2014年上海市杨浦区高三一模数学(理)试题及答案
杨浦区2014学年度第一学期高三年级学业质量调研-理科数学

杨浦区2014学年度第一学期高三年级学业质量调研数学学科试卷(理科)2015.1一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 已知1sin 2α=,()0,απ∈,则α= . 2. 设{}13A x x =≤≤,{}124,B x m x m m R =+≤≤+∈,A B ⊆,则的取值范围是 . 3. 已知等差数列{}n a 中,37a =,73a =,则通项公式n a 为 . 4.已知直线l 经过点()1,2A -、()3,2B -,则直线l 的方程是 . 5. 函数()()210f x x x =-<的反函数()1f x -= .6. 二项式91x x ⎛⎫- ⎪⎝⎭的展开式(按x 的降幂排列)中的第4项是 .7. 已知条件:12p x +≤,条件:q x a ≤,若p 是q 的充分不必要条件,则α的取值范围是 . 8. 向量()2,3a =r ,()1,2b =-r ,若ma b +r r与2a b -r r 平行,则实数m = . 9. 一家5窗口 走廊 窗口其中爷爷行动不方便要坐靠近走廊的位置,小孙女喜欢热闹要坐在左侧三个连在一起的座位之一,则座位的安排方式一共有 种.10. 在底面直径为6的圆柱形容器中,放入一个半径为2的冰球,当冰球全部融化后,容器只不过液面的高度为 .(相同质量的冰与水的体积比为10:9) 11. 不等式()2log 431x x ->+的解集是 . 12. 设ABC ∆的内角,,A B C 所对边分别为,,a b c ,若30a b c ab a b c++=+-,则角C = .13. 已知12ω=-,集合{}2*1,n A z z n N ωωω==++++∈L ,集合{}1212B x x z z z z A ==⋅∈,、(1z 可以等于2z ),则集合B 的子集个数为 .14. 如图所示,已知函数2log 4y x =图像上的两 点A 、B 和函数2log y x =上的点C ,线段AC)平行于y 轴,ABC ∆为正三角形时,点B 的坐 标为(),p q ,则22q p ⨯的值为 .二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案. 15. 程序框图如图所示,若其输出结果是,则判断框中填写的是( )16.下列命题中正确的是( ) A. 若x C ∈,则方程32x =只有一个根 B. 若1z C ∈、2z C ∈且220z z ->,则22z z >C. 若z R ∈,则2z z z ⋅=不成立D. 若z C ∈,且20z <,那么z 一定是纯虚数17. 圆心在抛物线上,且与轴和抛物线的准线都相切的一个圆的方程是( )18. 对于数列{}n a 、{}n b ,若区间[],n n a b 满足下列条件:①[][]()*11,,n n n n a b a b n N ++∈Þ;②()lim 0n n n b a →∞-=,则称[]{},n n a b 为区间套. 下列选项中,可以构成区间套的数列是( )三、解答题(本大题满分74分)本大题共有5题,请在相应的位置作答,请写出必要的文字叙述.19. (本题满分12分)本题共有2个小题,第1小题6分,第2小题6分.如图,正四棱柱1111ABCD A B C D -的底面边长为1,异面直线AD 与1BC 所成角的大小为60o ,求: (1)线段11A B 到底面ABCD 的距离;(2)三棱锥11B ABC -的体积.A.7i <B.8i <C.7i >D.8i >A. 22210x y x y +--+=B. 221204x y x y +---= C. 22210x y x y ++-+=D. 221204x y x y +--+= A. 12n n a ⎛⎫= ⎪⎝⎭,23nn b ⎛⎫= ⎪⎝⎭B. 13nn a ⎛⎫= ⎪⎝⎭,21n n b n =+C. 1n n a n -=,113nn b ⎛⎫=+ ⎪⎝⎭D. 32n n a n +=+,21n n b n +=+ 1D ABCD 1A 1B 1C20.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分. 如图,有一块扇形草地OMN ,已知半径为R ,2MON π∠=,现要在其中圈出一块矩形场地ABCD 作为儿童乐园使用,其中点,A B 在弧MN 上,且线段AB 平行于线段MN .(1)若点A 为弧MN 的一个三等分点,求矩形ABCD 的面积S ; (2)当A 在何处时,矩形ABCD 的面积S 最大?最大值为多少?21.(本题满分14分)本题共有3个小题,第1小题3分,第2小题5分,第3小题6分.已知函数()21ax f x bx c+=+是奇函数,,,a b c 为常数(1)求实数c 的值;(2)若,a b Z ∈,且()()12,23f f =<,求()f x 的解析式;(3)对于(2)中的()f x ,若()2f x m x ≥-对()0,x ∈+∞恒成立,求实数m 的取值范围.22.(本题满分16分)本题共有3个小题,第1小题3分,第2小题7分,第3小题6分.如图,曲线Γ由曲线()22122:10,0x y C a b y a b +=>>≤和曲线()22222:10x y C y a b-=>组成,其中点12,F F 为曲线1C 所在圆锥曲线的焦点,点34,F F 为曲线2C 所在圆锥曲线的焦点, (1)若()()232,0,6,0F F -,求曲线Γ的方程;(2)如图,作直线l 平行于曲线2C 的渐近线,交曲线1C 于点,A B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线1l 过点4F23.(本题满分18分)本题共有3个小题,第1小题4分,第2小题6分,第3小题8分. 数列{}n a 各项均不为0,前n 项和为n S ,3,n n n b a b =的前n 项和为n T ,且2n n T S =. (1)若数列{}n a 共3项,求所有满足要求的数列; (2)求证:()n a n n N *=∈是满足已知条件的一个数列;(3)请构造出一个满足已知条件的无穷数列{}n a ,并使得20152014a =-;若还能构造其他符合要求的数列,请一并写出(不超过四个).。
【数学】上海市杨浦区2014届高三高考模拟(理)

2014年高考数学模拟试卷 (理答案仅供参考)一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 设U R =,2{|20}M x x x =->,则U C M = [0,2]2.(理科)计算:=+⋅⋅⋅+++∞→nP n n 321lim22 3. 二项展开式61()x x-中的常数项为 20- .(用数字作答)4.(理科)已知一个关于x y 、的二元一次方程组的增广矩阵是⎪⎪⎭⎫⎝⎛-210211,则+=x y 6 . 5.(理科)已知点G 为∆ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且x =,y =,则yx xy +的值为_______31_________.解:M 、G 、N 三点共线⇒(1)(1)AG AM AN xAB yAC λλλλ=+-=+-又G 为∆ABC 的重心⇒1133AG AB AC =+,所以11313(1)3x xy x y y λλ⎧=⎪⎪⇒=⎨+⎪-=⎪⎩6.(理科)直线l 的方程为10223012xy=-,则直线l 的一个法向量是 .答案 (),2k k 其中0k ≠ 7. (理科)函数x x y cos 6sin ⎪⎭⎫⎝⎛+=π的最大值为 43. 8. (理科)在极坐标系中,点)4π到直线cos sin 10ρθρθ--=的距离等于____2____.9.(理科)若直线340x y m ++=与曲线 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是______10m >或0m <.______.10.(理科)已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积恰好也与球的体积相等,那么这个圆锥的母线长为cm .11.(理科)已知函数)()(),1,0(2)(11x f x fa a a x f x 是设且-+≠>-=的反函数.若)(1x f y -=的图象不经过第二象限,则a解得)(,1)2(log )(11x f y x x fa --=-+=要使的图象不过第二象限, 只需⎩⎨⎧>≤-,1,012l o g a a 解得.2≥a12.(理科)知离散型随机变量x 的分布列如右表。
上海市静安、杨浦、青浦、宝山四区2014年高三联合高考模拟考数学试卷(理科)--含答案

