高中数学:概率的意义 (16)

合集下载

新教材人教版高中数学必修第二册 第10章 10.3 频率与概率

新教材人教版高中数学必修第二册  第10章   10.3 频率与概率
栏目 导引
第十章 概 率
游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性 或概率是否相同.若相同,则规则公平,否则就是不公平的. (2)具体判断时,可以按所给规则,求出双方的获胜概率,再进 行比较.
栏目 导引
第十章 概 率
有一种游戏是这样的:在一 个大转盘上,盘面被均匀地分成 12 份,分别 写有 1~12 这 12 个数字(如图所示),其中 2, 4,6,8,10,12 这 6 个区域对应的奖品是文 具盒,而 1,3,5,7,9,11 这 6 个区域对应的奖品是随身听.游 戏规则是转盘转动后指针停在哪一格,则继续向前前进对应转 盘上数字的格数.例如:你转动转盘停止后,指针落在 4 所在 区域,则还要往前前进 4 格,到标有 8 的区域,此时 8 区域对 应的奖品就是你的,以此类推.请问:小明在玩这个游戏时, 得到的奖品是随身听的概率是多少?
P(A).我们称频率的这个性质为频率的稳定性.因此,我们可 以用频率 第十章 概 率
■名师点拨
频率与概率的区别与联系
名称
区别
联系
本身是随机的,在试验之前无法 (1)频率是概率的近似值,
确定,大多会随着试验次数的改 随着试验次数的增加,频 频率
变而改变.做同样次数的重复试 率会越来越接近概率
栏目 导引
第十章 概 率
随机事件概率的理解及求法 (1)理解:概率可看作频率理论上的期望值,它从数量上反映了 随机事件发生的可能性的大小.当试验的次数越来越多时,频 率越来越趋近于概率.当次数足够多时,所得频率就近似地看 作随机事件的概率. (2)求法:通过公式 fn(A)=nnA=mn 计算出频率,再由频率估算概 率.
栏目 导引
第十章 概 率

