二次根式计算

合集下载

二次根式混合计算

二次根式混合计算

二次根式混合计算二次根式是数学中的一种常见形式,它可以用来表示一些特定的数值关系。

本文将介绍二次根式的概念、性质以及如何进行混合计算。

一、二次根式的概念二次根式是指形如√a的表达式,其中a是一个非负实数。

在二次根式中,根号下的数称为被开方数,√a称为二次根式的基数。

二次根式是一种特殊的代数式,它表示了一个数的平方根。

二、二次根式的性质1. 二次根式的基数必须是非负实数,即a≥0。

2. 二次根式的值是一个非负实数,即√a≥0。

3. 二次根式可以进行加减乘除运算,但要注意保持基数的非负性。

三、二次根式的混合计算二次根式的混合计算指的是在一个数学表达式中同时出现多个二次根式,并进行加减乘除运算。

下面将分别介绍这四种混合计算的方法。

1. 加法运算对于两个二次根式的加法运算,只有当它们的基数相同时才能进行相加。

例如,√3 + √3 = 2√3。

2. 减法运算对于两个二次根式的减法运算,同样要求它们的基数相同。

例如,√5 - √2 = √5 - √2。

3. 乘法运算两个二次根式的乘法运算可以通过分配率进行简化。

例如,√2 * √3 = √6。

4. 除法运算两个二次根式的除法运算可以通过有理化的方法进行简化。

例如,√6 / √2 = √3。

四、应用实例下面通过一些实际问题来演示二次根式的混合计算。

例1:已知正方形的边长为2√3 cm,求正方形的面积。

解:正方形的面积公式为A = a^2,其中a为边长。

代入已知条件,可得A = (2√3)^2 = 12 cm^2。

例2:已知长方形的长为3√5 cm,宽为2√2 cm,求长方形的周长。

解:长方形的周长公式为C = 2(l + w),其中l为长,w为宽。

代入已知条件,可得C = 2(3√5 + 2√2) cm。

例3:已知直角三角形的两条直角边分别为√6 cm和√2 cm,求斜边的长度。

解:根据勾股定理,直角三角形的斜边长度c满足c^2 = a^2 +b^2,其中a和b分别为两条直角边的长度。

二次根式及其运算

二次根式及其运算

次,又把积(商)再化简一次较为简单.
2.混合运算时,要根据实际情况,灵活确定运算顺序,可适当 改变运算的顺序,使运算简便.
失误与防范 1.求 a2时,一定要注意确定a的大小,应注意利用等式 a2= |a|,当问题中已知条件不能直接判定a的大小时就要分类 讨论. 2.化简二次根式的题目,形式多样,应先化简后求值,应力求 把根号去掉.在求算术平方根时,要先用含绝对值的式子表 示含字母的式子,保证求原式的算术平方根有意义,然后再 根据题目条件,判断求绝对值的式子的符号.
1 1 (2)∵ ( x- )2 =( x+ )2 -4=(-3)2-4=5, x x ∴x- 1 =± 5 . x
探究提高
1.x2+xy+y2是一个对称式,可先求出基本对称式x+y=4,
xy=1,然后将x2+xy+y2转化为(x+y)2-xy,整体代入即可. 2.注意到(x- 1 )2=(x+ 1 )2-4,可得(x- 1 )2=5, x x x 1 x- =± 5 . x
3.一般情况下,我们解题时,总会习惯地把重点放在探求思路
和计算结果上,而忽视了一些不太重要、不直接影响求解过 程的附加条件.要特别注意,问题中的条件没有主次之分,
都必须认真对待.
A.-2- 3 C.-2+ 3
B.-1- 3 D.1+ 3
解析:∵A、B两点表示的数分别是-1和 3 , ∴OA=|-1|=1,OB=| 3 |= 3 ,AB=1+ 3 =AC, ∴OC=AC+OA=(1+ 3 )+1=2+ 3 . ∴点C所表示的数为-(2+ 3 )=-2- 3 ,选A.
题型三 二次根式混合运算
1.二次根式化简,依据 ab = a · b(a≥0,b≥0),
a = a (a≥0,b>0),前者将被开方数变形为有m2 b b (m为正整数)因式,后者分子、分母同时乘一个适当的

二次根式的公式

二次根式的公式

二次根式的公式
二次根式是指形如√a的数,其中a是一个非负实数。

二次根式
的计算公式为:
1. 同类项相加减:对于两个二次根式,如果它们的根号内的数
相同,则可以直接将它们的系数相加减,再乘以相同的根号内的数。

例如,√2 + 3√2 = 4√2,2√3 - √3 = √3。

2. 消去分母中的二次根式:将含有二次根式的分数的分母有理
化为含有二次根式的形式,并将分子分母同时乘以分母的有理化因式。

例如,将1/(2+√3)有理化为(2-√3)/((2+√3)(2-
√3))=(2-√3)/1。

3. 分解因式求根:对于一个二次根式,可以将它分解因式,并
利用乘法公式求得其值。

例如,√18 = √(2·3·3)= 3√2。

以上是二次根式的计算公式,可以帮助我们简化和求解二次根式
的运算。

二次根式的加减法

二次根式的加减法

二次根式的加减法二次根式是数学中的一种特殊类型,由一个根号和一个数构成。

在这篇文章中,我们将讨论二次根式的加减法运算。

通过理解二次根式的性质和运算规则,我们能够有效地计算和简化这类数学表达式。

一、二次根式的定义二次根式是指具有形如√a的数学表达式,其中a为一个非负实数。

根号下的数称为被开方数,√a读作a的二次根。

例如,√4和√9分别等于2和3,因为2²等于4,3²等于9。

这些数都是被开方数的平方根。

二、二次根式的加法与减法原则1. 加法原则:当两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行加法运算。

