第4页 第28章 锐角三角函数的小结与复习

合集下载

【人教版】初中数学九年级知识点总结:28锐角三角函数

【人教版】初中数学九年级知识点总结:28锐角三角函数

【人教版】初中数学九年级知识点总结:28锐角三角函数【人教版】初中数学九年级知识点总结:28锐角三角函数【人教版】初中数学九年级知识点总结28锐角三角函数【编者按】本章内容主要学习正弦、余弦和正切等锐角三角函数的概念以及研究直角三角形中的边角关系和解直角三角形的内容。

通过本章的学习应该掌握锐角三角函数以及直角三角函数的相关内容。

一、目标与要求1.通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角.3.运用三角函数解决与直角三角形有关的简单的实际问题.4.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;初步感受高等数学中的微积分思想.5.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.6.能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.二、重点与难点1.重点(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住.(2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题.2.难点(1)锐角三角函数的概念.(2)经历探索30°,45°,60°角的三角函数值的过程,锻炼学生观察、分析,解决问题的能力.三、知识框架四、知识点、概念总结1.Rt△ABC中∠A的对边(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=斜边∠A的邻边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=斜边∠A的对边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的邻边∠A 的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的对边2.特殊值的三角函数:a30°45°60°3.互余角的三角函数间的关系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.4.同角三角函数间的关系平方关系:sin(α)+cos(α)=1tan(α)+1=sec(α)cot(α)+1=csc(α)积的关系:sinα=tanαcosαcosα=cotαsinαtanα=sinαsecα222222sinacosatanacota1222323222123313313cotα=cosαcscαsecα=tanαcscαcscα=secαcotα倒数关系:tanαcotα=1sinαcscα=1cosαsecα=15.三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。

28章锐角三角函数小结与复习教案 -

28章锐角三角函数小结与复习教案 -

(一)激趣导入你能根据本章内容画出知识结构图吗?试一试。

(二)指导自学学生查看教材61-77页内容,熟悉本章知识点,教师巡视指导。

(三)合作互助学生分组进行讨论,画出本章知识结构图,学生代表展示结果。

【课件展示】直角三角形中的边角关系锐角三角函数解直角三角形实际问题提问:(1)锐角三角函数定义在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,如图所示.我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=;我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cos A,即cos A=;我们把锐角A的对边与邻边的比叫做∠A的正切,记作tan A,即tan A=.(2)特殊角的函数值[规律方法] 在非直角三角形中求角的三角函数值,常通过作垂直构造直角三角形,利用直角三角形中的边角关系解决.例2计算°°-°°°.解:原式=°---=---=2---=1-2.[解题策略]准确地代入特殊角的三角函数值,再根据二次根式的性质进行化简计算.例3 如图①所示,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处. (1)求渔船从A到B的航行过程中与小岛M之间的最短距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时,参考数据:≈1.41,≈1.73,≈2.45).〔解析〕(1)如图②所示,过点M作MD⊥AB于点D,由∠AME 的度数得∠AMD=∠MAD=45°,根据AM的值和特殊角的三角函数值可得DM的值,即为所求;(2)在Rt△DMB中,由∠BMF=60°,得∠DMB=30°,进而求出MB的值,最后根据路程÷速度=时间,即可得出答案.解:(1)如图②所示,过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM·cos 45°=90海里.答:渔船从A到B的航行过程中与小岛M之间的最短距离是90海里.(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB=60海里,∴60÷20=3≈3×2.45=7.35≈7.4(小时).答:渔船从B到达小岛M的航行时间约为7.4小时.[规律方法] 实际问题中的许多问题可以用直角三角形的边角关系解决,解决这类问题的关键是将实际问题转化为解直角三角形问题,选择恰当的边角关系(即三角函数)求解.(五)检测达标1.如图所示,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是( )A.2B.8C.2D.42.如图所示,△ABC中,∠ACB=90°,CD⊥AB于点D,若BD∶AD=1∶4,则tan∠BCD的值是( )A. B. C. D.23.10.如图所示,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底B走100米到达D点,测出看塔顶的仰角为45°,则塔AB的高为( )A.50米B.100米米C.米D.-通过本节课的学习,你有什么收获?布置作业:1.-(2015-π)0-4cos 45°+(-3)2;2.如图所示,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD 等于海里.3.Rt△ABC中,∠C=90°,cos A=,AC=6 cm,那么BC等于( )A.8 cmB. cmC. cmD. cm。