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

高中概率知识点总结

高中概率知识点总结

高中概率知识点总结高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。

概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。

在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。

3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。

②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅、设计调查问卷等方法收集数据。

(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

概率的意义展示课〔时段:正课时间:40分钟〔自研〕+60分钟〔展示〕〕学习主题:一、正确理解概率的意义及应用,知道随机事件发生的可能性大小是由它自身决定的,而且是客观存在的;二、通过澄清日常生活中碰到的一些错误熟悉,正确理解概率的意义.【定向导学·互动展示·当堂反应】重点:概率的正确认识板书:板书呈现概率主题一、二相关知识点;展示知识点;③注重展示板书的规划;高二班组姓名:总分值:100分得分:考察内容:概率的意义考察主题:概率的正确熟悉考察形式:封锁式训练,导师不指导、不讨论、不剽窃. 温馨提示:本次训练时间约为40分钟,请同窗们认真审题,仔细答题,安静、自主的完成训练内容.根底稳固1.以下说法正确的选项是( )A.由生物学知道生男生女的概率均为1,一对夫妇生两个孩子,那么必然生一男一女2B.一次摸奖活动中中奖概率为1,那么摸5张票,必然有一张中奖5C.做7次抛硬币的实验,结果3次出现正面,因此,出现正面的概率是37D.在同一年诞生的367人中,至少有两人生日为同一天2.以下命题中,正确的个数是( )①13个人中至少有2人的生日是同一个月是必然事件;②为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是整体的一个样本;③一名篮球运发动投篮命中概率为0.7,他投篮10次,必然会命中7次;④小颖在装有10个黑、白球的袋中,多次进展摸球实验,发现摸到黑球的频率在0.6周围波动,据此估量黑球约有6个.A. 1 B. 2 C. 3 D. 43.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,以下说法中正确的选项是( )A.抽出的6件产品必有5件正品,1件次品B.抽出的6件产品中可能有5件正品,1件次品C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,1件次品1,前4个病人都未治愈,那么第5个病人的治愈率为( )5A. 1 B. C. 0 D.5.抛掷一枚质地均匀的正方体骰子(六个面上别离写有1,2,3,4,5,6),假设前3次持续抛到“6点朝上〞,那么对于第4次抛掷结果的预测,以下说法中正确的选项是( )A.必然出现“6点朝上〞 B.出现“6点朝上〞的概率大于61C.出现“6点朝上〞的概率等于61 D.无法预测“6点朝上〞的概率6.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,那么这100个铜板更可能是下面哪一种情况( )A.这100个铜板两面是一样的B.这100个铜板两面是不一样的C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的7.甲、乙两个气象台同时做天气预报,若是它们预报准确的概率别离为0.8与0.7,且预报准确与否彼此独立.那么在一次预报中这两个气象台的预报都不准确的概率是( )A. 0.06 B. 0.24 C8.在天气预报中,有“降水概率预报〞,例如,预报“明天降水概率为78%〞,这是指( )A.明天该地域有78%的地域降水,其他22%的地域不降水B.明天该地域降水的可能性大小为78%C.气象台的专家中,有78%的人以为会降水,另外22%的专家以为不降水D.明天该地域约有78%的时间降水,其他时间不降水“幸运观众〞答题有奖活动,参与者首先要求在四个答案中去掉了一个错误答案,那么他答中的概率是( )A. B. C. D. 110.一张圆桌旁有四个座位,A先坐下,如图,B选择其它三个座位中的一个坐下,那么A与B相邻的概率是( ) A. B. C. D.11.盒子里装有8个白球和假设干个黑球,通过实验知道摸出白球的概率为,那么盒子中装有( )个黑球.A. 8 B. 16 C. 24 D. 32二、填空题12.小明和小颖按如下规那么做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你以为这个游戏规那么________.(填“公平〞或“不公平〞)13.我校的天气预报说:“明天的降雨概率是80%.按照这个预报,我以为明天下雨的可能性很大.这种说法________(是/否)正确.“本市明天降雨的概率是90%〞,对预测的正确理解是________.①本市明天将有90%的地域降雨;②本市明天将有90%的时间降雨;③明天出行不带雨具肯定会淋雨;④明天出行不带雨具可能会淋雨.15.某城市一日的天气预报为:多云转小雨,29℃~18℃,降水概率80%,这一天必然会下雨.这种推断________(是/否)正确.“五水共治〞决策.某广告公司用形状大小完全一样的材料别离制作了“治污水〞、“防洪水〞、“排涝水〞、“保供水〞、“抓节水〞5块广告牌,从中随机抽取一块恰好是“治污水〞广告牌的概率是________.17.从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过实验发现钉尖着地的概率________钉帽着地的概率.(填“>〞、“<〞或“=〞)开展提升18.现共有两个卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的方式分派玩具,拿一个飞镖射向如下图的圆盘,假设射中区域的数字为1,2,3,那么玩具给展展和宁宁,假设射中区域的数字为4,5,6,那么玩具给宁宁和凯凯,假设射中区域的数字为7,8,那么玩具给展展和凯凯.试问这个游戏规那么公平吗?拓展提高19.一个不透明的布袋中装有红、白两种颜色的球假设干个,其中3个红球,它们除颜色外其余都一样,将它们搅匀后任意摸出一球,通过大量重复实验,发现摸出红球的频率稳定在0.75左右.(1)求布袋中白球的个数;(2)假设摸出1个球,记下颜色后就放回,并搅匀,再摸出1个球,请你用画树形图或列表的方式,求两次摸出的球恰好颜色不同的概率.。

