高二数学概率的意义

合集下载

概率的意义

概率的意义

锦山蒙中学案(高二年级组)班级姓名学科时间课题概率的意义学习目标1.正确理解概率的意义。

2.能用概率知识正确理解和解释现实生活中与概率相关的问题。

过程双色笔纠错一、自主学习阅读课本113-118页,完成问题。

1.概率的正确理解随机事件在一次试验中发生与否是随机的,但随机中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的。

概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越,但在一次试验中仍有两种可能,即事件A可能也可能。

2.游戏的公平性在各类游戏中,如果每人获胜的概率,那么游戏就是公平的,这就是说,是否公平只要看获胜的概率是否。

3.决策中的概率思想在一次试验中,的事件称为小概率事件。

如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为。

4.天气预报的概率解释天气预报的“降水”是一个事件,降水概率的大小只能说明降水的大小,概率值越大,只能表示降水的越大。

二、合作探究探究(一):概率的正确理解思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?思考3:全班同学各取一枚同样的硬币,连续两次抛掷,观察它落地后朝向,并记录结果。

重复上面的过程10次,将全班同学的试验结果汇总,计算三种结果发生的频率。

你有什么发现?思考4:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.思考5:如果某种彩票的中奖概率为千分之一,那么买1000张这种彩票一定能中奖吗?为什么?探究(二):概率思想的实际应用思考1:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?思考2:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。

高二数学课件:概率的意义

高二数学课件:概率的意义

均匀的硬币,如果出现两次正面向上,那么甲得一分;如
果出现一次正面向上,一次反面向上,那么乙得一分,你
认为这种比赛规则公平吗?
同时抛掷两枚质地均匀的硬币,所有可能出现的结果
“正正”、“正反”、“反正”、“反反”四种,其中两
次正面朝上即“正正”,它的概率为 1 ,而出现一次正面,
4
一次反面,包含“正反”“反正”两种结果,其概率为
随机事件在一次试验中发生与否是随机的, 但随机中含有规律性。
思考:
如果某种彩票的中奖概率为1/1000,那么买 1000张这种彩票一定能中奖吗?(假设该彩票 有足够多的张数。)
不一定。买1000张彩票相当于做1000次试验, 因为每次试验的结果都是随机的,所以做1000次 的结果也是随机的。
虽然中奖张数是随机的,但这种随机性中具 有规律性。随着试验次数的增加,即随着买的彩 票张数的增加,大约有1/1000的彩票中奖。
5点 6 7 8 9 10 11 个班被选中
6点 7
8
9 10 11 12
的可能性不 一样。
思考: 3、决策中的概率思想
连续掷硬币100次,结果100次全部是正面 朝上,出现这样的结果你会怎样想?如果有51 次正面朝上,你又会怎样想?
如果一种硬币是质地均匀,一种是质地不均 匀(反面比较重),你认为以上的每种结果更 可能在哪种情况下得到的?
3.1.2 概率的意义
授课人:米庆
历史溯源
概率论的产生和发展
概率论最初是起源于十七世纪,与一个赌 博者的请求有关。
传说早在1654年,有一个赌徒梅累向当时 的数学家帕斯卡提出一个使他苦恼了很久的问 题:“两个赌徒相约赌若干局,谁先赢 3局就 算赢,全部赌本就归谁。但是当其中一个人赢 了 2局,另一个人赢了1局的时候,由于某种原 因,赌博终止了。问:赌本应该如何分法才合 理?”

