,z 是z 的共轭复数,且z ·(1-2i)∈R ,求z. 解:∵z=a +i,z =a-i,z ·(1-2i)=(a-i)(1-2i)=(a-2)-(1+2a)i. 又z ·(1-2i)∈R ,∴1+2a=0,a=21-,∴z=21-+i. 思路分析:依据复数的乘法法则化简后再由复数表示实数的条件求解.18.(本小题满分12分)设方程(1+i)x 2+(1+5i)x-(2-6i)=0有实根,求这个实数根. 解:方程整理为(x 2+x-2)+i(x 2+5x+6)=0.设方程的实根为x 0,则⎪⎩⎪⎨⎧=++=-+)2(,065)1(,02020020x x x x解方程组得⎩⎨⎧--=-=.23,2100或或x x x同时满足①②的值为x 0=-2.∴所求的根为x 0=-2.思路分析:我们将方程的实根x 0代入方程,由复数相等的充要条件可得方程组,求解即可. 19.(本小题满分12分)已知x,y ∈R ,x 2+2x+(2y+x)i 和3x-(y+1)i 是共轭复数,求复数z=x+yi 和z .解:由已知得⎩⎨⎧+=+=+,12,322y x y x x x解方程组得⎩⎨⎧==⎩⎨⎧==.0,1,1,0y x y x 或 ∴z=i 或z=1,z =-i 或z =1.思路分析:两个复数a+bi 与c+di 共轭,等价于a=c 且b=d.由此可以得到关于x 、y 的方程组.20.(本小题满分12分)解方程2102221222++=+-++x x x x x .解:原方程可化为2222223)1(1)1(2)2(++=+-++x x ,设z 1=2x+2i,z 2=1-x+i, z 1+z 2=1+x+3i, ∴原方程可化为|z 1|+|z 2|=|z 1+z 2|,显然,仅当1OZ 与2OZ 共线且同向时上式才成立,从而xx -=1122, ∴x=21时等号成立,即x=21是方程的根. 思路分析:无理方程一般解法是平方去根号转化为有理方程再求解.但平方后次数高,项数多,求解更加困难.由于本题根号里面可配方,类似复数的模,所以,可转化为复数问题来解决.21.(本小题满分12分)实系数一元二次方程ax 2+bx+c=0的两根之比为p ,求证: (1)当11+-p p 为实数时,原方程有实根; (2)当11+-p p 为纯虚数时,原方程有虚根. 证明:设α与β是实系数一元二次方程ax 2+bx+c=0的两根, 且βα=p,则α+β=a b -α·β=a c ,βαβαβαβα+-=+-=+-1111p p , (2222222224)()(4)()(4)()()()11(b ac b aa c ab p p -=---=+-+=+-=+-βααββαβαβα.① (1)当11+-p p 为实数时,(11+-p p )2≥0,则由①可得b 2-4ac≥0,故原方程有实根.(2)当11+-p p 为纯虚数时,(11+-p p )2<0,则由①可得b 2-4ac<0,故原方程有虚根. 思路分析:判定实系数一元二次方程根的实、虚,只要判定其判别式b 2-4ac 的符号就可以了.由题意,应在b 2-4ac 与11+-p p 之间建立起联系. 教材习题点拨 复习题五(P 112)A 组1.解:(1)(-4x+1)+(y+2)i=0⎪⎩⎪⎨⎧-==⇒⎩⎨⎧=+=+-⇒.2,4102,014y x y x (2)(x-2y)-(3x+y)i=3-6i ⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧-=+-=--⇒.73,156)3(,32y y x y x y x 思路分析:利用复数为0或复数相等的条件先列出方程组,然后再求出未知量.2.答案:i 11=i 4×2+3=i 3=-i,i 25=i 4×6+1=i,i 26=i 4×6+2=i 2=-1,i 36=i 4×9=1,i 70=i 4×17+2=i 2=-1,i 101=i 4×25+1=i,i 355=i 4×88+3=i 3=-i,i 400=i 4×100=1.思路分析:利用公式i 4n =1,i 4n +1=i,i 4n +2=-1,i 4n +3=-i.3.解:(1)(3+4i )+(-5-3i )=(3-5)+(4i-3i )=-2+i ; (2)(1-5i )+(2+3i )=(1+2)+(-5i+3i )=3-2i ; (3)(-2+3i )+(6-5i )=(-2+6)+(3i-5i )=4-2i ; (4)(7-i )-(2i-3)=(7+3)+(-i-2i )=10-3i.4.解:(1)(-8-7i)(-3i)=24i-21;(2)(4-3i)(-5-4i)=-20-16i+15i-12=-32-i; (3)(21-+23i)(1+i)= 21-21-i+23i 23-=21-23--(2123-)i; (4)(1-2i)(2+i)(3-4i)=(2+i-4i+2)(3-4i)=(4-3i)(3-4i)=-25i. 5.