高一数学概率的意义知识点

高一数学概率的意义知识点

高一数学概率的意义知识点概率是数学中一个非常重要的概念,它不仅仅存在于数学领域,还广泛应用于生活和各个领域中。

在高一数学学习中,我们将接触到一些基本的概率知识点,这些知识点的掌握对于我们理解和应用概率的意义非常重要。

1. 概率的基本定义和意义概率是指某一事件在所有可能事件中发生的可能性大小,它的取值范围在0到1之间。

当概率为0时,表示该事件不可能发生;当概率为1时,表示该事件一定会发生。

在生活中,我们经常使用概率来衡量一些事件发生的可能性,比如天气预报中说有80%的概率下雨,我们可以明确这种可能性的大小。

2. 试验和样本空间在概率计算中,我们需要进行一系列的试验,而试验的所有可能结果的集合称为样本空间。

比如掷硬币的试验,可能的结果为正面和反面,样本空间为{正面,反面}。

概率的计算需要基于清晰定义的样本空间,只有明确了试验的所有可能结果,才能计算出各个事件发生的概率。

3. 事件和事件的概率事件是指样本空间中的某个子集,表示我们感兴趣的某种结果。

比如在掷硬币的试验中,正面朝上可以看做一个事件。

概率可以通过计算事件中的元素个数与样本空间中元素个数的比值得到。

例如,正常掷一枚硬币出现正面的概率为1/2。

4. 互斥事件和包含事件互斥事件是指两个事件不可能同时发生的情况,例如掷一枚硬币出现正面和反面是互斥事件。

对于互斥事件A和B,它们的概率可以简单地相加得到总概率。

包含事件是指一个事件包含于另一个事件的情况,比如在一个班级中,A同学是数学课代表,B同学是班长,那么A同学也是班长这个事件包含了他是数学课代表这个事件。

对于包含事件A和B,它们的概率为P(A∪B)=P(A)+P(B)-P(A∩B)。

5. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

表示为P(B|A),读作在事件A已经发生的情况下,事件B发生的概率。

条件概率的计算公式为P(B|A)=P(A∩B)/P(A)。

条件概率的概念在实际生活中有非常重要的应用,比如根据某人某个特定症状的发生概率来判断他是否患有某种疾病。

概率的意义

概率的意义
1 过试验和观察,可以发现出现各个面的可能性都应该是 , 6
10 从而连续10次出现1点的概率为( 1 ) 0.000000016538 ,这在
6
一次试验(即连续10次抛掷一枚骰子)中是几乎不可能发生
的.
Page 14
我们面临两种选择:
(1)这枚骰子质地均匀; 很显然大家选择第二种答案. 如果我们面临的是从多个可选答案中挑选正确答案的决策 问题,那么“使得样本出现的可能性最大”可以作为决策 的准则,这种判断问题的方法称为极大似然法. (2)这枚骰子质地不均匀
Page
15
公元1503年,北宋大将狄青,奉令征讨南方侬智高叛乱,他在 誓师时,当着全体将士的面拿出100枚铜钱说:“我把这100 枚铜钱抛向空中,如果落地后,100枚铜100枚铜钱当众抛出后,
竟然全部都是正面朝上.狄青又命军士取来100枚铁钉,把这 100枚铜钱钉在地上,派兵把守,任人观看.于是宋朝军心大 振,个个奋勇争先,而侬智高部下也风闻此事,军心涣散, 狄青终于顺利地平定了侬智高的叛乱. 请发表你对这件事的看法?
Page
19
降水概率的大小只能说明降水可能性的大小,概率值
越大只能表示在一次试验中发生的可能性越大.在一次试 验中“降水”这个事件是否发生仍然是随机的. 尽管明天下雨的可能性很大,但由于“明天下雨” 是随机事件,因此仍然有可能不下雨.
Page
20
遗传机理中的统计规律 孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆 全是黄色的.第二年,当他把第一年收获的黄色豌豆再种下 时, 收获的豌豆既有黄色的又有绿色的.
最有可能是什么颜色的球?
红球.
Page
27
5.甲、乙两人进行比赛,比赛的规则是同时抛掷两枚质地 均匀的硬币,如果出现两次正面向上,那么甲得一分;如 果出现一次正面向上,一次反面向上,那么乙得一分,你 认为这种比赛规则公平吗? 同时抛掷两枚质地均匀的硬币,所有可能出现的结果 “正正”、“正反”、“反正”、“反反”四种,其中两