例如,√5 + 2√5 = 3√5解释:这里的√5和2√5具有相同的根号下数5,所以可以将它们合并为3√5。

2. 减法原则:与加法类似,在两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行减法运算。

例如,3√7 - √7 = 2√7解释:这里的3√7和√7具有相同的根号下数7,所以可以将它们合并为2√7。

三、示例与应用让我们通过几个示例来进一步了解二次根式的加减法运算。

示例1:计算:√8 + 3√2解答:√8 = √4 × 2 = 2√2所以,√8 + 3√2 = 2√2 + 3√2 = 5√2示例2:计算:5√10 - 2√10解答:5√10 - 2√10 = 3√10示例3:计算:√18 + 4√3 - 2√12解答:√18 = √9 × 2 = 3√2√12 = √4 × 3 = 2√3所以,√18 + 4√3 - 2√12 = 3√2 + 4√3 - 2√3 = 3√2 + 2√3四、简化与合并在进行二次根式的加减法运算后,我们可以进一步将结果进行简化与合并。

具体而言,可以将相同根号下数的二次根式合并为一个根号下,并且对应的系数进行加减运算。

例如,2√5 + 3√5 = (2+3)√5 = 5√5在这个步骤中,我们将2√5和3√5合并为5√5,并对应的系数2和3进行加法运算。

8年级二次根式计算题450道

8年级二次根式计算题450道

8年级二次根式计算题450道①5√8-2√32+√50=5*3√2-2*4√2+5√2=√2(15-8+5)=12√2②√6-√3/2-√2/3=√6-√6/2-√6/3=√6/6③(√45+√27)-(√4/3+√125)=(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3④(√4a-√50b)-2(√b/2+√9a)=(2√a-5√2b)-2(√2b/2+3√a)=-4√a-6√2b⑤√4x*(√3x/2-√x/6)=2√x(√6x/2-√6x/6)=2√x*(√6x/3)=2/3*|x|*√6⑥(x√y-y√x)÷√xy=x√y÷√xy-y√x÷√xy=√x-√y⑦(3√7+2√3)(2√3-3√7)=(2√3)^2-(3√7)^2=12-63=-51⑧(√32-3√3)(4√2+√27)=(4√2-3√3)(4√2+3√3)=(4√2)^2-(3√3)^2=32-27=5⑨(3√6-√4)²=(3√6)^2-2*3√6*√4+(√4)^2=54-12√6+4=58-12√6⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)]=1-(√2-√3)^2=1-(2+3+2√6)=-4-2√6①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5⑨(3√6-√4)2 =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6二次根式计算题30道带答案1/6√1又3/5×(-5√3又√3/5)=1/6√(8/5)×(-5/3√(3/5)=-5/18√(24/25)=-5/18×2/5√6=-1/9√6(2)√8/a×√2a/b=√(8/a×2a/b)=√(16/b)=4/b(√b)(3)√2x乘以√2y乘以√x=√(2x*2y*x)=2x√y(4)2√a÷4√b=√a/2√b=1/2b√ab(5)5√xy÷√5x^3=5√(xy/5x³)=1/x√5y(6)√x-y÷√x+y=1/(x+y)√(x²-y²)(7)√x(x+y)÷√xy^2/x+y(x>0,y>0)=√[x(x+y)÷xy²/(x+y)]=(x+y)/y(8)√xy乘以√6x÷√3y=√6x²y÷√3y=x√2(9)(√mn-√m/n)÷√m/n(n>0)=√mn÷m/n-√m/n÷m/n=n-1(10)√3/8-(-3/4√27/2+3√1/6)=1/4√6+3/8√6-1/2√6=1/8√6(11)2/3√9x+6√x/4-2x√1/x=2√3x+3/2√x-2√x=5/2√x(12)2/a√4a+√1/a-2a√1/a^3=1/a√a+1/a√a-2/a√a=0(13)√0.2m+1/m√5m^3-m√125/m=1/5√5m+√5m-5√5m=-19/5√5m(14)√a+b/a-b-√a-b/a+b-√1/a^2-b^2(a>b>0)=1/(a-b)√(a²-b²)-1/(a+b)√(a²-b²)-1/(a²-b²)√(a²-b²) =(a+b-a+b-1)/(a²-b²)√(a²-b²)=(2b+1)/(a²-b²)√(a²-b²)解不等式(15)2x+√32<x+√22x-x<√2-4√2x<-3√216)√3/8-(-3/4√27/2+3√1/6)=1/2√3/2 + 9/4√3/2 - 1/2√6=1/4√6 + 9/8√6 - 1/2√6=7/8√6(17)√0.2m+1/m√5m^3-m√125/m=√1/5*m + 1/m√5m*m^2 - m√25*5m/m^2=1/5√5m+√5m-5√5m=-19/5√5m(18)(√45+√27)+(√1又1/3-√125)=3√5+3√3 + √4/3-5√5=3√3 + 2/3√3 + 3√5 - 5√5=5√3 -2√5(19)2/3√9x+6√x/4-2x√1/x=2√x+3√x-2√x=3√x20 √40÷√5=√8*√5÷√5=√8=2√221 √32/√2=√16*√2/√2=√16=422 √4/5÷√2/15=√4/5*√15/2=√(4/5*15/2)=√623 2√a^3b/√ab=2√a²√ab/√ab=2√a²=2|a|(24)√18-√32+√2=√2×9-√4×4×2+√2=3√2-4√2+√2=0(25)√75-√54+√96-√108=√5×5×3-√6×3×3+√6×4×4-√3×6×6=5√3-3√6+4√6-6√3=√6-√3=√3(√2-1)(26)(√45+√18)-(√8-√125)=√5×3×3+√2×3×3-√2×2×2+√5×5×5=3√5+3√2-3√2+5√5=8√5(27)½(√2+√3)-¾(√2+√27)=¼(2√2+2√3-√2-√27)此处通分,分子不变,分母都分别乘进去了,因为不好写就省略了=¼(2√2+2√3-√2-√3×3×3)=¼(√2-√3)(28)¼根号下18ab×(-2/b根号下6a²/a)=1/4×(-2/b)×√(18ab×6a²/a)=-1/(2b)×3a√(2b)=-3a/(2b) √(2b)(29)根号下50a²b(a<0,b>0)=√(25a²×2b)=-5a√(2b)(30)根号18×3/2根号20×(-1/3根号15)=-1/3×3/2×√(18×20×15)=-1/2×√5400=-1/2×30√6=-15√6帮我找50道一元二次方程计算题和50道二次根式计算题(带答案过程哦)。