概率的意义和计算

概率的意义和计算

概率的意义和计算概率是数学中的一个重要概念,用以描述事件发生的可能性。

无论是在日常生活中还是在科学研究中,概率都扮演着至关重要的角色。

本文将探讨概率的意义以及如何进行概率计算。

一、概率的意义概率可以理解为事件在相同条件下发生的可能性大小。

通常用0到1之间的数值表示,其中0代表不可能事件,1代表必然事件。

对于其他事件,概率介于0和1之间。

概率可以通过频率来进行估计。

频率指的是在一系列重复实验中,某一事件发生的次数与实验总次数之比。

随着实验次数的增加,频率趋近于概率。

二、概率计算方法1. 经典概率:对于一系列等可能事件,可以使用经典概率进行计算。

假设有n个等可能事件,其中有m个事件满足特定条件,那么特定条件下事件发生的概率为m/n。

2. 条件概率:条件概率是指在已知某一条件下,另一事件发生的概率。

假设A和B是两个事件,且P(B)大于0,则A在B发生的条件下的概率可以表示为P(A|B),计算公式为P(A|B) = P(A∩B) / P(B)。

其中,P(A∩B)表示事件A和B同时发生的概率。

3. 加法法则:加法法则适用于互斥事件。

互斥事件指的是两个事件不可能同时发生。

假设A和B是互斥事件,那么事件A或事件B发生的概率为P(A∪B) = P(A) + P(B)。

4. 乘法法则:乘法法则用于计算多个独立事件同时发生的概率。

假设A和B是相互独立的事件,那么事件A和事件B同时发生的概率为P(A∩B) = P(A) * P(B)。

三、实际应用概率的概念和计算方法在许多领域都有广泛应用。

以下是几个常见的实际应用示例:1. 赌博和彩票:概率用于计算赌博和彩票中中奖的可能性。

购买彩票时,人们可以根据概率计算出中奖的可能性,从而做出是否购买的决策。

2. 金融风险评估:概率被用于金融领域的风险评估。

根据历史数据和统计模型,可以计算股票、债券等金融工具未来价格的概率分布,进而评估风险。

3. 医学诊断:概率用于医学领域的疾病诊断。

概率的意义

概率的意义

思考7:在遗传学中有下列原理: (1)纯黄色和纯绿色的豌豆均由两个特 征因子组成,下一代是从父母辈中各随 机地选取一个特征组成自己的两个特征. (2)用符号YY代表纯黄色豌豆的两个特 征,符号yy代表纯绿色豌豆的两个特征. (3)当这两种豌豆杂交时,第一年收获 的豌豆特征为:Yy.把第一代杂交豌豆再 种下时,第二年收获的豌豆特征为: YY, Yy,yy.
2、决策中的概率思想
思考2:某中学高一年级有12个班,要从 中选2个班代表学校参加某项活动。由于 某种原因,一班必须参加,另外再从二 至十二班中选1个班.有人提议用如下的 方法:掷两个骰子得到的点数和是几, 就选几班,你认为这种方法公平吗?哪 个班被选中的概率最大? 不公平,因为各班被选中的概率不全相 等,七班被选中的概率最大.
思考3:试验:全班同学各取一枚同样的 硬币,连续抛掷两次,观察它落地后的 朝向.将全班同学的试验结果汇总,计算 三种结果发生的频率.你有什么发现?随 着试验次数的增多,三种结果发生的频 率会有什么变化规律?
“两次正面朝上”的频率约为0.25, “两次反面朝上” 的频率约为0.25, “一次正面朝上,一次反面朝上” 的频率约为0.5.
4、遗传机理中的统计规律 豌豆杂交试验的子二代结果
性状 的 5474 性状 茎的高度 长茎 787 隐性 绿色 2001 皱皮 短茎 1850 277
思考6:你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同 的豌豆会长出不同的后代,并且每次试 验的显性与隐性之比都接近3︰1,这种 现象是偶然的,还是必然的?我们希望 用概率思想作出合理解释.
思考3:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种 现象? 这枚骰子的质地不均匀,标有6点的那面 比较重,会使出现1点的概率最大,更有 可能连续10次都出现1点. 如果这枚骰子 的质地均匀,那么抛掷一次出现1点的概 率为,连续10次都出现1点的概率 1 为 . 0.000000016538 6 这是一个小概率事件,几乎不可能发生.