上海市静安、杨浦、青浦、宝山 2013—2014学年联合高考模拟考试理科数学试卷(满分150分,完卷时间120分钟) 2014.4一、填空题 (本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.二阶行列式ii i ++-1101的值是 . (其中i 为虚数单位)2. 已知j i,是方向分别与x 轴和y 轴正方向相同的两个基本单位向量,则平面向量j i +的模等于 .3.二项式7)1(+x 的展开式中含3x 项的系数值为_______________.4.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________.(结果中保留π)5.已知集合{}sin ,A y y x x R ==∈,{}21,B x x n n Z ==+∈,则AB = .理6文7.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点,且弦AB 的中点为(1,2)P ,则直线AB 的方程为 .理7文8.已知1log log 22=+y x ,则y x +的最小值为_____________.理8文10. 已知首项31=a 的无穷等比数列{}n a )(*N n ∈的各项和等于4,则这个数列{}n a 的公比是 .9.(理)在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧==,sin 2,cos 2ααy x (α为参数),O 为坐标原点,M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .则2C 的参数方程为 .10. 阅读右面的程序框图,运行相应的程序,输出的结果为 .11.(理)从5男和3女8位志愿者中任选3人参加冬奥会火炬接力活动,若随机变量ξ表示所选3人中女志愿者的人数,则ξ的数学期望是 .12.(理)设各项均不为零的数列{}n c 中,所有满足01<⋅+i i c c 的正整数i 的个数称为这个数列{}n c 的变号数.第10题图已知数列{}n a 的前n 项和442+-=n n S n ,nn a b 41-=(*N n ∈),则数列{}n b 的变号数为 .13.(理)已知定义在[)+∞,0上的函数)(x f 满足)2(3)(+=x f x f .当[)2,0∈x 时x x x f 2)(2+-=.设)(x f 在[)n n 2,22-上的最大值为n a ,且数列}{n a 的前n 项和为n S ,则=∞→n n S l i m . (其中*N n ∈)14.(理)正方形1S 和2S 内接于同一个直角三角形ABC 中,如图所示,设α=∠A ,若4411=S ,4402=S ,则=α2sin .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. (理)在实数集R 上定义运算*:(1)x y x y *=⋅-.若关于x 的不等式()0x x a *->的解集是集合{|11}x x -≤≤的子集,则实数a 的取值范围是…………………( ).)(A [0,2] )(B [2,1)(1,0]---)(C [0,1)(1,2] )(D [2,0]- 16.“1=ω”是“函数x x x f ωω22cos sin )(-=的最小正周期为π”的…………( ).)(A 充分必要条件 )(B 充分不必要条件 )(C 必要不充分条件 )(D 既不充分又必要条件17. 若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =………………………………………………………………( ). )(A 1:1 )(B 2:1 )(C 3:2 )(D 4:118.(理)函数()f x 的定义域为实数集R ,⎪⎩⎪⎨⎧<≤--≤≤=.01,1)21(,10,)(x x x x f x 对于任意的x R ∈都有(1)(1)f x f x +=-.若在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,则实数m 的取值范围是…………………………………………( ).ABCDEFS 1αABCPNF S 2αMQ)(A 10,2⎡⎤⎢⎥⎣⎦ )(B 10,4⎡⎫⎪⎢⎣⎭ )(C 10,2⎛⎤ ⎥⎝⎦ )(D 10,4⎛⎤ ⎥⎝⎦三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)(理)如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,︒=∠90CAD ,PA ⊥平面ABCD ,1PA BC ==,AB =F 是BC的中点.(1) 求证:DA ⊥平面PAC ;(2)若以A 为坐标原点,射线AC 、AD 、AP 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,已经计算得)1,1,1(=是平面PCD 的法向量,求平面PAF 与平面PCD 所成锐二面角的余弦值. 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点O 为圆心的两个同心圆弧AD 、弧BC 以及两条线段AB 和CD 围成的封闭图形.花坛设计周长为30米,其中大圆弧AD 所在圆的半径为10米.设小圆弧BC 所在圆的半径为x 米(100<<x ),圆心角为θ弧度. (1)求θ关于x 的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,当x 为何值时,y 取得最大值?21.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分(理)已知椭圆2222:1x y C a b+=(0)a b >>的右焦点为F (1,0),短轴的端点分别为12,B B ,且12FB FB a ⋅=-.(1)求椭圆C 的方程;ADC F PB(第20题图)(2)过点F 且斜率为k (0)k ≠的直线l 交椭圆于,M N 两点,弦MN 的垂直平分线与x 轴相交于点D .设弦MN 的中点为P ,试求DPMN的取值范围. 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分(理)设函数xx g 3)(=,xx h 9)(=.(1) 解方程:)9)((log )8)(2(log 33+=-+x h x g x ; (2)令3)()()(+=x g x g x p ,3)(3)(+=x h x q ,求证:)20142013()20142012()20142()20141()20142013()20142012()20142()20141(q q q q p p p p ++++=++++ (3)若bx g ax g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x恒成立,求实数k 的取值范围. 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(理)设各项都是正整数的无穷数列{}n a 满足:对任意*N n ∈,有1+<n n a a .记n a n a b =. (1)若数列{}n a 是首项11a =,公比2=q 的等比数列,求数列{}n b 的通项公式; (2)若n b n 3=,证明:21=a ;(3)若数列{}n a 的首项11a =,1+=n a n a c ,{}n c 是公差为1的等差数列.记n nn a d ⋅-=2,n n n d d d d S ++++=-121 ,问:使5021>⋅++n n n S 成立的最小正整数n 是否存在?并说明理由.四区2013学年度高考模拟考试数学试卷文理科解答参考答案及评分标准 2014.04说明1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第19题至第23题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 理1.2; 2.2 3.35; 4.π125.{}1,1-;6. 30x y +-= 7. 22; 8.41 9. ⎩⎨⎧==,sin 4,cos 4ααy x (α为参数);10. 13811..895613561525630156100=⨯+⨯+⨯+⨯=ξE 12.3. 13.2314.1012sin =α 3.35; 4.π125.{}1,1-;6.}2,6,2,65{ππππ--7.30x y +-= ; 8.229.37; 10. 41 11. 2213y x -=; 12.1253381556C C C = 13.当1-=ac 时,0lim 622222=⎪⎭⎫⎝⎛++∴⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++∞→nn n n c a c a c a c a ; 当1=ac 时,c a =舍去. 14.]41,0(二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.D ;16.B ;17.C ;18.理D ;三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(理)1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --. (1) 证明方法一:Q 四边形是平行四边形,Q PA ⊥平面ABCD ∴PA DA ⊥,又AC DA ⊥,AC PA A =I ,∴DA ⊥平面PAC .方法二:证得DA uu u r是平面PAC 的一个法向量,∴DA ⊥平面PAC .(2)通过平面几何图形性质或者解线性方程组,计算得平面PAF 一个法向量为(1,2,0)m =u r, 又平面PCD 法向量为(1,1,1)n =r,所以||cos ,5||||m n m n m n ⋅<>==u r ru r r u r r∴所求二面角的余弦值为5. 20.(1)设扇环的圆心角为θ,则()30102(10)x x θ=++-, 所以10210xxθ+=+, (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.