二次根式加减运算步骤

二次根式加减运算步骤

二次根式加减运算步骤
二次根式加减运算步骤:
在进行二次根式加减运算时,首先要确保被加减数的根式指数和根次相同,即
根号下的数相同。

接下来按照以下步骤进行运算:
1. 合并同类项:将所有根式中的同类项相加或相减。

同类项指的是根号下的数
相同的根式。

例如√5 + 2√5 = 3√5。

2. 化简根号内的算式:如果根号内有相同的因数,可以合并,简化根号内的算式。

例如√12 = √4 * √3 = 2√3。

3. 最后简化结果:将所有根式相加或相减后,再次化简根号内的算式,得到最
简形式的根式。

例如(√3 + 2√2) - √3 = 2√2。

4. 特殊情况处理:在进行二次根式加减运算时,还需注意处理特殊情况,如有
理数和根式的加减、有理数和根式相加减等情况。

总的来说,二次根式的加减运算主要涉及合并同类项、化简根号内的算式和最
后的简化,通过这些步骤可以准确计算得到最终结果。

希望以上步骤的解释能够帮助你更好地理解二次根式的加减运算方法。

如果还有其他问题或需要进一步的解释,欢迎继续提问。

谢谢!。

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)二次根式计算专题——30题(教师版含答案)在代数学中,二次根式是指形如√a的数,其中a是非负实数。

二次根式的计算是代数学的重要组成部分,对于学生来说也是一项基本技能。

本文将介绍30道关于二次根式的计算题,并附上教师版含答案,供教师参考。

题目1: 计算√9的值。

解答: 由于9是一个完全平方数,所以√9=3。

题目2: 计算√25的值。

解答: 由于25是一个完全平方数,所以√25=5。

题目3: 计算√2的值。

解答: √2是一个无理数,无法精确计算,可以使用近似值1.414进行计算。

题目4: 计算√32的值。

解答: 首先将32分解为16×2,再将16分解为4×4,可以得到√32=√(4×4×2)=4√2。

题目5: 计算√(3×5)的值。

解答: √(3×5)=√15。

题目6: 计算√(8×12)的值。

解答: 首先将8和12分别分解为2×2×2和2×2×3,可以得到√(8×12)=√(2×2×2×2×2×3)=4√6。

题目7: 计算√(a^2×b^2)的值。

解答: √(a^2×b^2)=√(a^2)×√(b^2)=|a|×|b|。

题目8: 计算√(16÷4)的值。

解答: 首先计算16÷4=4,然后√4=2,所以√(16÷4)=2。

题目9: 计算√(x^2÷y^2)的值。

解答: √(x^2÷y^2)=√(x^2)÷√(y^2)=|x|÷|y|。

题目10: 计算√(4^2÷2^2)的值。

解答: 首先计算4^2=16和2^2=4,然后16÷4=4,所以√(4^2÷2^2)=√4=2。

专题02 《二次根式》计算、解答题重点题型分类(解析版)

专题02 《二次根式》计算、解答题重点题型分类(解析版)