概率的意义

概率的意义

概率的意义◎ 概率的意义的定义概率的意义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。

事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。

事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。

注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;(2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;(3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;(4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

◎ 概率的意义的知识扩展1、事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。

2、事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。

3、概率的意义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。

注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;(2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;(3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;(4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

◎ 概率的意义的教学目标1、从稳定性的角度,了解概率的意义。

概率的意义

概率的意义

思考2:某中学高一年级有12个班,要从中选2个班代表 学校参加某项活动,由于某种原因,1班必须参加,另外 再从2至12班中选一个班,有人提议用如下方法:掷两个 骰子得到的点数和是几,就选几班,你认为这种方法公 2至12班每班获得的概率相等,那么就公平。 平吗?
1点 2点 3点 4点 1点 2点 3点 4点 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 5点 6点 6 7 8 9 7 8 9 10
4、遗传机理中的统计规律 一个试验与发现:
奥地利遗传学家孟德尔用豌豆作试验 (1)黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄 色的.第二年,他把第一年收获的黄色豌豆再种下,收获 的豌豆既有黄色的又有绿色的. (2)圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形 的.第二年,他把第一年收获的圆形豌豆再种下,收获的 豌豆却既有圆形豌豆,又有皱皮豌豆.
三、随机事件的频率与概率 1、事件A的频数nA : 一个试验中进行n次试验事件A出现的次数
2、事件A的频率: nA f ( A ) 称事件A出现的比例 n 为事件A出现的频率。 n 3、事件A的概率: 一般地,在大量重复进行同 nA 一试验时,事件A发生的频率 f n ( A) 总是接 n 近于某个常数,在它附近摆动。这个常数叫 做事件A的概率,记作P(A)。 频率与概率的取值范围是[0,1] 4、概率与频率的关系
极大似然法的思想:如果我们面临的是从多个可选 答案中挑选正确答案的决策任务,“使得样本出现的可能 性最大”可以作为决策的准则.这种判断问题的分法称 为极大似然法,极大似然法是统计工作中最重要的统计 思想方法之一.
练习:设有外形完全相同的两个箱子,甲箱有99 个白球1个黑球,乙箱有1个白球99个黑球,今随 机地抽取一箱,再从取出的一箱中抽取一球,结 果取得白球,问这球从哪一个箱子中取出?

概率的意义

概率的意义

6、遗传机理中的统计规律
纯黄色豌豆YY

纯绿色豌豆yy

第一代 第二代
黄色Yy

黄色Yy

纯黄色 豌豆YY
1 4
黄色Yy
1 2
纯绿色 豌豆yy
1 4
概率
练习:
P111 1、2、3
人们热衷于游戏并不是什么秘密。或者说,人类喜欢游戏已经是社会的共识,一年能够抽出几百个小时来读书会被认为是了不起的成就,然而在 游戏中花费上千小时甚至只算得上平平无奇。家长们一再认为少年儿童们缺乏原则和责任感,然而他们却甘愿牺牲睡眠、冒着被惩罚的危险 “再 打一局”、“再来一回合”、“再试一个战术”,哪管他斗转星移海枯石烂。问题是,游戏到底有什么特质,值得我们近乎奢侈地往其中投入大 量的时间,而不是将这些时间用来学习和工作? ; 速度游戏网 lgh10neh 游戏不是真实误解了游戏的人经常会产生对游戏真实性的抱怨,他们会怪罪敌人的警觉性太低给了主角可乘之机,好奇为什么主角不用吃喝拉撒 依然保持健康,质疑历史中孱弱的城邦为什么在游戏中战力超群。
不一定。买1000张彩票相当于做1000次试验, 因为每次试验的结果都是随机的,所以做1000次 的结果也是随机的。
虽然中奖张数是随机的,但这种随机性中具 有规律性。随着试验次数的增加,即随着买的彩 票张数的增加,大约有1/1000的彩票中奖。
2、游戏的公平性
大家有没有注意到在乒乓球、排球等体育比 赛中,如何确定由哪一方先发球?你觉得那些方 法对比赛双方公平吗? 在各类游戏中,如果每人获胜的概率相等, 那么游戏就是公平的。是否公平只要看获胜的 概率是否相等。
3、决策中的概率思想
例1 连续掷硬币100次,结果100次全部是正面 朝上,出现这样的结果你会怎样想?如果有51 次正面朝上,你又会怎样想?