装饰总费用为()9108(10)17010x x x θ++-=+,所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, 令17t x =+,则3913243()101010y t t =-+≤,当且仅当t =18时取等号, 此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.21.理(1)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--,2(1,)FB b =-.由12FB FB a ⋅=-,得21b a -=-. 又因为221a b -=,解得2,a b ==.所以椭圆C 的方程为22143x y +=. (2)依题意直线l 的方程为(1)y k x =-.由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+. 所以弦MN 的中点为22243(,)3434k kP k k -++.所以MN ===2212(1)43k k +=+.直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =所以224312(1)43DP k k MN k +==++=. 又因为211k +>,所以21011k <<+.所以104<<. 所以DP MN的取值范围是1(0,)4.22.理(1)99)832(3+=-⋅⋅xx x ,93=x ,2=x(2)21323)21()20141007(===p p ,2163)21()20141007(===q q . 因为1333333333333)1()(11=+++=+++=-+--xxx xx xx x p x p ,1393399399399)1()(11=+++=+++=-+--x x x x x x x x q x q所以,211006)20142013()20142()20141(+=+++p p p , 211006)20142013()20142()20141(+=+++q q q . )20142013()20142()20141(p p p +++ =)20142013()20142()20141(q q q +++ .(3)因为bx ax x f +++=)()1()(ϕϕ是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=x x f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h 即23132-⋅>-x x k 对任意的R x ∈都成立, 即x x k 313+<对任意的R x ∈都成立,2<k . 23.理(1)1111a b a a ===,242112211--====--n a n n n n a a b ;(2)根据反证法排除11a =和*113()a a N ≥∈证明:假设12a ≠,又*N a n ∈,所以11a =或*113()a a N ≥∈①当11a =时,1111a b a a ===与13b =矛盾,所以11a ≠;②当*113()a a N ≥∈时,即1113a a b a ≥==,即11a a a ≥,又1+<n n a a ,所以11a ≤与*113()a a N ≥∈矛盾;由①②可知21=a .(3)首先{}n a 是公差为1的等差数列, 证明如下:1n n a a +>*2,n n N ⇒≥∈时1n n a a ->,所以11n n a a -≥+()n m a a n m ⇒≥+-,*(,)m n m n N <∈、1111[1(1)]n n a a n n a a a a ++++⇒≥++-+即11n n n n c c a a ++-≥-由题设11n n a a +≥-又11n n a a +-≥11n n a a +⇒-=即{}n a 是等差数列.又{}n a 的首项11a =,所以n a n =,)223222(32nn n S ⋅++⋅+⋅+-= ,对此式两边乘以2,得14322232222+⋅--⋅-⋅--=n n n S两式相减得=⋅-++++=+13222222n n n n S 22211-⋅-++n n n 22211-=⋅+++n n n n S ,5021>⋅++n n n S 即5221≥+n ,当5≥n 时,526421>=+n ,即存在最小正整数5使得5021>⋅++n n n S 成立. 注:也可以归纳猜想后用数学归纳法证明n a n =.。
杨浦区2014学年度第二学期高三年级学业质调研数学学科试卷(理科)2015.4

杨浦区2014学年度第二学期高三年级学业质量调研数学学科试卷(理科)2015.4考生注意:1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上2.本试卷共有23道题,满分150分,考试时间120分钟一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分 1.函数()f x 的定义域是 . 2.若集合()(){}22,1,,,2x A x y y B x y x Z y Z ⎧⎫⎪⎪=+<=∈∈⎨⎬⎪⎪⎩⎭,则A B I 的元素个数为 . 3.若42321xx=,则x 的值是 .4.62x ⎛- ⎝的展开式中的常数项的值是 .5.某射击选手连续射击5枪命中环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为 .6.对数不等式()()331log log 0x a x +->的解集是为 .7.极坐标方程sin 3πρθ⎛⎫=- ⎪⎝⎭8.如图,根据该程序框图,若输出的y 为2,9.若正数,a b 满足3ab a b =++,则ab10.已知12,e e u r u u r 是不平行的向量,设12,a e ke b =+=r u r u u r r 充要条件是实数k 等于 .11.已知方程()210x px p R -+=∈的两根为12x x 、若121x x -=,则实数p 的值为 .12.已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为 .13.已知*N n ∈,在坐标平面中有斜率为n 的直线n l 与圆222x y n +=相切,且n l 交y 轴的正半轴于点n P ,交x 轴于点n Q ,则2lim2n n x P Q n →∞的值为 .14.对于自然数*N 的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替地加减各数,例如{}1,2,4,6,9的交替和是964216-+-+=;则集合{}1,2,3,4,5,6,7的所有非空子集的交替和的总和为 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.“2a ≤-”是“函数()()21R f x x ax x =++∈只有一个零点”的 ( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 16.在复平面中,满足等式112z z +--=的z 所对应点的轨迹是( ) A.双曲线 B.双曲线的一支 C.一条射线 D.两条射线17.设反比例函数()1f x x=与二次函数()2g x ax bx =+的图像有且仅有两个不同的公共点()()1122,,,A x y B x y ,且12x x <,则12yy = ( )A.2或12B.2-或12-C.2或12-D.2-或12 18.如图,设店A 是单位圆上的一个定点,动点P 从点A 出发, 在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数()d f l =的图像大致是( )A.B. C. D.三 .解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.ABC19.(本题满分12分)如图,一条东西走向的大江,其河岸A 处有人要渡江到对岸B 处,江面上有一座大桥AC ,已知B 在A 的西南方向,C 在A 的南偏西15︒,10BC =公里.现有两种渡江方案: 方案一:开车从大桥AC 渡江到C 处,然后再到B 处; 方案二:直接坐船从A 处渡江到对岸B 处.若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B 处,应选择哪个方案?说明理由.20.(本题满分14分,其中第一小题7分,第二小题7分)在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (1)试确定点F 的位置,使得1D E ⊥平面1AB F ;(2)当1D E ⊥平面1AB F 时,求二面角1C EF A --的大小(结果用反三角函数表示).21.(本题满分14分,其中第一小题4分,第二小题5分,第三小题5分)已知函数()()31R 31x x t f x t ⋅-=∈+是奇函数.(1)求t 的值;(2)求()f x 的反函数()1f x -;(3)对于任意的0m >,解不等式:()131log xf x m-+>.1A B C D 1D 1C 1B F E A22.(本题满分16分,其中第一小题5分,第二小题5分,第三小题6分)数列{}n a 满足11a =,2a r =(0r >),令1n n n b a a +=⋅,{}n b 是公比为()0,1q q q ≠≠-的等比数列,设212n n n c a a -=+.(1)求证:()11n n c r q -=+⋅; (2)设{}n c 的前n 项和为n S ,求1limn nS →∞的值; (3)设{}n c 前n 项积为n T ,当12q =-时,n T 的最大值在8n =和9n =的时候取到,求n 为何值时,nT 取到最小值.23.(本题满分18分,其中第一小题6分,第二小题6分,第三小题6分)已知抛物线()2:20C y px p =>的焦点F ,线段PQ 为抛物线C 的一条弦. (1)若弦PQ 过焦点F ,求证:11FP FQ+为定值; (2)求证:x 轴的正半轴上存在定点M ,对过点M 的任意弦PQ ,都有2211MP MQ +为定值; (3)对于(2)中的点M 及弦PQ ,设PM MQ λ=u u u u r u u u u r ,点N 在x 轴的负半轴上,且满足()NM NP NQ λ⊥-u u u u r u u u r u u u r,求N 点坐标.。