专题02 《二次根式》计算、解答题重点题型分类专题简介:本份资料专攻《二次根式》中“二次根式的性质与化简”、“二次根式的乘除法”、“二次根式的加减法”、“二次根式的混合运算”、“二次根式的化简求值”计算、解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:二次根式的性质与化简方法点拨:(1)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.(2)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.1.化简:(1(2(3(4(50,0)>>a b【答案】(1)(2)(3)(4)13;(5)2【分析】先将被开方数进行因数分解或因式分解,再应用积的算术平方根的性质,将能开得尽方的因数或因式开出来即可.【详解】解:(1===(2===;(3===;(413===;(52=【点睛】本题主要考查了利用二次根式的性质化简,解题的关键在于能够熟练掌握相关求解方法.2.已知数a,b,c在数轴上的位置如图所示:【答案】0【分析】由三个数在数轴上的位置即可确定它们的符号及大小关系,从而可确定a -b 及c -a 的符号,最后可化简绝对值与二次根式,从而可求得结果.【详解】由数轴知:0c b a<<<∴0a b ->,0c a -<=-b -(a -b )-(c -a )-(-c )=-b -a +b +a -c +c=0【点睛】本题考查了算术平方根的性质、绝对值的化简、数轴上数的大小关系等知识,注意:当a 为负数a .3.已知实数a ,b【答案】1a b +-【分析】根据题意得:2,b 2a >-< ,可得20,30a b +>-< ,然后根据二次根式的性质化简原式,即可求解.【详解】解:根据题意得: 2,b 2a >-< ,∴20,30a b +>-< ,23a b =+--()23a b =++-1a b =+- .【点睛】本题主要考查了二次根式的性质,有理数的大小比较,根据题意得到2,b 2a >-< 是解题的关键.4.已知130a -£-£+.【答案】5【分析】先解不等式组可得23,a ££则有10,40,a a +>-<再化简二次根式即可得到答案.【详解】解:130a -£-£Q ,23,a \££10,40,a a \+>-<4-14 5.a a =++-=【点睛】本题考查的是一元一次不等式组的解法,二次根式的化简,解本题的关键是得到“10,40a a +>-< ”.5.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一====1===以上这种化简的步骤叫做分母有理化.(1 (2【答案】(2【分析】(1(2)根据分母有理化的步骤进行化简,即可求解.(2【点睛】本题主要考查了分母有理化,明确题意,理解分母有理化的步骤是解题的关键.6a ,b ,使a b m +=,ab n =,即22m +==0)a b ==>>.,这里7m =,12n =,由于437+=,4312´=,所以22+==,2===(1(2(3【答案】(11+;(2(3【详解】解:(1)∴4m =,3n =,∵314+=,313´=,∴224+==,1===;(2),∴13m =,42n =,∵7613+=,7642´=,∴2213+===∴8m =,15n =,∵358+=,3515´=,∴228+=====【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.7这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平1====;再如:==请用上述方法探索并解决下列问题:(1=,=;(2)若2()a m+=+,且a,m,n为正整数,求a的值.【答案】(13;(2)a的值为46或14【分析】(1)根据题意利用完全平方公式和二次根式的性质进行求解即可;(2)由222()5a m m n+==++,可得225a m n=+,62mn=,则3mn=,再根据a,m,n为正整数,可得1m=,3n=或3m=,1n=,由此求解即可.【详解】解:(1===3===-.3-;(2)∵222()5a m m n+==++,225a m n\=+,62mn=,∴3mn=又∵a,m,n为正整数,1m\=,3n=或3m=,1n=,∴当1m=,3n=时,2215346a=+´=;当3m=,1n=时,2235114a=+´=.综上所述,a的值为46或14.【点睛】本题主要考查了完全平方公式和二次根式的性质化简,解题的关键在于能熟练掌握完全平方公式.8.(阅读材料)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如=(12.善于思考的小明进行了以下探索:若设a +=(m +)2=m 2+2n 2+2a 、b 、m 、n 均为整数),则有a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +法.请你仿照小明的方法探索并解决下列问题:(问题解决)(1)若a +=(m +2,当a 、b 、m 、n 均为整数时,则a = ,b = .(均用含m 、n 的式子表示)(2)若x =(m +2,且x 、m 、n 均为正整数,分别求出x 、m 、n 的值.(拓展延伸)(3= .【答案】(1)m 2+5n 2,2mn ;(2)当m =1,n =2时,x=13;当m =2,n =1时,x =7;(3.【分析】(1)利用完全平方公式展开可得到用m 、n 表示出a 、b ;(2)利用(1)中结论得到4=2mn ,利用x 、m 、n 均为正整数得到12m n =ìí=î或21m n =ìí=î,然后利用x =m 2+3n 2计算对应x 的值;(3)=m +,两边平方(25m +=+,可得22651m n mn ì+=í=î消去n 得42560m m -+=,可求m【详解】解:(1)设a +m +2=m 2+5n 2+2a 、b 、m 、n 均为整数),则有a =m 2+5n 2,b =2mn ;故答案为m 2+5n 2,2mn ;(2)∵(22232x m m n +=+=++∴4=2mn ,∴mn =2,∵x 、m 、n 均为正整数,∴12m n =ìí=î或21m n =ìí=î,当m =1,n =2时,x =m 2+3n 2=1+3×4=13;当m =2,n =1时,x =m 2+3n 2=4+3×1=7;即x 的值为为13或7;(3=m +,∴(25m +=+,∴226522m n mn ì+=í=î,∴1n m=,22165m m æö+=ç÷èø,∴42560m m -+=,∴(m 2-2)(m 2-3)=0,∴m,m∴n =n =.∴m n ìïíïîm nìïí=ïî====.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.一元高次方程,二元方程组,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1.计算(1)(2;(3;(4【答案】(1)12;(2(3)34;(4)【分析】(1)根据二次根式乘除运算法则从左到右顺序计算即可;(2)根据二次根式乘除运算法则从左到右顺序计算即可;(3)先化简二次根式,根据二次根式乘除运算法则从左到右顺序计算即可;(4)根据二次根式除运算法则转化为乘法计算,再化简即可.【详解】解:(1)原式==12;(2)原式=64(3)原式=´´=34;(4)原式=【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.2.若y =+【分析】根据二次根式的被开方数是非负数,可得不等式组,根据解不等式组,可得x ,根据x 的值可得y的值,再根据二次根式的除法,可得答案.2x -3≥0,3-2x ≥0,即x =32,y=【点睛】本题考查了二次根式有意义的条件,利用二次根式的被开方数是非负数得出不等式组是解题关键.3==的值.【答案】4【分析】根据二次根式分母有理化计算即可;2=+2==原式===+224==;【点睛】本题主要考查了二次根式分母有理化和乘除运算,准确化简是解题的关键.4.