解:(1)(1+2i)2=1+4i-4=-3+4i;(2)(2-3i)3=(2-3i)2(2-3i)=(-5-12i)(2-3i)=-10+15i-24i-36=-46-9i; (3)(21-+23i)(21-23-i)=(21-)2-(23i)2=41+43=1;(4)ii ii ∙=1=-i;(5)222)1)(1()1(212i i i i i i i +-=+-+=-=-1+i; (6)5521024)31)(31()31)(1(311i i i i i i i i -=-=-+-+=++. 6.解:ω2-ω+1=(231i +)2-(231i +)+1=231i +--231i ++1=0. 思路分析:通过计算不难得出ω2-ω+1=0这一结果,我们可以熟记这一结论,这有利于今后的计算.B 组1.解:(1)1321331323)32)(32()32(32i i i i i i i i +=+=-+-=+; (2)5512555567)2)(2()2)(3()2)(2()2)(4(2324i i i i i i i i i i i i i i i +=-++=+---++-++=+-+-+; (3)8244)22)(22()22)(57(225722643)1(2)32(2)1(2)1)(21(132221i i i i i i i i i i i i i i i i i i i i i i --=--+---+=+-+=+-++-=+--++-=+---=21--3i ;` (4))53)(53()53)(53()35)(35()35)(35(53533535i i i i i i i i i ii i+-++-+-++=-+--+8152281522i i +--+==21. 2.解:将原式变为15)33()(18422-+---=-+-z z z z z z z =z-3+15-z ,然后将z=2+i 代入得: z-3+15-z =2+i-3+125-+i =2+i-3+i +15=2+i-3+)1)(1()1(5i i i -+-255i -=23-23i. 思路分析:此题有两种解法,另一种解法是原式不变形,直接将z=2+i 代入也可得出结果.高效率学习决定学习成败的七个因素决定学习成败的因素可分为两大类:一类是内在因素;另一类是外部因素.内在因素归纳起来有七个方面.1.学习的动力是否强大要使学习获得成功,学习动力是第一个因素.学习活动中,有两个系统在同时进行工作,一个是认识系统,另一个是动力系统.动力系统对学习系统起着指向的作用和原动力的作用.所以,搞好学习首先要增强学习的动力.2.基础知识,基本技能是否循序作好了准备不少学习成绩优秀的同学成功的一个重要原因,就是已经学过的基础知识和基本技能掌握得比较扎实.特别是连贯性比较强的知识和技能,一定要一步一个脚印地打好基础.3.阅读、书写、计算的技巧是否已经达到自动化、半自动化的熟练程度“工欲善其事,必先利其器”.学习活动最基本的工具就是阅读技能、书写技能、计算技能,如果读、写的速度太慢,上课就会跟不上老师的讲课进度,课后复习和作业就会比别人多用时间.据有的国家对落后生的调查统计说明,这是造成部分学生学习落后的主要原因.4.好的学习方法一般说来,好的学习方法符合以下三个条件:符合认识规律;符合自己的个性特点;符合不同学习的内容和不同教师教课的特点.5.学习的才能是否强学习的才能主要指三种能力:独立获取知识的自学能力;运用知识分析和解决实际问题的能力;创造才能、发展才能比获得具体知识更重要,学习才能既是提高学习成绩的重要因素,又是通过学习要努力追求的目标.6.是否养成了良好的学习习惯学习方法经过长时期的运用,就会形成比较稳定的学习习惯.好的习惯对于获得学习上的成功极为重要,不好的习惯常常导致学习的失败.7.体力与精力是否充沛要使大脑处于积极工作的状态,必须有健壮的身体和充沛的精力.有的同学经常不吃早饭去上学,到上午第四节课已经饿得不行了,这时,听课效率就会降低.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学20分钟专题突破
数系的扩充与复数的引入
一.选择题
1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )
A .(15),
B .(13), C
. D
.(1
2.已知复数z =1-i,则1
22--z z z =( ) A .2i B .-2i C .2 D .-2
3.设z 的共轭复数是z ,或z +z =4,z ·z =8,则z
z 等于( ) A.1 B .-i C .±1 D . ±i
4.若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是 A 6π B 4π C 3π D 2
π 5.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为 ( )
A 、4,5p q =-=
B 、4,5p q ==
C 、4,5p q ==-
D 、4,5p q =-=-
二.填空题
1. 11i i
-+表示为a bi +(,)a b R ∈,则a b += 。