人教版九年级数学下册第28章《锐角三角函数知识点总结、典型例题、练习(精选)

人教版九年级数学下册第28章《锐角三角函数知识点总结、典型例题、练习(精选)

三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式取值范围关 系正弦 斜边的对边A A ∠=sin c aA =sin 1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A (∠A 为锐角) 正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A (∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan33 1 3-5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)BA cos sin =BA sin cos =)90cos(sin A A -︒=)90sin(cos A A -︒=A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边斜边 ACBba c8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

初三数学第二十八章 锐角三角函数小结最新版

初三数学第二十八章 锐角三角函数小结最新版

c
a
A bC
锐角a的邻边与斜边的比叫做∠ a的余弦,记作cos a
倍 速
锐角a的对边与邻边的比叫做∠ a的正切,记作tana

时 学
我们把 a的正弦、余弦、正切都叫做∠ a的三角函数

(2)直角三角形的边角关系包括哪些内容?
sinAA斜 的边 对边ac
B
c
a
cosAA斜 的边 邻边bc
义务教育课程标准实验教科书 九年级下册 28 小结
人民教育出版社
一、本章知识结构图
直角三角形中 的边角关系
锐角三角函数


课 时
解直角三角形
实际问题


二、回顾与思考
1. (1)锐角三角形函数是如何定义的?
在△ABC中,∠C为直角,我们把锐角a的对 边与斜边的比叫做∠ a的正弦,记作sin a
B
b ③ B 90 A
3. 结合实例体会锐பைடு நூலகம்三角形函数的广泛应用.
4. 结合本章内容,体会数形结合地研究问题的方法.
倍 速 课 时 学 练
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方

第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)

第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)

第二十八章 锐角三角函数单元总结【知识要点】 知识点一 锐角三角形锐角三角函数:如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)【正弦和余弦注意事项】1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。

2.sinA 、cosA 是一个比值(数值,无单位)。

3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。

0°、30°、45°、60°、90°特殊角的三角函数值(重要)正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