若99a和b ,求4312ab a b ---的值【答案】37-【分析】先求出99a ,b 的值,再代入求值即可.【详解】∵34∴12,95,∴99,995=4,∴a =3,b=4∴原式=3)(443)-3(4-12-13﹣12-=37-.【点睛】本题考查了无理数的估算,无理数都可以写成整数部分+小数部分的形式,从而得到小数部分=这个无理数﹣整数部分,这是解题的关键.5.(13=,求a的值;(2能够合并,求a的值,并求出这两个二次根式的积.【答案】(1)a=7;(2)a=8,两个二次根式的积为5.【分析】(1)两边同时平方得关于a的方程,求解即可;(2)根据同类二次根式的意义可求出a的值,从而确定二次根式,进一步得出答案.【详解】解:(1)3=∴a+2=32解得a=7(2=能够合并=解得a=8∴5=.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.6.如图,从一个大正方形中裁去面积为215cm和224cm的两个小正方形,求留下部分的面积.【答案】2【分析】先根据两个小正方形的面积可求得它们的边长,进而可得大正方形的边长,再利用大正方形的面积减去两个小正方形的面积列式计算即可求得答案.【详解】解:∵两个小正方形的面积分别为215cm和224cm,∴=,∴∴留下部分(即阴影部分)的面积是21524--152241524=++--=2)cm =,答:留下部分的面积为2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决本题的关键.7.在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 线段比()()PS PS PT ST k PTPS PT ST ì<ïï=íïïî….已知点(0,1)A ,(1,0)B .(1)点(2,0)Q 关于线段AB 的线段比k = ;(2)点(0,)C c 关于线段AB的线段比k =c 的值.【答案】(1(2)3c =或c =.【分析】(1)求出QA 、QB 、AB ,根据线段比定义即可得到答案;(2)方法同(1),分0c >和0c …讨论.【详解】解:(1)∵(0,1)A ,(1,0)B ,(2,0)Q ,∴AB =QA ,1QB =,根据线段比定义点(2,0)Q 关于线段AB的线段比QB k AB ==;;(2)∵(0,1)A ,(1,0)B ,(0,)C c ,∴AB =|1|AC c =-,BC =2212AC c c =+-,221BC c =+,当0c >时,22AC BC <,即AC BC <,由(0,)C c 关于线段AB的线段比k =,解得3c =或1c =-(舍去),∴3c =,当0c …时,22AC BC …,即AC BC …,由(0,)C c 关于线段AB 的线段比k ==,解得c =c =,∴c =综上所述,点(0,)C c 关于线段AB 的线段比k 3c =或c =【点睛】本题考查坐标与图形的性质,解题的关键是读懂线段比的定义,找出“临界点”列不等式.8.先阅读下面的解题过程,然后再解答:a ,b ,使a b m +=,ab n =,即22m +=,=)a b ==>7m =,12n =因为437+=,4312´=即227+=所以2===根据上述方法化简:(1(2【答案】(1(2【分析】根据a b m +=,ab n =,即22m +==代入计算即可;【详解】(1)根据题意,可知13m =,42n =,因为6713+=,6742´=,即2213+=====(2)根据题意,可知8m =,15n =,因为538+=,5315´=即228+===【点睛】本题主要考查了二次根式的化简求值,准确计算是解题的关键.9.材料1:因为无理数是无限不循环小数,所以无理数的小数部分我们不可能全部写出来.比如:π等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料2:2.5的整数部分是2,小数部分是0.5,小数部分可以看成是2.5−2得来的.材料3:任何一个无理数,都夹在两个相邻的整数之间,如23<<<<.根据上述材料,回答下列问题:(1的整数部分是,小数部分是.+的值.(2)5+5<<,求a ba b(3)已知3x y=+,其中x是整数,且0<y<1,求x+4y的倒数.【答案】(1)44-;(2)13;(3【分析】(1的整数部分和小数部分;(2(3的整数部分,得到x的值,从而表示出y,求出x+4y的结果,再求x+4y的倒数即可.【详解】解:(1)<∴45<,的整数部分是4,故答案为:44;(2)<<,∴12<,∴67<<,∵5<<,a b∴a=6,b=7,∴a+b=13;(3)∵12,∴1+3<2+3,∴4<5,∴x=4,y1,x+4y)∴x+4ya≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.1+(2)()14---.【答案】(1);(2【分析】(1)先化简二次根式,然后再进行二次根式的加减运算;(2)根据绝对值、化简二次根式、立方根可直接进行求解.【详解】解:(1)原式=+(2)原式134+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.2.计算或化简下列各题:(1)2021(1)(+--;(2)【答案】(1)1-;(2.【分析】(1)根据二次根式的加减运算法则计算即可;(2)去掉绝对值符号,根据二次根式的加减运算法则计算即可.【详解】(1)解:原式=(1)-+=1;(2)解:原式==【点睛】本题考查了二次根式的加减混合运算,熟练掌握二次根式的加减运算法则是解题的关键.3.先化简再求值:当a =时,求a【答案】21,1a -【分析】本题应先根据二次根式的性质把原式进行化简,再将a 的值代入即可求解.【详解】解:当a a -1>0,∴原式=a =a +(a -1)=2a ﹣1∴原式1.故答案为:2a ﹣1;1【点睛】本题考查了二次根式的性质化简求值,熟知二次根式的性质是解题的关键.4.已知【答案】2y-【分析】先根据已知条件判断出0y < ,30x -£ ,再根据0y < ,3x £ 化简即可.【详解】解:0=<Q ,0y \< ,30x -£ ,3x \£ ,=413x y x =-+---413x y x =-+--+2y =- .5.嘉琪准备完成题目“计算:()﹣”时,发现“■”处的数字印刷不清楚,(1)他把“■”处的数字猜成6,请你计算()﹣(2)他妈妈说:“”通过计算说明原题中“■”是几?【答案】(1)0;(2)原题中“■”是152【分析】(1)先去括号,然后根据二次根式加减运算法则进行计算即可;(2)将原式进行整理,设“■”为m【详解】解:(1)(﹣)﹣==0;(2)设“■”为m ,-=,解得:152m =,∴原题中“■”是152.【点睛】本题考查了二次根式的加减混合运算,熟练掌握运算法则是解本题的关键.6.阅读下列内容:因为139<<,所以13<<11.试解决下列问题:(1的整数部分和小数部分;(2)若已知8+a ,8的整数部分是b ,求34ab a b -+的值.【答案】(1的整数部分是33-;(2)34ab a b -+13.【分析】(1的大小即可;(2,a 、b 的值,代入计算即可.【详解】解:(1)∴3<4,的整数部分是3-3;(2)∵34,∴11<12,∴a ,∵34,∴-4<-3,∴4<5,∴b =4,∴ab -3a +4b=)×4-3×)+4×4,答:ab -3a +4b .【点睛】本题考查估算无理数的大小,理解算术平方根的定义是解决问题的前提,求出a 、b 的值是正确解答的关键.7111111112=+-=+;111112216=+-=+;1111133112=+-=+.(1)请你根据上面三个等式提供的信息,猜想.(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).【答案】(1)111441+-+,1120,1119+2)11(1)n n ++【分析】(11120的结果为11380;(2)第n 1与1n(n 1)+的和.【详解】解:(11111144120=+-=+;1111119191380=+-=+;故答案是:111441+-+,1120,11119191+-+,11380;(2)通过观察等式右边为1与1n(n 1)+的和,故第n 11(1)n n =++.