2.若复数z 满足z =i (2-z)(i 是虚数单位),则z =
3.若z 1=a +2i ,z 2=3-4i ,且
12z z 为纯虚数,则实数a 的值是 .
4.若复数2
1(1)z a a i =-++(a R ∈)是纯虚数,则z = ___
三.解答题
实数m 分别取什么数时,复数z =(1+i )m 2+(5-2i )m +6-15i 是:
(1)实数;(2)虚数;(3)纯虚数;(4)对应点在第三象限;(5)对应点在直线x +y +5=0
上;(6)共轭复数的虚部为12.
答案:
一.选择题
1. 【解析】由于0<a <2,故2115a <+<∴()211,5z a =+∈。

【答案】C
2. 【解析】将1=-z i 代入得()()2
21212222111i i z z i z i i i
------====------,选B. 【答案】B 3. 【解析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88
i z z i z ±===± 【答案】:D .
4. 【解析】:把
2π代入验证即得。

【答案】 D
5. 【解析】 因为2 a i ,b i ( i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以a =-1,b=2,所以实系数一元二次方程20x px q ++=的两个根是2i ±所以[(2)(2)]4,(2)(2) 5.p i i q i i =-++-=-=+-=
【答案】A
二.填空题
1. 【解析】
1,0,11i i a b i -=∴==+,因此a b +=1。

【答案】1
2. 【解析】由2(2)11i z i z z i i
=-⇒=
=++. 【答案】1i +
3. 〖解析〗12z z =2(2)(34)(38)(46)3455
a i a i i a a i i +++-++==-,则由条件可得3a -8=0,得a=83
. 〖答案〗
83
4. 〖解析〗由210110
a a a ⎧-=⇒=⎨+≠⎩,所以z =2. 〖答案〗.2
三.解答题
解:z =(1+i )m 2+(5-2i )m +6-15i =(m 2+5m +6)+(m 2
-2m -15)i
∵m ∈R,∴z 的实部为m 2+5m +6,虚部为m 2-2m -15.
(1)若z 是实数,则 ⇒⎩
⎨⎧∈=--R m m m 01522m =5或m =-3 (2)若z 是虚数,则
m 2-2m -15≠0⇒m ≠5且m ≠-3.
(3)若z 是纯虚数,则
⇒⎪⎩⎪⎨⎧≠--=++0
15206522m m m m m =-2 (4)若z 的对应点在第三象限,则
⇒⎪⎩⎪⎨⎧<--<++0
15206522m m m m -3<m <-2 (5)若z 对应的点在直线x +y +5=0上,则(m 2+5m +6)+(m 2
-2m -15)+5=0⇒m =-4或m =1. (6)若z 的共轭复数的虚部为12,则-(m 2-2m -15)=12⇒m =-1或m =3.。

相关文档
最新文档