正切的增减性:当0°<α<90°时,tan α随α的增大而增大,对边邻边C知识点二 解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. 直角三角形五元素之间的关系: 1. 勾股定理()2. ∠A+∠B=90°3. sin A==4. cos A= =5.tan A= =【考查题型】考查题型一 正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D 【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD =5. ∴4sin 5CD BAC AC ∠==. 故选D . 【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .43【答案】A 【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 详解:在Rt △ABC 中,∵AB=10、AC=8, ∴2222=108=6AB AC --,∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt△ABC中,∠C=90°,sin A=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A 5B25C5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,222425+=∴cos∠25525=.故选B .变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠=,AB 6=,1cosA 3=,则AC 等于( ) A .18 B .2C .12D .118【答案】B 【分析】根据三角函数的定义,在直角三角形ABC 中,cosA =ACAB,即可求得AC 的长. 【详解】解:∵在△ABC 中,∠C =90°,∴cosA =ACAB , ∵cosA =13,AB =6,∴AC =123AB =,故答案选:B . 【点睛】本题考查了解直角三角形中三角函数的应用,解题的关键是要熟练掌握直角三角形中边角之间的关系.变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M (5,2),那么cosα的值是( )A 5B .23C 25D 5【答案】D 【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(5,2),∴OH=5,MH=2,∴OM=22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C3D3【答案】B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2B .3C .2D .1【答案】A 【解析】分析:本题考查等腰直角三角形的性质及解直角三角形.解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解. 解析:如图,作DE ⊥AB 于E .∵tan ∠DBA==,∴BE=5DE .∵△ABC 为等腰直角三角形,∴∠A=45°,∴AE=DE .∴BE=5AE ,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=,AE=2.故选A.变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m 【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin60°,cos60°)关于x轴对称的点的坐标是( )A.(32,12) B.(-32,-12)C.(312) D.(-123【答案】B 【详解】∵点(-sin60°,cos60°)即为点(312),∴点(-sin60°,cos60°)关于y 3,12).变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【答案】D【详解】试题分析:选项A,sin40°=sin(90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C,sin225°+cos225°=1正确;选项D,sin60°=3,sin30°=12,则sin60°=2sin30°错误.故答案选D.变式4-2.(2018·河北唐山市·九年级期末)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【答案】C【解析】因为sin A=cos B 2,所以∠A=∠B=45°,所以△ABC是等腰直角三角形. 故选C.考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt△ABC中,∠C =90°,sinA=45,则cosB的值等于( )A.35B.45C.34D5【答案】B 【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cos B=sin A=45.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA= 12,那么sinA 的值是( )A .2B .2C .3D .12【答案】B 【分析】利用同角三角函数间的基本关系求出sinA 的值即可. 【详解】:∵Rt △ABC 中,cosA=12 ,∴ =2, 故选B . 【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠=,如果4cosA 5=,那么tanA 的值是( ) A .35B .53C .34D .43【答案】C 【分析】本题可以利用锐角三角函数的定义求解. 【详解】解:∵在Rt △ABC 中,∠C=90°,∴cosA=b c ,tanA=ab ,a 2+b 2=c 2. ∵cosA=45,设b=4x ,则c=5x ,a=3x .∴tanA=a b =3344x x =. 故选C.【点睛】利用锐角三角函数的定义,通过设参数的方法求三角函数值.考查题型六 解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A .10B .15C .6D .10 【答案】D【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,2215AD AD CD ∴=-=;在Rt ABD ∆中,315BD CB CD AD =﹣=,=,22BD AD 26AB ∴=+=,AD 10sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)【答案】云梯需要继续上升的高度BC 约为9米.【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD ∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】153+【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M ,先在RT △BDN 中求出线段BN ,在RT △ABM 中求出AM ,再证明四边形CMBN 是矩形,得CM=BN 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在RT △BDN 中,BD=30,BN :ND=13,∴BN=15,DN=153,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=603153453-=,在RT△ABM中,tan∠ABM=43 AMBM=,∴AM=603,∴AC=AM+CM=15603+.【点睛】构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念.变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【答案】高、低杠间的水平距离CH 的长为151cm .【解析】分析:利用锐角三角函数,在Rt △ACE 和Rt △DBF 中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长.详解:在Rt △ACE 中,∵tan ∠CAE=CE AE, ∴AE=()15515521tan tan82.47.5CE cm CAE =≈≈∠︒ 在Rt △DBF 中,∵tan ∠DBF=DF BF, ∴BF=()23423440tan tan80.3 5.85DF cm DBF =≈=∠︒. ∵EF=EA+AB+BF≈21+90+40=151(cm )∵CE ⊥EF ,CH ⊥DF ,DF ⊥EF∴四边形CEFH 是矩形,∴CH=EF=151(cm ).答:高、低杠间的水平距离CH 的长为151cm .点睛:本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.。