【点睛】本题考查了二次根式的加减法:解题的关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.8.观察下列一组等式,解答后面的问题:=﹣1,==应用计算:(1(2= ;(3+LL= .【答案】(1(2(310【分析】(1),然后利用平方差公式计算;(2)利用题中的计算结果和(1)小题的计算结果找出规律求解;(3)先分母有理化,然后合并即可.【详解】解:(1=(2、(3...+10.10.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法是解决问题的关键.考点4:二次根式的混合运算方法点拨:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的; (2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式.1.计算:(1)3)(−5)(2))(3)()×(4)()2018×(3)2018【答案】(1)2)2(3)-30(4)12.已知1x=+,求代数式229-+的值.x x【答案】11.【分析】先将代数式配方,然后再把1x =+代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=.【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.3.如图,一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,点A 所表示的数为,设点B 所表示的数为m .(1)求m 的值;(2)求|m ﹣1|+(2)(4﹣m )的值.【答案】(1)2m =(21【分析】(1)根据一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,可得2AB =,再由点A 表示的数为B 表示的数为m ,即可得到(2m -=,由此求解即可;(2)根据(1)求出的结果,代入m 的值,根据实数的混合计算法则求解即可.【详解】解:(1)由题意得:2AB =,∵点A 表示的数为,点B 表示的数为m ,∴(2m -=,∴2m =-;(2)∵2m =-∴(()124m m -+--(21242=--+-(122=-+-142=-+-1.【点睛】本题主要考查了实数与数轴,实数的混合运算,平方差公式,解题的关键在于能够根据题意求出2m =4.某居民小区有块形状为长方形ABCD 的绿地,长方形绿地的长BC AB长方形绿地中修建一个长方形花坛(即图中阴影部分)1)米.(1)长方形ABCD 的周长是 米;(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m 2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)【答案】(1)(2)600元【分析】(1)由长方形的周长等于相邻两边和的2倍,再计算二次根式的加法,后计算乘法即可;(2)先求解通道的面积,再乘以单价即可得到答案.(1)解:Q 长方形绿地的长BC AB\ 长方形ABCD 的周长为:(2=2答:长方形ABCD 的周长为:米.故答案为:(2)11-131=-+ =11212100,-=Q 通道要铺上造价为6元/m 2的地砖,则购买地砖需要花费:1006600´=,答:购买地砖需要花费600元.【点睛】本题考查的是二次根式的加法与二次根式的乘法及混合运算的应用,熟练的进行二次根式的的化简与运算是解本题的关键.5.阅读下列材料,然后回答问题这样的式子,我们可以将其分母有理化:1====;1====-.(1(2【答案】(12)1【分析】(1)法一:原式==(2):原式=(1=;===;(2)解:原式=+=+=.1【点睛】本题考查了二次根式的分母有理化,二次根式的加法运算,平方差公式等知识.解题的关键在于正确的将分式中的分母有理化.6.在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化.比如:(1==.(21试试看,将下列各式进行化简:(1(2(3【答案】(11;(3)2【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可.【详解】解:==;(211++¼+,1,=3-1=2.【点睛】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法.7.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下方法将其进一步1===,化简:(1)(2)【答案】(1(2【分析】(1)利用分母有理化的形式进行化简;(2,然后分母有理化,最后进行二次根式的乘法运算.【详解】解:(1===;L(2+=L2=L==【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和平方差公式是解决问题的关键.81====.==2根据以上解法,试求:(1n为正整数)的值;(2×××【答案】(1(2)9【分析】(1)由题意根据材料所给出的解法进行分析计算求解即可;(2)根据题意直接依据材料所给出的解法得出规律进行计算即可.【详解】解:(1==;(2×××1=×××110=-+9=.【点睛】本题考查二次根式的运算,熟练掌握二次根式分母有理化的方法是解题的关键.考点5:二次根式的化简求值方法点拨:(1)数形结合法:用坐标轴和数学表达式相结合,达到快速化简的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①5√8-2√32+√50 ②√6-√3/2-√2/3③(√45+√27)-(√4/3+√125) ④(√4a-√50b)-2(√b/2+√9a) ⑤√4x*(√3x/2-√x/6) ⑥(x√y-y√x)÷√xy⑦(3√7+2√3)(2√3-3√7) ⑧(√32-3√3)(4√2+√27)⑨(3√6-√4)? ⑩(1+√2-√3)(1-√2+√3)(1)5√12×√18 (2)-6√45×(-4√48)(3)√(12a)×√(3a) /4一、选择1.下列各式由左到右变形中,是因式分解的是()A.a(x+y)=ax+ayB. x2-4x+4=x(x-4)+4C. 10x2-5x=5x(2x-1)D. x2-16+3x=(x-4)(x+4)+3x2.下列各式中,能用提公因式分解因式的是()A. x2-yB. x2+2xC. x2+y2D. x2-xy+13.多项式6x3y2-3x2y2-18x2y3分解因式时,应提取的公因式是()A. 3x2yB.3xy2C. 3x2y2D.3x3y34.多项式x3+x2提取公因式后剩下的因式是()A. x+1B.x2C. xD. x2+15.下列变形错误的是()A.-x-y=-(x+y)B.(a-b)(b-c)= - (b-a)(b-c)C. –x-y+z=-(x+y+z)D.(a-b)2=(b-a)26.下列各式中能用平方差公式因式分解的是()A. –x2y2B.x2+y2C.-x2+y2D.x-y7.下列分解因式错误的是()A. 1-16a2=(1+4a)(1-4a)B. x3-x=x(x2-1)C.a2-b2c2=(a+bc)(a-bc)D.m2-0.01=(m+0.1)(m-0.1)8.下列多项式中,能用公式法分解因式的是()A.x2-xyB. x2+xyC. x2-y2D. x2+y2二、填空9.a2b+ab2-ab=ab(__________).10.-7ab+14a2-49ab2=-7a(________).11.3(y-x)2+2(x-y)=___________12.x(a-1)(a-2)-y(1-a)(2-a)=____________.13.-a2+b2=(a+b)(______)14.1-a4=___________15.992-1012=________16.x2+x+____=(______)217.若a+b=1,x-y=2,则a2+2ab+b2-x+y=____。