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件
5.4 统计与概率的应用
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.互斥对立iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k k n b a C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nk n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.n n 2211期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 概率
3.1 随机事件的概率
3.1.2 概率的意义
A 级 基础巩固
一、选择题
1.给出下列三个命题,其中正确命题的个数是( )
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是37
; ③随机事件发生的频率就是这个随机事件发生的概率.
A .0
B .1
C .2
D .3
解析:①概率指的是可能性,错误;②频率为37
,而不是概率,故错误;③频率不是概率,错误.
★答案★:A
2.事件A 发生的概率接近于0,则 ( )
A .事件A 不可能发生
B .事件A 也可能发生
C .事件A 一定发生
D .事件A 发生的可能性很大
★答案★:B
3.一枚质地均匀的硬币如果连续抛掷100次,那么第99次出现反面朝上的概率是( ) A.1100 B.99100 C.12 D.199 解析:由于每次试验出现正、反面朝上的概率是相等的,均为12
. ★答案★:C
4.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( )
A .次品率小于10%
B .次品率大于10%
C .次品率等于10%
D .次品率接近10%
解析:抽出的样本中次品的频率为110
,即10%,所以样本中次品率为10%,所以总体中次品率大约为10%.
★答案★:D
5.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况( )
A.这100个铜板两面是一样的
B.这100个铜板两面是不同的
C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的
D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的
解析:落地时100个铜板朝上的面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大.
★答案★:A
二、填空题
6.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________.(保留两位小数)
解析:所求概率为32
150
≈0.21.
★答案★:0.21
7.给出下列三个结论:
①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大;
②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性;
③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同.
其中正确结论的序号为________.
★答案★:①③
8.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药________(填“有效”或“无效”).
解析:若此药无效,则12头牛都不患病的概率为(1-0.25)12≈0.032,这个概率很小,故该事件基本上不会发生,所以此药有效.
★答案★:有效
三、解答题
9.某转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下两种方案中选一种:
A.猜“是奇数”或“是偶数”;
B.猜“是4的整数倍数”或“不是4的整数倍数”.
请回答下列问题:
①如果你是乙,为了尽可能获胜,你会选哪种猜数方案?
②为了保证游戏的公平性,你认为应选哪种猜数方案?
解:①为了尽可能获胜,乙应选择方案B,猜“不是4的整数倍数”,这是因为“不是4的
整数倍数”的概率为8
10
=0.8,超过了0.5,故为了尽可能获胜,选择方案B.
②为了保证游戏的公平性,应当选择方案A,这是因为方案A猜“是奇数”和“是偶数”的概率均为0.5,从而保证了该游戏的公平性.
10.社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.
1965年Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner 的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.
假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.
例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.
解:因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,因为身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的100人中大约有一半人,即50人回答了“是”,其余6个回答“是”的人服用过兴奋剂,由此我们估计这群人中大约有6%的
人服用过兴奋剂.
B 级 能力提升
1.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了9 000只小蜜蜂和1 000只黑小蜜蜂,养蜂人乙在同一地区放养了1 000只小蜜蜂和9 000只黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )
A .甲
B .乙
C .甲和乙
D .以上都对
解析:从养蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为110
,而从养蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为910
,所以,现在捕获的这只小蜜蜂是养蜂人乙放养的可能性较大.
★答案★:B
2.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g).
492 496 494 495 498
497 501 502 504 496
497 503 506 508 507
492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为________.
解析:袋装食盐质量在497.5 g ~501.5 g 之间的共有5袋,所以其概率约为520
=0.25. ★答案★:0.25
3.设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d 表示显性基因,r 表示隐性基因,则具有dd 基因的人为纯显性,具有rr 基因的人为纯隐性,具有rd 基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:
(1)1个孩子由显性决定特征的概率是多少?
(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?
解:父母的基因分别为rd ,rd.则孩子从父母身上各得一个基因的所有可能性为rr ,rd ,rd ,
dd ,共4种,故具有dd 基因的可能性为14,具有rr 基因的可能性也为14
,具有rd 基因的可能性为12
.
(1)1个孩子由显性决定特征的概率是34
. (2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为34
.。

相关文档
最新文档