上海市各区高三数学一模试题分类汇编 直线与圆(理)

上海市各区2014届高三数学(理科)一模试题分类汇编2014.01.26(杨浦区2014届高三1月一模,理)2.若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示).2.3arctan ;(杨浦区2014届高三1月一模,理)13.设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的概率是 .13.理95, (浦东新区2014届高三1月一模,理)18. 如图所示,点,,A B C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点,若OC mOA nOB u u u r u u r u u u r =+,则( )(A)01m n <+<; (B)1m n +>;(C)1m n +<-; (D)10m n -<+<;18. B(嘉定区2014届高三1月一模,理)9.在平面直角坐标系中,△ABC 的顶点坐标分别为)2,1(A ,)3,7(-B ,点C 在直线4=y上运动,O 为坐标原点,G 为△ABC 的重心,则⋅的最小值为__________.9.9(徐汇区2014届高三1月一模,理)15. 直线()0,0bx ay ab a b +=<<的倾斜角是------------------------------------------------------------------------( )(A) arctan a bπ- (B) arctan b aπ- (C) arctanab⎛⎫-⎪⎝⎭(D) arctanba⎛⎫-⎪⎝⎭15.B。
上海市杨浦区2014学年高三一模数学试卷(理)含答案-推荐下载

第 1 页 共 14 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
上海第期高三名校数学理试题分省分项汇编 专题 数列数学归纳法与极限解析含解析

一.基础题组1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】已知数列{}n a 是公差为2的等差数列,若6a 是7a 和8a 的等比中项,则n a =________.2. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】已知数列}{n a 的前n 项和2n S n =(*N ∈n ),则8a 的值是__________.3. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】若nn r r ⎪⎭⎫ ⎝⎛+∞→12lim 存在,则实数r 的取值范围是_____________.4. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】在n n n C B A ∆中,记角n A 、n B 、n C 所对的边分别为n a 、n b 、n c ,且这三角形的三边长是公差为1的等差数列,若最小边1+=n a n ,则=∞→n n C lim ( )..A 2π .B 3π .C 4π .D 6π5. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】221lim 2n n n n→∞+=-___________.6. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .【答案】1 【解析】试题分析:圆心为(0,1),21nd n =+,22limlim1111n n n n→∞→∞==++. 考点:点到直线距离公式,极限.7.【2013学年第一学期十二校联考高三数学(理)考试试卷】计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.8. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.9. 【2013学年第一学期十二校联考高三数学(理)考试试卷】设正项数列}{n a 的前n 项和是n S ,若}{n a 和}{n S 都是等差数列,且公差相等,则1a =_______________. 【答案】14【解析】试题分析:等差数列}{n a 的公差为d ,则21()22n d dS n a n =+-,21()22n d dS n a n =+-,数列}{n S 是等差数列,则n S 是关于n 的一次函数(或者是常函数),则102da -=,2n d S n =,从而数列}{n S 的公差是2d ,那么有2d d =,0d =(舍去)或12d =,114a =. 考点:等差数列的通项公式.10. 【上海市十三校2013年高三调研考数学试卷(理科)】计算:2211lim[()]12n n n n n →+∞--++=_________.11. 【上海市十三校2013年高三调研考数学试卷(理科)】设正数数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等,则=+d a 1__ _.12. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】计算:210lim323xnn→∞++=.【答案】23【解析】试题分析:这属于“∞∞”型极限问题,求极限的方法是分子分母同时除以n(n的最高次幂),化为一般可求极限型,即210lim323xnn→∞++1022lim2333nnn→∞+==+.考点:“∞∞”型极限13.【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】如果()1111112312nf nn n=++++++++L L(*n N∈)那么()()1f k f k+-共有项.14.【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】计算:=+∞→133limnnn.15.【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(理科)】已知数列{}{}n n b a ,都是公差为1的等差数列,其首项分别为11,b a ,且,511=+b a,,11N b a ∈设),(N n a c n b n ∈=则数列{}n c 的前10项和等于______.【答案】85 【解析】试题分析:数列{}n c 到底是什么暂时不知,因此我们试着把其前10项的和10S 表示出来,1210b b S a a =++L10b a +11121[(1)][(1)][(1)]n a b a b a b =+-++-+++-L 1121010()10a b b b =++++-L =111091010102a b ⨯++-1110()451085a b =++-=. 考点:等差数列的通项公式与前n 和公式.二.能力题组1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】已知数列{}na 满足()()*+∈=-+N n n a a n nn ,11,则数列{}na 的前2016项的和2016S 的值是___________.可行,由此我们可得2016S =12344342414()()k k k k a a a a a a a a ---+++++++++L L 20132014(a a ++2015a + 2016)a +(222)(226)(22(42))(222014)k =+⨯++⨯+++⨯-+++⨯L L 25044(13=⨯+⨯++5+L 1007)+=1017072.考点:分组求和.2. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】某种平面分形图如下图所示,一级分形图是一个边长为1的等边三角形(图(1));二级分形图是将一级分形图的每条线段三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边(图(2));将二级分形图的每条线段三等边,重复上述的作图方法,得到三级分形图(图(3));…;重复上述作图方法,依次得到四级、五级、…、n 级分形图.则n 级分形图的周长为__________.3. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知函数2sin)(2πn n n f =,且)1()(++=n f n f a n ,则=++++2014321a a a a Λ . 