三、解答18.因式分解:①②③④2a2b2-4ab+2⑤(x2+y2)2-4x2y2⑥(x+y)2-4(x+y-1)19.已知a+b-c=3,求2a+2b-2c的值。

20、已知,2x2-Ax+B=2(x2+4x-1),请问A、B的值是多少?21、若2x2+mx-1能分解为(2x+1)(x-1),求m的值。

22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。

23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。

24.请问9910-99能被99整除吗?说明理由。

知识点1:同底数幂的除法法则:am÷an=am-n(a≠0,m,n都是正整数,且m>n)规定:a0=1(a≠0)学习运算法则时注意:A:因为零不能作除数,所以底数不能为0;B:底数可以是单项式,也可以是多项式;C:多个同底数幂相除,应按顺序求解配套练习1.计算:a7÷a=__________;(ab)12÷(ab)4=______;(a+b)10÷(a+b)5=_________ X7÷x2=___________;(a-b)12÷(a-b)4=_______________2.计算:(a-b)11÷(b-a)10+(-a-b)5÷(a+b)4(a-b)15÷(a-b)5÷(b-a)8(-a11)3÷(-a)17÷(-a3)2÷a8(-a16)2÷(-a15)÷(-a3)2÷a83.变式练习:已知2m=7,2n=5,求4m-n的值。

4.计算;(x-y)12÷(y-x)11+(-x-y)3÷(x+y)2知识点2:单项式,多项式除以单项式用单项式或多项式除双被除数的单项式,再把所得的结果相加5.a3x4÷ a2x________;45a5b3÷(-9a2b)________;(-2x4y2)3÷(-2x3y3)2_________;6.xm+n×(-2xmyn)÷(3xmyn)27x5y3z÷(-9x2y)(-2a2y2)3÷(-3ay2)37.(9a3b2-12a2b+3ab)÷(-3ab)(-0.25a3b2- a4b3+ a3b)÷(-0.5a3b)[(a+b)5-(a+b)3]÷(a+b)3[(a+b)(a-b)-(a-b)2]÷(a-b)8先化简再求值[(2b-a)(3a+2b)-(a+2b)2]÷(- a),其中a=2,b=9.综合应用:已知8a=32,8b=0.5,求3a÷3b10.解不等式:(-3)7(2x-1)<(-3)8(1-x)11.解关于X的方程(x-5)x-2=112.计算:[2x(y-1)5-3x2(y-1)4+6x3(y-1)3]÷[-2x(y-1)3]知识点3:因式分解因式分解方法:提公因式法,运用公式法,十字相乘法,分组分解法。