人教版九年级下册数学28锐角三角函数小结与复习【教案】

人教版九年级下册数学28锐角三角函数小结与复习【教案】

课 题锐角三角函数小结与复习(1)课 型复 习教 学 目 标知 识 与技能 学过的知识条理画、系统化,同时通过复习找出平时的不足之处,以便及时弥补。

过 程 与方法 培养学生综合、概括等逻辑思维能力及分析问题解决问题的能力情 感 与态度 培养学生独立思考、积极探索的思维品质,善于用数学知识解决身边的数学 问题,提高学习数学的热情和积极性. 教 学 重 点 锐角三角函数的定义,特殊角的三角函数值 教 学 难 点 锐角三角函数的定义,特殊角的三角函数值 教 具 准 备教 学 过 程教 师 活 动学 生 活 动 一、知识回顾、查漏补缺1、 请同学思考锐角三角函数是如何定义? 如图:斜边的对边αα∠=sin 斜边的邻边αα∠=cos 的邻边的对边ααα∠∠=tan请同学思考特殊角的三角函数值300、450、600、的记忆规律: 2、 记住两个基本图形如图所示:αBCA030BCA045BCA3、 请同学思考角度变化与锐角三角函数的关系?当锐角α在00∽900之间变化时,正弦(切)值随着角度的增 大而增大;余弦(切)值随着角度的增大而减少。

4、 请同学思考同角三角函数之间有哪些关系式?平方关系:sin 2A +cos 2A =1;商数关系:sinA/cosA =tanA ; 5、 请同学思考互为余角的三角函数有哪些关系式?Sin (900-A )=cosA ;cos (900-A )=sin A ; 6、 直角三角形的边角关系(∠C =900)(1)三边之间的关系:222c b a =+; (2)两锐角之间的关系:A +B =900; (3)边角之间关系:斜边的对边αα∠=sin 斜边的邻边αα∠=cos 的邻边的对边ααα∠∠=tan二、当堂训练、知识巩固1、结合右图,学生口答:什么是∠A 的正弦、余弦、正切?2、互余两角的正弦和余弦、正切和余切 有什么关系?(1)若coaA =23,且∠B =90º-∠A ,则sinB =______。

初中数学九年级28章锐角三角函数复习与小结

初中数学九年级28章锐角三角函数复习与小结

7.如解图:,原在式==△=112-A×B1C21+中-1,2∠×C12=9+01°,点D在BC
上,BD=4,AD=BC,cos∠ADC=
3 5
求:(1)DC的长;
(2)sinB的值.
二、强化训练
解: (1)设DC=3x,则AD=5x
由BD+DC=AD 得:4+3x=5x 解得:x=2 所以DC=3x=6 (2)由(1)知 DC=6 AD=10 由勾股定理的AC=8,AB=2

⑵根据条件与所求的关系,恰当选用函数 关系式;
⑶解得数学问题的答案; 练⑷一得练到实际问题的答案。 1.一把梯子AB斜靠在墙上,若梯子到墙的距 离AC=3米,cosBAC 43,则梯子AB的长度_4_米.
2.如图一,、在基高础出知海识平面100米的悬崖顶A处 ,观测海平面上一艘小船B,并测得它的 俯角为45°,则船与观测者之间的水平距 离BC=_1_0_0__米.
二、强化训练 3.如图,在Rt△ABC中,CD是斜边AB上 的值中是线___,__已_43.知CD=2,AC=3,则sin B的
4.若∠α的余角是30°,则cosα的值是_12___. 5 .某水坝的坡度i=1: ,坡长AB=20米则 坝的高度为_1_0_米___
二、强化训练
6.计算:2sin30°-2cos60°+tan45°
“引导学生读懂数学书” 课题研究成果配套课件
“在数学的领域中, 提出问题 的艺术比解答问题的艺术更为 重要。”————康托(Cantor)
“引导学生读懂数学书” 课题研究成果配套课件
第28课时 锐角三角函数复习与小结 诗洞中学 陈超洁
1.锐一角、三基角础函知数识的概念
正与余弦_弦斜__::边在在的直直比角角值三三.则角角s形形inA中中=,,ac一一个个角角的的__对邻____边边