【答案】4032- 【解析】试题分析:考虑到sin2n π是呈周期性的数列,依次取值1,0,1,0,-L ,故在122014a a a +++L 时要分组求和,又由n a 的定义,知1352013a a a a ++++L (1)(2)(3)(4)(2013)(2014)f f f f f f =++++++L2222221357200920112013=-+-++-+L 1(53)(53)(97)(97)=+-++-++L (20132011)+-⋅(20132011)+12(357920112013)=+++++++L 110062016=+⨯,242014a a a +++L(2)(3)(4)f f f =+++(5)(2014)(2015)f f f +++L 22223520132015=-+++-L 22(352013)2015=+++-L 2100620062015=⨯-,从而122014a a a +++L 1210062016=+⨯⨯图(1)图(2)图(3)……22015-4032=-.考点:周期数列,分组求和.4. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知{}n a 是各项均为正数的等比数列,且1a 与5a 的等比中项为2,则42a a +的最小值等于 .5. 【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(理科)】数列{}n a 满足*,5221...2121221N n n a a a n n ∈+=+++,则=n a .6. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】已知函数,1)(22+=x x x f 则 ()()()111112(2013)20142320132014f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭K L ( )(A) 201021 (B) 201121 (C) 201221 (D) 2013217. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a Λ .8. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】数列}{n a 的前n 项和为n S ,若2cos 1πn n a n +=(*N n ∈),则=2014S . 【答案】1006 【解析】试题分析:组成本题数列的通项公式中,有式子cos2n π,它是呈周期性的,周期为4,因此在求和2014S 时,想象应该分组,依次4个为一组,12341(12)1(14)a a a a +++=+-+++6=,56781(16)1(18)6a a a a +++=+-+++=,43424141[1(42)]1(14)k k k k a a a a k k ---+++=+--+++6=,最后还剩下20131a =,2014120142013a =-=-,所以20146503120131006S =⨯+-=.考点:分组求和.9. 【2013学年第一学期十二校联考高三数学(理)考试试卷】若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S= .(用数字作答)10. 【上海市十三校2013年高三调研考数学试卷(理科)】等差数列{}n a 中,1102,15a S ==,记2482n n B a a a a =++++L ,则当n =____时,n B 取得最大值.11. 【上海市十三校2013年高三调研考数学试卷(理科)】已知函数()(2318,3133,3x tx x f x t x x ⎧-+≤⎪=⎨-->⎪⎩,记()()*n a f n n N =∈,若{}n a 是递减数列,则实数t 的取值范围是______________.12. 【上海市十三校2013年高三调研考数学试卷(理科)】已知无穷数列{}n a 具有如下性质:①1a 为正整数;②对于任意的正整数n ,当n a 为偶数时,12nn a a +=;当n a 为奇数时,112n n a a ++=.在数列{}n a 中,若当n k ≥时,1n a =,当1n k ≤<时,1n a >(2k ≥,*k N ∈),则首项1a 可取数值的个数为 (用k 表示)三.拔高题组1. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】数列{}n a 是递增的等差数列,且661-=+a a ,843=⋅a a . (1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最小值; (3)求数列{}n a 的前n 项和n T .【答案】(1) 210n a n =-;(2)20-;(3)229,15,*,940,6,*,n n n n n N T n n n n N ⎧-+≤≤∈⎪=⎨-+≥∈⎪⎩.【解析】2.【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】已知数列{}a中,n13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2n n a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.(2)假设在数列{}n a 中存在连续三项成等差数列,不妨设连续的三项依次为1k a -,k a ,1k a +(2k ≥,*k N ∈),由题意得,112+-+=k k k a a a ,将1)1(2--+=k k k a ,211)1(2----+=k k k a ,kk k a )1(211-+=++代入上式得……7分])1(2[])1(2[])1(2[21211k k k k k k -++-+=-++---………………8分化简得,21)1(42---⋅=-k k ,即11)1(42---⋅=k k ,得4)2(1=--k ,解得3=k所以,存在满足条件的连续三项为2a ,3a ,4a 成等比数列。
上海市静安、杨浦、青浦、宝山四区2014届高三模拟理科数学试卷(带解析)

上海市静安、杨浦、青浦、宝山四区2014届高三模拟理科数学试卷(带解析)1.在实数集R 上定义运算*:(1)x y x y *=⋅-.若关于x 的不等式()0x x a *->的解集是集合{|11}x x -≤≤的子集,则实数a 的取值范围是( ). A.[0,2] B. [2,1)(1,0]--- C. [0,1)(1,2] D.[2,0]-【答案】D 【解析】试题分析:依题意()0x x a *->可得(1)0x x a -+>.由于解集为{|11}x x -≤≤,所以011a <+≤或110a -≤+<,即10a -<≤或21a -≤<-.当1a =-时,解集为空集,所以成立.故选D.考点:1.新定义问题.2.不等式的解法.3.集合间的关系.2.“1=ω”是“函数x x x f ωω22cos sin )(-=的最小正周期为π”的( ). A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又必要条件 【答案】B 【解析】试题分析:因为x x x f ωω22cos sin)(-=可化为()cos 2f x x ω=-.所以可得1=ω是函数()f x 最小正周期为π的充分条件.由于函数的最小正周期为π,则2,12T ππωω==∴=±.所以必要性不成立.故选B.考点:1.三角函数的恒等变形.2.充要条件的知识.3.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =( ).A.1:1B.2:1C.3:2D.4:1 【答案】C 【解析】试题分析:假设球的半径为r .则圆柱的底面半径为r .高为2r .所以圆柱的表面积为216S r π=.球的表面积为224S r π=.所以12:3:2S S =.故选C.考点:1.圆柱的表面积.2.球的表面积.3.方程的思想.4.函数()f x 的定义域为实数集R ,⎪⎩⎪⎨⎧<≤--≤≤=.01,1)21(,10,)(x x x x f x 对于任意的x R ∈都有(1)(1)f x f x +=-.若在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,则实数m 的取值范围是( ).O xyA.10,2⎡⎤⎢⎥⎣⎦ B.10,4⎡⎫⎪⎢⎣⎭ C.10,2⎛⎤ ⎥⎝⎦ D.10,4⎛⎤⎥⎝⎦ 【答案】D 【解析】试题分析:因为对任意的x R ∈都有(1)(1)f x f x +=-,所以函数()f x 的周期为2. 由在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,即函数()f x mx m =+在[1,3]-上有四个不同的零点.即函数()y f x =与函数()h x mx m =+在[1,3]-有四个不同的交点.所以0(3)1h <≤.解得1(0,]4m ∈.故选D. 考点:1.分段函数的性质.2.函数的周期性.3.函数的等价变换.5.已知j i ,是方向分别与x 轴和y 轴正方向相同的两个基本单位向量,则平面向量j i +的模等于 .【解析】试题分析:由2i j +=.考点:向量的模的含义. 6.二阶行列式ii i ++-1101的值是 . (其中i 为虚数单位)【答案】2【解析】 试题分析:由ii i ++-1101可得(1)(1)2i i -+=.考点:1.行列式的运算.2.复数的运算.7.二项式7)1(+x 的展开式中含3x 项的系数值为_______________. 【答案】35 【解析】试题分析:717r rr T C x -+=.依题意可得73,4r r -=∴=.所以展开式中含3x 项的系数值为35.考点:1.二项式定理的展开式.2.项的系数的概念.8.