13.分解因式:75a3b5-25a2b4=_________;-12x4y2-8x4y-2x3y=_______; a3b2-a2b3=______14.分解因式:a2-4b2=_________;16x2-25y2=______;(a+m)2-(a+n)2=___________15.分解因式:4a2+12ab+9b2=________;分解因式16.5a(a-2b)-10b(2b-a)17:-5(x-y)3-15(x-y)2+10(x-y)18:22011-2201019:5a(a-2b)2-10b(2b-a)220:4(x-y)3- (y-x)221:a4-6a2+922:3ax2+6ax+3a23:4a3b-25ab324:x2+3x+225:x2+2x-1526:x2-3x-2827:x2+21x+8028:2x3+4x2-6x29:x2-(k+3)x+(k+2)30:(m2-1)(n2-1)+4mn因式分解综合练习31:求证:257+513是30的倍数32:已知a+b=2,求的值33:已知求ab的值34 三角形三边长度满足,判断三角形ABC的形状。

35:已知(2011-b)(2009-b)=2010,求(2011-b)2+(2009-b)2的值36:已知a2+10ab+25b2与|b-2|互为相反数,求a+b的值37:对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取何值时,它的值都不可能等于11.你同意他的看法吗?说明你的理由。

①5√8-2√32+√50=5*3√2-2*4√2+5√2=√2(15-8+5)=12√2②√6-√3/2-√2/3=√6-√6/2-√6/3=√6/6③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b⑤√4x*(√3x/2-√x/6)=2√x(√6x/2-√6x/6)=2√x*(√6x/3)=2/3*|x|*√6⑥(x√y-y√x)÷√xy=x√y÷√xy-y√x÷√xy=√x-√y⑦(3√7+2√3)(2√3-3√7)=(2√3)^2-(3√7)^2 =12-63=-51⑧(√32-3√3)(4√2+√27)=(4√2-3√3)(4√2+3√3)=(4√2)^2-(3√3)^2=32-27=5⑨(3√6-√4)²=(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4=58-12√6⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)]=1-(√2-√3)^2=1-(2+3+2√6)=-4-2√61.5√5 - 1/25√5 - 4/5√5=√5*(5-1/25-4/5)=24/5√52.√144+576=√720=12√53.√(8/13)^2-(2/13)^2= √(8/13+2/13)(8/13-2/13)=(2/13)√151.(√3-√2)(√6+√5)2.(√2-√5)^23.(√6-√3)(-√3-√6)4.(3√18+1/5√50-4√1/2)÷√325.(π-1)^0+(-1/2)^-1+l5-√27l-2√36.3/√3+11.3√(1/6)-4√(50)+30√(2/3)=3√(1/6)-4√(50)+30√(2/3)= 3×√6/6-4×5√2+30×√6/3 =√6/2-20√2+10√62.(1-根号2)/2乘以(1+根号2)/2 题是这样的二分之一减根号2乘以二分之一加根号2=(1-根号2)/2乘以(1+根号2)/2 =(1-√2)*(1-√2)/4=(1-2)/4=-1/43.√(1/2x)^2+10/9x^2 √[(1/2x)^2+10/9x^2]=√(x^2/4+10x^2/9)=√(9x^2/36+40x^2/36)=√(49x^2/36)=7x/6一、选择1. C 2. B 3.C 4.A 5.C 6. C 7. B 8. C二、填空9. a+b-1;10.b-2a+7b2 11. (x-y)(3x-3y+2) 12. (a-1)(a-2)(x-y) 13. b-a 14. (1+a)(1-a)(1+a2) 15.-400 16. 17. -1解答题18. 解:①原式=-4x(x2-4x+6)②原式=8a(a-b)2+12(a-b)3=4(a-b)2(2a+3a-3b)=4(a-b)2(5a-3b)③原式=2am-1(a2+2a-1)④原式=2(a2b2-2ab+1)=2(ab-1)2.⑤原式=( x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2⑥原式=(x+y)2-4(x+y)+4=(x+y-2)219. 解:2a+2b-2c=2(a+b-c)=2×3=6.20、解:2x2-Ax+B=2(x2+4x-1)= 2x2+8x-2所以A=-8,B=-2.21、解:2x2+mx-1=(2x+1)(x-1)= 2x2-x-1所以mx=-x即m=-1.22. 解:a2b+ab2-a-b=ab(a+b)-(a+b)=(a+b)(ab-1)把a+b=5,ab=7代入上式,原式=30.23. 解:将a2b2-8ab+4a2+b2+4=0变形得a2b2-4ab+4+4a2-4ab+b2=0;(ab-2)2+(2a-b)2=0所以ab=2,2a=b解得:a=±1,b=±2.所以ab=2或ab= -2.24. 解:9910-99=99(999-1)所以9910-99能被99整除,结果为999-1.参考答案:一.填空题:1.a4,b4,8a3b3,-6x5y3;2.0;3.-12x7y9;4.a18;5.2;6.1;7.64;8.180;9.2ab4c;10.-8×108,11.;12.6a4-10a2b;15x2-4xy-4y2;13.2x-40;14.4二.选择题:15.C;16.D;17C;18.A;19.A;20.C;21.B;22.C;23.B;24.B;三.解答题:25.(1)x2y+3xy;(2)6a3-35a2+13a;26.(1)-3x2+18x-5,19;(2)m9,-512;27.x=- ;28.①;②56;29.8;30.6(n+1);31.m=-4;m=2,可以提出多种问题.。

相关文档
最新文档