关于高中数学概率知识点总结3篇

关于高中数学概率知识点总结3篇

关于高中数学概率知识点总结3篇关于高中数学概率知识点总结3篇科技的快速发展迅速扩充了人类的知识范围。

知识可以帮助人类更好地理解和解决问题。

学习、传递知识是人类社会发展的重要任务之一。

下面就让小编给大家带来高中数学概率知识点总结,希望大家喜欢!高中数学概率知识点总结1第一部分3.1.1 —3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事nA件A出现的.频数;称事件A出现的比例fn(A)=n为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

nA(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值n,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Байду номын сангаас
tt可以提款吗?
[单选]根据所用动力不同,目前我国煤矿()装载机用的最多。A.气动B.液动C.电动D.复合驱动 [单选]在三相异步电动机正反转控制线路中,接触器联锁触头应是对方接触器的()。A.主触头B.辅助常开触头C.辅助常闭触头D.延时触头 [问答题,简答题]氧气总产量富裕时,要求生产液氧,空分工应如何进行操作? [单选]根据国际标准开本规格,A5开本是采用A系列全张纸开切的()。A.8开本B.16开本C.32开本D.64开本 [多选]传统的施工组织设计与施工项目管理规划的本质性区别在于()。A.文件的性质不同B.文件的范围不同C.文件产生的基础不同D.文件的实施方案不同 [问答题,简答题]种子生产许可证上要载明哪些项目? [单选,A1型题]婴儿,8个月。单纯以母乳喂养,从未添加任何辅食。近2个月来面色苍白,体检除贫血外,其他均正常。外周血:红细胞数312×10/L,血红蛋白86g/L,白细胞数8.0×109/L,血小板计数104×10/L。最合适的处理是()A.输血B.输浓缩红细胞C.肌内注射铁剂D.告诉家长,给患 [单选]患者低热,咽喉肿痛1周。发现甲状腺肿大,左侧局部压痛,结合超声声像图,最可能的诊断是()A.结节性甲状腺肿B.亚急性甲状腺炎C.甲状腺瘤D.甲状腺癌E.甲状腺功能亢进 [名词解释]主要原料 [问答题,简答题]“HUADA”牌阀控铅酸蓄电池是哪个厂家生产的? [问答题,简答题]拉马克和达尔文的进化论的主要观点各是什么? [问答题,案例分析题]背景材料: [单选]船舶撤离时机应能确保自航施工船舶在()级大风范围半径到达工地5h前抵达防台锚地。A.6B.7C.8D.9 [单选]下列不属于分娩期保健“五防”内容的是()。A.防滞产B.防感染C.防新生儿窒息D.防产后出血E.以上都不对 [单选,A2型题,A1/A2型题]关于造影剂的使用,哪项是错误的()A.胆影葡胺--胆道造影B.医用硫酸钡--消化道造影C.碘化油--心血管造影D.空气--脑室造影E.泛影葡胺--尿路造影 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 [名词解释]乡村家庭的特点与功能 [单选]巨噬细胞功能检测临床意义()A.NBT试验对发热病因作过筛性鉴别B.补体抗体缺陷症的重要指标C.鉴别自身免疫性疾病D.机体抗肿瘤免疫的重要效应细胞E.与过敏症有关 [单选,A1型题]治疗寒积便秘。