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________.(结果中保留π) 【答案】12π 【解析】试题分析:由圆锥的母线长为5,侧面积为π15.则根据12s lr =.即可求出圆锥的底面周长6π.从而解出底面半径3r =.再求出圆锥的高4h =.根据体积公式213V r h π= 12π=.考点:1.圆锥曲线的侧面积.2.圆锥曲线的体积公式.3.图形的展开前后的变化. 9.已知集合{}sin ,A y y x x R ==∈,{}21,B x x n n Z ==+∈,则A B = .【答案】{1,0,1}- 【解析】试题分析:依题意可得集合{11}A y y =-≤≤,集合{,1,0,1,}B =⋅⋅⋅-⋅⋅⋅.所以A B ={1,0,1}-.考点:1.集合描述法表示.2.三角函数的值域.10.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点,且弦AB 的中点为(1,2)P ,则直线AB 的方程为 . 【答案】30x y +-= 【解析】试题分析:假设1122(,),(,)A x y B x y .AB 的中点坐标为00(,)x y .所以可得22112222(1) 4(1) 4 x y x y ⎧+-=⎪⎨+-=⎪⎩①②.由①-②可得001AB x k y =-.即1AB k =-.所以:30AB l x y +-=. 考点:1.点差法的应用.2.直线与圆的位置关系.3.直线方程的表示. 11.已知1log log 22=+y x ,则y x +的最小值为_____________.【答案】【解析】试题分析:由1log log 22=+y x 可得2log ()1,2xy xy =∴=.又y x +≥=.当且仅当x y =时取等号. 考点:1.对数的知识.2.基本不等式.12.已知首项31=a 的无穷等比数列{}n a )(*N n ∈的各项和等于4,则这个数列{}n a 的公比是 . 【答案】14【解析】试题分析:首项31=a 的无穷等比数列{}n a )(*N n ∈,设公比为q ,由各项和等于 4.即341q=-.解得14q =.考点:无穷等比数列的求和公式.13.在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧==,sin 2,cos 2ααy x (α为参数),O 为坐标原点,M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .则2C 的参数方程为 .【答案】4cos 4sin x y αα=⎧⎨=⎩(α为参数)【解析】试题分析:设点(,)P x y .由2OP OM =,可得4cos 4sin x y αα=⎧⎨=⎩.即2C 的参数方程为4cos 4sin x y αα=⎧⎨=⎩(α为参数). 考点:1.参数方程的知识.2.向量相等.14.阅读右面的程序框图,运行相应的程序,输出的结果为 .【答案】138【解析】 试题分析:由程序框图可知,x=1,y=1,z=2;当x=2,y=3,z=5;当x=3,y=5,z=8;当x=5,y=8,z=13;当x=8,y=13,z=21.由21>20.所以退出循环.即可得138y x =. 考点:1.程序框图.2.数的交换运算. 15.从5男和3女8位志愿者中任选3人参加冬奥会火炬接力活动,若随机变量ξ表示所选3人中女志愿者的人数,则ξ的数学期望是 . 【答案】98【解析】试题分析:由8位志愿者中任选3人参加冬奥会火炬接力活动共有3856C =种情况.所以3510(0)5656C P ξ===.215330(1)5656C C P ξ===.125315(2)5656C C P ξ===.03531(3)5656C C P ξ===.所以ξ的数学期望是30151639()23565656568E ξ=+⨯+⨯==. 考点:1.概率问题.2.数学期望.16.设各项均不为零的数列{}n c 中,所有满足01<⋅+i i c c 的正整数i 的个数称为这个数列{}n c 的变号数.已知数列{}n a 的前n 项和442+-=n n S n ,nn a b 41-=(*N n ∈),则数列{}n b 的变号数为 . 【答案】3【解析】试题分析:由数列{}n a 的前n 项和442+-=n n S n ,所以11a =.当2n ≥时,125n n n a S S n -=-=-.所以42912525n n b n n -=-=--.当10i i bb +<(正整数i )时,即292702523i i i i --⋅<--.所以3522i <<或7922i <<.所以i=2,4又因为1235150bb =-⨯=-<,所以i=1.所以数列{}n b 的变号数为3.考点:1.数列的求和公式.2.数列与不等式交汇.3.分类归纳的思想.4.递推的数学思想. 17.已知定义在[)+∞,0上的函数)(x f 满足)2(3)(+=x f x f .当[)2,0∈x 时x x x f 2)(2+-=.设)(x f 在[)n n 2,22-上的最大值为n a ,且数列}{n a 的前n 项和为n S ,则=∞→n n S lim . (其中*N n ∈)【答案】32【解析】试题分析:依题意可得函数2222 [0,2)1(68) [2,4)3()1(1024) [4,6)9x x x x x x f x x x x ⎧-+∈⎪⎪-+-∈⎪=⎨⎪-+-∈⎪⎪⋅⋅⋅⎩.所以11a =,213a =,319a =,…,113n n a -=.所以数列}{n a 是一个首项为1,公比为13的等比数列.所以31(1)23n n S =-.所以=∞→n n S lim 32.考点:1.函数的性质.2.数列的通项.3.函数的最值.4.极限问题.18.正方形1S 和2S 内接于同一个直角三角形ABC 中,如图所示,设α=∠A ,若4411=S ,4402=S ,则=α2sin .ABCDEFS 1 αABCPNF S 2αMQ【答案】110【解析】试题分析:依题意可得4411=S ,所以21FD =,4402=S ,所以MQ =.所以21cos sin AF αα=,所以即21cos 21sin AC αα=+.AM CM α==,所以AC α=.即可得21c o s2110c o s s i n ααα+=+.即21(sin cos )cos αααα+=.令sin cos tαα+=.则22sin cos 1t αα=-.所以可得2210t -=.解得t =或t =(由于1sin 2011α=-<,所以舍去.),所以21sin 2110t α=-=. 考点:1.解三角形的知识.2.三角形相似的判定与性质.3.三角的运算.19.如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,︒=∠90CAD ,PA ⊥平面ABCD ,1PA BC ==,AB =,F 是BC 的中点.ADCFPB(1)求证:DA ⊥平面PAC ;(2)若以A 为坐标原点,射线AC 、AD 、AP 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,已经计算得)1,1,1(=n 是平面PCD 的法向量,求平面PAF 与平面PCD 所成锐二面角的余弦值. 【答案】(1)参考解析;(2)5【解析】试题分析:(1)需证明DA ⊥平面PAC ,转化为证明AD ⊥AC,AD ⊥PA.因为PA 垂直平面ABCD ,由题意可得AD ⊥AC,AD ⊥PA 显然成立,即可得结论.(2)如图建立空间直角坐标系,因为)1,1,1(=是平面PCD 的法向量,所以求出平面PAF的法向量(1,2,0)m =u r,再根据两平面的法向量的夹角的余弦值,即可得到平面PAF 与平面PCD 所成锐二面角的余弦值,试题解析: 1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A C B D F P --. (1) 证明方法一:Q 四边形是平行四边形,Q PA ⊥平面ABCD ∴PA DA ⊥,又AC DA ⊥,AC PA A =I ,∴DA ⊥平面PAC .方法二:证得DA uu u r是平面PAC 的一个法向量,∴DA ⊥平面PAC .(2)通过平面几何图形性质或者解线性方程组,计算得平面PAF 一个法向量为(1,2,0)m =u r, 又平面PCD 法向量为(1,1,1)n =r,所以||cos ,5||||m n m n m n ⋅<>==u r ru r r u r r∴考点:1.线面垂直的证明2.二面角.3.空间向量的运算.4.运算的能力.20.某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点O 为圆心的两个同心圆弧AD 、弧BC 以及两条线段AB 和CD 围成的封闭图形.花坛设计周长为30米,其中大圆弧AD 所在圆的半径为10米.设小圆弧BC 所在圆的半径为x 米(100<<x ),圆心角为θ弧度.(1)求θ关于x 的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,当x 为何值时,y 取得最大值?【答案】(1)10210x x θ+=+;(2)参考解析 【解析】试题分析:(1)由于花坛设计周长为30米,其中大圆弧AD 所在圆的半径为10米.设小圆弧BC 所在圆的半径为x 米(100<<x ),圆心角为θ弧度.所以AD 的弧长为10θ,BC 的弧长为x θ.所以可得102(10)30x x θθ++-=.即可得结论.(2)由花坛两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.