1_第二十八章《锐角三角函数》小结与复习(1)课件

1_第二十八章《锐角三角函数》小结与复习(1)课件

= 2,则cosB的值为( )
2
A. 1
2
B. 2
2
C. 3
2
D. 1
巩固
6、 如果sin2α+sin230o =1,那么锐角
α的值是( )
A. 15o
B. 30o
C. 45o
D. 60o
范例
例3、如图,为测楼房BC的高,在距楼
房30米的A处测得楼顶的仰角为α ,则
楼高BC为( )米 B
30
A. 30 tan B. tan
小结与复习(1)
知识构架


三 角 形 中 的 边 角












实 际 问 题


范例
1、在Rt△ABC中,∠C=90°,a=2, sinA= 1 ,求cosA和tanA的值。
3
B 锐角三角函数的定义
A
C
重点知识
锐角三角函数的定义:
sin
A
A的对边 斜边
a c
cos
A
A的邻边 斜边
重点知识 三角函数关系:
(1)互余两角三角函数关系: 若∠A + ∠B=90o ,那么
sin A cos B cos A sin B tan A tan B 1
(2)同角三角函数关系:
sin 2 A cos2 A 1
tan A sin A cos A
巩固
5、 Rt△ABC中,∠C=90°,若sinA
2
1 递减
2
3 递增
巩固 2、计算:
(1) sin 2 30 cos 45 tan 60
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数的小结与复习
学习 目标
1.巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数. 2.熟记 30°,45°, 60°角的三角函数值.会由一个特殊锐角的三角函数值,求出它的 对应的角度. 3.掌握直角三角形的边角关系,会运用勾股定理,直角三角形的两锐角互余及锐角三角 函数解直角三角形. 能将解斜三角形的问题转化为解直角三角形. 学习程序 课 堂 导 航 【回顾反馈】 5 分钟 先看书,然后归纳 本章知识结构图.
五里堆中学“三一五”模式导学案
科目 课题 数学 年 级 九年级 设计者 杨、吴、姜 审核人 学习程序 【合作探究】 6.已知:如图,在半径为 R 的⊙O 中,∠AOB=2,OC⊥AB 于 C 点. ①求弦 AB 的长及弦心距; ②求⊙O 的内接正 n 边形的 边长 an 及边心距 rn.
第 28 章
课 堂 导 航 【合作探究】 10 分钟 合作交流,推举同 学口述思路.
【回顾反馈】 1.整合知识,归纳要点. 【自主学习】 2.如图,在 Rt ABC 中,∠C 为直角, sin A cos B ; cos A sin B ;
7.如图,小山岗的斜坡 AC 的坡度是 tanα= ,在与山脚 C 距离 200 米的 D 处,测得山顶 A 的仰角为 26.6°,求小山岗.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).
5.在 Rt△ABC 中,∠C=90°. ①已知: a 2 3 , b 2 ,求∠A、∠B,c; ②已知: tan B
【展示提升】 8.如图 5,一天,我国一渔政船航行到 A 处时,发现正东方向的我领 海区域 B 处有一可疑渔船,正在以 12 海里∕小时的速度向西北方向 航行,我渔政船立即沿北偏东 60º方向航行,1.5 小时后,在我领海区 域的 C 处截获可疑渔船。问我渔政船的航行路程是多少海里?(结果 保留根号)
【展示提升】 10 分钟 解直角三角形的应 用。
3 , b 9, 求 a、c; 2
③已知:∠A=60°,△ABC 的面积 S 12 3, 求 a、b、c 及∠B.
tan A
1 tan B

1 tan B = tan A
45° 60°
3.填表: 30° siaA cosA tanA 4. 计算:
tan 45 sin 45 cos30 cos 45 sin 30 cos60

【自主学习】 15 分钟 1. 课 代 表 公 布 好 答 案。 2.对子用双色笔互批 互改互议,组长检查 3.疑难点课代表收集 整理,板书黑板。
相关文档
最新文档