宜选用的药物是()A.甘遂B.大戟C.芫花D.巴豆E.商陆 [单选,A2型题,A1/A2型题]有关分裂情感性精神障碍,以下说法错误的是()A.分裂症状和情感症状同时存在又同样突出B.包括躁狂型、抑郁型和混合型三种亚型C.分裂症状与情感症状出现与消失的时间比较接近D.分裂症状为主要临床相的时间不能少于一个月E.起病较急、多为青壮年、女性多于 [单选]《公路安全保护条例》自()起施行。1987年10月13日国务院发布的《中华人民共和国公路管理条例》同时废止。A、2010年7月1日B、2011年7月1日C、2012年7月1日 [单选]下列各项中,除哪一项外,均由风热夹痰或湿热蕴阻所致()A.颈痈B.脐痈C.乳痈D.臀痈E.背痈 [单选,A1型题]含大量结核杆菌的病灶是()A.渗出性病变B.干酪样坏死及液化C.结核球D.钙化灶E.结核结节 [单选,A2型题,A1/A2型题]某家工厂食堂,工人就餐1小时后,陆续出现唇、指甲以及全身皮肤青紫等症状。根据中毒症状,中毒的原因最可能是().A.钡盐中毒B.有机磷中毒C.一氧化碳中毒D.亚硝酸盐中毒E.病毒感染 [单选]精馏塔操作时,回流比与理论塔板数的关系是()。A、回流比增大时,理论塔板数也增多B、回流比增大时,理论塔板数减少C、全回流时,理论塔板数最多,但此时无产品D、回流比为最小回流比时,理论塔板数最小 [单选]所有地面电台覆盖整个调度区间的可靠概率在地形复杂地区应不小于()A.90%B.95%C.99% [单选]货船舱底排水设备至少应配备与主舱底排水系统相连接的。()A、2台动力泵B、1台动力泵 [单选]多式联运是采用()不同运输方式组合的运输方式。A.陆海B.公路与铁路C.公路与航空D.两种以上 [问答题]预算单位新增加工作人员时,在公务卡管理上该做哪些工作? [单选]()是指一个测验的结果与被测验者行为的公认标准之间的相关程度。A.信度B.效度C.难度D.标准化 [多选]自我反省成功的加速器,其作用下面说法正确的是?()A、可以去除心中的杂念B、可以理性地认识自己,对事物有清晰的判断C、可以不断完善自己D、也可以提醒自己改正过失 [单选,A2型题,A1/A2型题]面神经断伤后第几周,轴索可沿中空的鞘膜管由近及远再生()。A.2周B.3周C.4周D.5周E.6周 [单选]具备条件的快件运营人可以通过()申请办理报检。A.电子邮件的方式B.电子数据交换的方式C.传真的方式D.电话的方式 [单选]流体在流动时产生内摩擦力的性质叫做粘性,衡量粘性大小的物理量称为()。A、摩擦系数;B、粘度系数;C、粘度;D、运动粘度。 [单选]下列热网的形式中,()比较适用于面积较小、厂房密集的小型工厂。A.枝状管网B.辐射管网C.环状管网D.二级管网 [单选,A1型题]肝颈静脉回流征阳性主要见于()。A.左心衰B.肝硬化C.心包积液D.急性心肌梗死E.肾功能不全 [问答题,简答题]经营(销售)医疗器械产品需具备什么资格? [单选]泵的型号表示法中冷凝水泵的代号是()。A.JQB.LSC.ZLQD.FY [单选,A1型题]在Meta分析中,必须进行异质性分析,产生异质性的原因可能是()A.各个研究采用的研究方法可能不同B.各个研究的环境条件可能不同C.各个研究所定义的暴露、结局等指标可能不同D.随机效应是产生异质性的最重要原因E.各个研究的研究对象可能存在差异 [单选]下列不属于注册消防工程师职业道德原则特点的是()。A.稳定性B.普遍性C.本质性D.基准性
相关文档
最新文档