即可得所需费用的关系式. 花坛的面积由大扇形面积减去小的扇形面积即可,再利用基本不等式即可求得结论.试题解析:(1)设扇环的圆心角为θ,则()30102(10)x x θ=++-, 所以10210xxθ+=+, (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<. 装饰总费用为()9108(10)17010x x x θ++-=+,所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++,令17t x =+,则3913243()101010y t t =-+≤,当且仅当t =18时取等号, 此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.考点:1.扇形的面积.2.函数的最值.3.基本不等式的应用.21.已知椭圆2222:1x y C a b+=(0)a b >>的右焦点为F (1,0),短轴的端点分别为12,B B ,且12FB FB a ⋅=-. (1)求椭圆C 的方程;(2)过点F 且斜率为k (0)k ≠的直线l 交椭圆于,M N 两点,弦MN 的垂直平分线与x 轴相交于点D .设弦MN 的中点为P ,试求DP MN的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】试题分析:(1)由椭圆2222:1x y C a b +=()0a b >>的右焦点F (1,0),即1c =.又短轴的端点分别为12,B B ,且12FB FB a ⋅=-,即可求出a ,b 的值.从而得到椭圆的方程.(2)由(1)可得假设直线AB 的方程联立椭圆方程消去y 即可得到一个关于x 的二次方程,由韦达定理得到根与直线斜率k 的关系式.写出线段AB 的中点坐标以及线段AB 的垂直平分线的方程.即可得到点D 的坐标.即可求得线段PD 的长,根据弦长公式可得线段MN 的长度,再通过最的求法即可得结论.试题解析:(1)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--,2(1,)FB b =-. 由12FB FB a ⋅=-,得21b a -=-. 又因为221a b -=,解得2,a b ==.所以椭圆C 的方程为22143x y +=. (2)依题意直线l 的方程为(1)y k x =-.由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+.所以弦MN 的中点为22243(,)3434k k P k k -++.所以MN == 2212(1)43k k +=+.直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =.所以224312(1)43DP k k MN k +==++=. 又因为211k +>,所以21011k <<+.所以104<. 所以DP MN 的取值范围是1(0,)4.考点:1.向量的数量积.2.椭圆的性质.3.等价转化的数学思想.4.运算能力. 22.设函数xx g 3)(=,xx h 9)(=.(1)解方程:)9)((log )8)(2(log 33+=-+x h x g x ; (2)令3)()()(+=x g x g x p ,3)(3)(+=x h x q ,求证:)20142013()20142012()20142()20141()20142013()20142012()20142()20141(q q q q p p p p ++++=++++(3)若bx g ax g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】(1)2=x ;(2)参考解析;(3)2<k 【解析】试题分析:(1)由于函数x x g 3)(=,x x h 9)(=,所以解方程0)1()(8)(=--h x g x h .通过换元即可转化为解二次方程.即可求得结论.(2)由于3)()()(+=x g x g x p 即得到()x P x =.所以()(1)1p x p x +-=.所以两个一组的和为1,还剩中间一个21323)21()20141007(===p p .即可求得结论. (3)由bx g ax g x f +++=)()1()(是实数集R 上的奇函数,可求得1,3=-=b a .又由于0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立.该式的理解较困难,所以研究函数()f x 的单调性可得.函数()f x 在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1)99)832(3+=-⋅⋅xx x ,93=x ,2=x(2)21323)21()20141007(===p p ,2163)21()20141007(===q q . 因为1333333333333)1()(11=+++=+++=-+--xxx xx xx x p x p ,1393399399399)1()(11=+++=+++=-+--x x x x x x x x q x q所以,211006)20142013()20142()20141(+=+++p p p , 211006)20142013()20142()20141(+=+++q q q . )20142013()20142()20141(p p p +++ =)20142013()20142()20141(q q q +++ .(3)因为bx ax x f +++=)()1()(ϕϕ是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=xx f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h 即23132-⋅>-x x k 对任意的R x ∈都成立, 即x xk 313+<对任意的R x ∈都成立,2<k . 考点:1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.23.设各项都是正整数的无穷数列{}n a 满足:对任意*N n ∈,有1+<n n a a .记n a n a b =. (1)若数列{}n a 是首项11a =,公比2=q 的等比数列,求数列{}n b 的通项公式; (2)若n b n 3=,证明:21=a ;(3)若数列{}n a 的首项11a =,1+=n a n a c ,{}n c 是公差为1的等差数列.记n n n a d ⋅-=2,n n n d d d d S ++++=-121 ,问:使5021>⋅++n n n S 成立的最小正整数n 是否存在?并说明理由.【答案】(1)142n n b -=;(2)参考解析;(3)存在5【解析】试题分析:(1)由于数列{}n a 是首项11a =,公比2=q 的等比数列,所以通项公式为12 (*)n n a n N -=∈.由于数列{}n a 为递增数列,所以都符合1+<n n a a .即可得到数列{}n b 的通项公式.(2)由于各项都是正整数的无穷数列{}n a ,所以利用反正法的思想,反证法排除11a =和*113()a a N ≥∈即可得到证明.(3)由{}n a 各项都是正整数,所以由1n n a a +>可得到11n n a a +≥+.所以可得到1111[1(1)]n n a a n n a a a a ++++≥++-+.从而可得到{}n a 是公差为1的等差数列.再根据求和公式以及解不等式的知识求出结论. 试题解析:(1)1111a b a a ===,242112211--====--n a n n n n a a b ;(2)根据反证法排除11a =和*113()a a N ≥∈证明:假设12a ≠,又*N a n ∈,所以11a =或*113()a a N ≥∈ ①当11a =时,1111a b a a ===与13b =矛盾,所以11a ≠;②当*113()a a N ≥∈时,即1113a a b a ≥==,即11a a a ≥,又1+<n n a a ,所以11a ≤与*113()a a N ≥∈矛盾;由①②可知21=a .(3)首先{}n a 是公差为1的等差数列, 证明如下:1n n a a +>*2,n n N ⇒≥∈时1n n a a ->,所以11n n a a -≥+()n m a a n m ⇒≥+-,*(,)m n m n N <∈、1111[1(1)]n n a a n n a a a a ++++⇒≥++-+即11n n n n c c a a ++-≥-由题设11n n a a +≥-又11n n a a +-≥11n n a a +⇒-= 即{}n a 是等差数列.又{}n a 的首项11a =,所以n a n =,)223222(32n n n S ⋅++⋅+⋅+-= ,对此式两边乘以2,得 14322232222+⋅--⋅-⋅--=n n n S两式相减得=⋅-++++=+13222222n n n n S 22211-⋅-++n n n22211-=⋅+++n n n n S ,5021>⋅++n n n S 即5221≥+n ,当5≥n 时,526421>=+n ,即存在最小正整数5使得5021>⋅++n n n S 成立.注:也可以归纳猜想后用数学归纳法证明n a n =.考点:1.数列的性质.2.反证法的知识.3.放缩法证明相等的数学思想.4.数列求和.5.数列与不等式的知识交汇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用科技和互联网的力量,让教育变的更容易。
杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科) 2014.1.2考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上. 2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 计算:=+∞→133lim n nn .2.若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示).3.若行列式124012x -=,则x = .4.若全集U R =,函数21x y =的值域为集合A ,则=A C U.5.双曲线2221(0)y x b b -=>的一条渐近线方程为y =,则b =________.6.若函数()23-=x x f 的反函数为()x f 1-,则()=-11f . 7. 若将边长为cm 1的正方形绕其一条边所在直线旋转一周,则所形成圆柱的体积 等于 ()3cm .8. 已知函数()lg f x x =,若()1f ab =,则22()()f a f b += _________. 9. 已知函数()1cos sin )(2-+=x x x f ωω的最小正周期为π,则=ω _________.10. 某公司一年购买某种货物600吨,每次都购买x 吨,运费为3万元/次,一年的总存储费 用为2x 万元,若要使一年的总运费与总存储费用之和最小,则每次需购买 吨.11. 已知复数i -=2ω(i 为虚数单位),复数25-+=ωωz ,则一个以z 为根的实系数一元二次方程是________.12. 若21(nx x +的二项展开式中,所有二项式系数和为64,则该展开式中的常数项为 . 13.设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的运用科技和互联网的力量,让教育变的更容易。
概率是 .14.已知函数()21(0)xf x a a =⋅+≠,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩ 给出下列命题: ①()()F x f x =; ②函数()F x 是奇函数;③当0a <时,若0mn <,0m n +>,总有()()0F m F n +<成立,其中所有正确命题的序号是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15. 若空间三条直线c b a 、、满足b a ⊥,c b //,则直线a 与c ………( ).)(A 一定平行 )(B 一定相交 )(C 一定是异面直线 )(D 一定垂直16.“21<-x 成立”是“01<-x x成立”的 ………( ).)(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件. 17. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 1=a ,A B 2=, 则b 的取值范围为 ………( ). )(A ()3,2 . )(B ()3,1 .)(C()2,2 . )(D ()2,0 .18.定义一种新运算:,(),()b a b a b a a b ≥⎧⊗=⎨<⎩,已知函数24()(1)log f x xx =+⊗,若函数()()g x f xk =-恰有两个零点,则k 的取值范围为 ………( ). )(A (]1,2 . )(B (1,2). )(C (0,2) . )(D (0,1) .三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . 已知正方体1111D C B A ABCD -的棱长为a . (1)求异面直线B A 1与C B 1所成角的大小;运用科技和互联网的力量,让教育变的更容易。
(2)求四棱锥ABCD A -1的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分 .已知向量()1,2x =,()ax a 21,-=,其中0>a .函数()x g ⋅=在区间[]3,2∈x 上有最大值为4,设()()x x g x f =. (1)求实数a 的值;(2)若不等式()033≥-x x k f 在[]1,1-∈x 上恒成立,求实数k 的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.求抛物线Γ方程;如果使“蝴蝶形图案”的面积最小,求α的大小?运用科技和互联网的力量,让教育变的更容易。
22. (本题满分16分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分6分.已知椭圆Γ:2214x y +=.(1) 椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫ ⎝⎛21,m M 满足0m ≠,且m ≠①证明直线F E 与y 轴交点的位置与m 无关;②若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程.运用科技和互联网的力量,让教育变的更容易。
23.(本题满分18分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分13分,第①问5分,第②问8分. 设n S 是数列{}n a 的前n 项和,对任意*N n ∈都有()()p a a b kn S n n +++=12成立, (其中k 、b 、p 是常数) .(1)当0k =,3b =,4p =-时,求n S ;(2)当1k =,0b =,0p =时, ①若33a =,915a =,求数列{}n a 的通项公式;②设数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“Ω数列”.如果212a a -=,试问:是否存在数列{}n a 为“Ω数列”,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++<.若存在,求数列{}n a 的首项1a 的所有取值构成的集合;若不存在,说明理由.杨浦区2013—2014学年度第一学期高三模拟测试 2014.1.2 数学试卷(理科)参考答案及评分标准 说明1. 本解答列出试题的解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2. 评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3. 第19题至第23题中右端所注的分数,表示考生正确做到这一步应得的该题分数.4. 给分或扣分均以1分为单位.一.填空题(本大题满分56分) 1. 1 ; 2.3arctan ; 3.2; 4. ()0,∞- ; 5.3 ; 6. 1 ; 7. π; 8. 2;运用科技和互联网的力量,让教育变的更容易。
9. 理1±; 10. 30 ; 11. 01062=+-x x ; 12. 理15 ;13.理95,14.理②、③,二、选择题(本大题满分20分)本大题共有4题 15. D ; 16. B ; 17. A ; 18.理B ;三、解答题(本大题满分74分)本大题共5题 19. 【解】(1)因为 D A C B 11//,∴直线B A 1与D A 1所成的角就是异面直线B A 1与C B 1所成角. ……2分又BD A 1∆为等边三角形,∴异面直线B A 1与C B 1所成角的大小为︒60. ……6分(2)四棱锥ABCD A -1的体积=V 323131a a a =⨯⨯ ……12分20. 【解】(1)由题得()a x a ax ax n m x g -+-=-+=⋅=1)1(2122 ……4分 又0>a 开口向上,对称轴为1=x ,在区间[]3,2∈x 单调递增,最大值为4,()()43max ==∴g x g 所以,1=a ……7分(2)由(1)的他,()21)(-+==x x x x g x f ……8分令x t 3=,则⎥⎦⎤⎢⎣⎡∈3,31t 以()033≥-x x k f 可化为kt t f ≥)(,即t t f k )(≤恒成立, ……9分运用科技和互联网的力量,让教育变的更容易。
2)11()(-=t t t f 且⎥⎦⎤⎢⎣⎡∈3,311t ,当11=t ,即1=t 时t t f )(最小值为0, ……13分 0≤∴k ……14分21. 【解】理科 (1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……6分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……7分 解得αα2s i n )1(c o s 2+=AF ……8分 同理:αα2cos )sin 1(2-=BF ……9分αα2cos )sin 1(2+=DF ……10分 αα2sin )cos 1(2-=CF ……11分“蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ……12分则121141422-⎪⎭⎫ ⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8 ……14分22. 【解】 理科解:(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠,∴直线AM 的斜率为k1=m 21-,直线BM 斜率为k2=m 23,运用科技和互联网的力量,让教育变的更容易。