七年级数学上册 第三章 整式及其加减 4 整式的加减 整式加减试题归类浅析素材 北师大版 精

合集下载

北师大版七年级数学上册第三章《整式及其加减》复习题含答案解析 (21)

北师大版七年级数学上册第三章《整式及其加减》复习题含答案解析 (21)

一、选择题1. 下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有 5 个实心圆点,第②个图形一共有 8 个实心圆点,第③个图形一共有 11 个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为 ( )A . 18B . 19C . 20D . 212. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式 (a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”(a +b )0⋯⋯⋯⋯⋯⋯1(a +b )1⋯⋯⋯⋯⋯11(a +b )2⋯⋯⋯⋯121(a +b )3⋯⋯⋯1331(a +b )4⋯⋯14641(a +b )5⋯15101051⋯根据”杨辉三角”请计算 (a +b )8 的展开式中从左起第四项的系数为 ( ) A . 84B . 56C . 35D . 283. 将正方体骰子(相对面上的点数分别为 1 和 6,2 和 5,3 和 4)放置于水平桌面上,如图 1.在图 2 中,将骰子向右翻滚 90∘,然后在桌面上按逆时针方向旋转 90∘,则完成一次变换.若骰子的初始位置为图 1 所示的状态,那么按上述规则连续完成 10 次变换后,骰子朝上一面的点数是 ( )A . 6B . 5C . 3D . 24. 如图是一回形图,其回形通道的宽和 OB 的长均为 1,回形线与射线 OA 交于 A 1,A 2,A 3,⋯,若从 O 点到 A 1 点的回形线为第 1 圈(长为 7 ),从 A 点到 A 2 点的回形线为第 2 圈,⋯,依此类推,则第 11 圈的长为 ( )A.72B.79C.87D.945.已知:2+23=22×23、3+38=32×38、4+415=42×415、5+524=52×524,……,若10+b a =102×ba(a、b为正整数)符合前面式子的规律,则a+b的值不可能是A.109B.218C.326D.4366.【测试4】在多项式−3x3−5x2y2+xy中,次数最高的项的系数为( )A.3B.5C.−5D.17.小军从一列火车的第m节车厢数起,一直数到第n节车厢(n>m),他数过的车厢节数是( )A.(m+n)节B.(n−m−1)节C.(n−m)节D.(n−m+1)节8.1883年,康托尔构造的这个分形,称做康托尔集.从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段:然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段.无限地重复这一过程,余下的无穷点集就称做康托尔集.下图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322439.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则代数式m2−cd+a+bm的值为A.−3B.3C.−5D.3或−510.已知a,b,c在数轴上的位置如图所示,则∣a−b∣−∣c−b∣+∣c−a∣的值是( )A.2a−2b+2c B.2a−2b C.2b−2c D.2a+2b−2c二、填空题11. 归纳“T ”字形,用棋子摆成的“T ”字形如图所示,按照图①,图②,图③ 的规律摆下去,摆成第n 个“T ”字形需要的棋子个数为 .12. 符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,⋯ (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,⋯利用以上规律计算:f (12008)−f (2008)= .13. 研究下列算式,你能发现什么规律?试用公式表示这些规律.(1)1×3+1=4=22. (2)2×4+1=9=32. (3)3×5+1=16=42. (4)4×6+1=25=52. 第 n 个式子可以表示为 .14. 用代数式表示“x 的 2 倍与 y 的和的平方”是 .15. 古希腊数学家把下列一组数:1,3,6,10,15,21,⋯ 叫做三角形数,这组数有一定的规律性,如果把第一个三角形数记为 x 1,第二个三角形数记为 x 2,⋯,第 n 个三角形数记为 x n ,那么 x n−1+x n 的值是 (用含 n 的式子表示).16. 已知 −2x m−1y 3 与 12x n y m+n 是同类项,那么 (n −m )2019= .17. 若 ∣x −y ∣+(y +2)2=0,则代数式 x +y 的值 = .三、解答题18. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加 1 的规律拼成一系列图案,请仔细观察,并回答下列问题:(1) 第4个图案中有白色纸片多少张?(2) 第n个图案中有白色纸片多少张?(3) 第几个图案有白色纸片有2011张?(写出必要的步骤)19.计算:(3x2−xy−2y2)−2(x2+xy−2y2).20.某服装厂生产一种西装和领带,西装每套定价为200元,领带每条定价30元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(x>20)(1) 两种方案分别需要付款多少元?(用含x的代数式表示)方案① ,方案② .(2) 若x=30,通过计算说明此时哪种方案购买较为合算?21.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26; ⋯⋯①然后在①式的两边都乘以2,得:2S=1+2+22+23+24+25+26+27; ⋯⋯②根据等式的性质用② −①得:2S−S=27−1,则S=27,即1+2+22+23+24+25+26=27−1.(1) 请你用上面的方法求1+3+32+33+34+35+36+37的值;(2) 通过归纳概括请你能直接写出1+3+32+33+34+35+36+⋯+3m的值.22.已知2x m y2与−3xy n是同类项,计算m−(m2n+3m−4n)+(2nm2−3n)的值.23.阅读下列材料:将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.也称这个数为“要塞数”.例如:将数1078分解为8和107,107−8×2=91,因为91能被7整除,所以1078能被7整除,就称1078为“要塞数”.完成下列问题:(1) 若一个三位自然数是“要塞数”,且个位数字和百位数字都是7,则这个三位自然数为;(2) 若一个四位自然数M是“要塞数”,设M的个位数字为x,十位数字为y,且个位数字与百位数字的和为13,十位数字与千位数字的和也为13,记F(M)=∣x−y∣,求F(M)的最大值.24.化简求值.(1) 化简(2a2−1+2a)−2(a−1+a2).(2) 先化简,再求值.3y2+2x2+(2x−y)−(x2+3y2)−2x,其中x=1,y=−2.25.某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1) 若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2) 若x=40,通过计算说明按方案①,方案②哪种方案购买较为合算?答案一、选择题1. 【答案】C【解析】提示:横排规律2n+1,除去横排后,竖排规律n+1,总规律3n+2.答案C.【知识点】用代数式表示规律2. 【答案】B【解析】找规律发现(a+b)4的第四项系数为4=3+1.(a+b)5的第四项系数为10=6+4.(a+b)6的第四项系数为20=10+10.(a+b)7的第四项系数为35=15+20.∴(a+b)8第四项系数为21+35=56.【知识点】用代数式表示规律3. 【答案】B【解析】根据变换,规律是原来朝右的对面会变成朝上的,正对的数字会变成朝右的本来是3朝上,2朝右,正对1,第一次:如图,5朝上(1朝右,正对4),第二次:1对面是6,6朝上(朝右4,正对2),第三次:4对面是3,3朝上(2朝右,正对1),可以发现这样就完成循环,10次就是3个循环加1次,也就是第一次的结果,5朝上.【知识点】用代数式表示规律4. 【答案】C【解析】设第n圈的长为a n( n为正整数).观察图形,可知:a1=7=2×4−1,a2=15=4×4−1,a3=23=6×4−1,⋯,∴a n=2n×4−1=8n−1(n为正整数),∴a11=8×11−1=87.故选:C.【知识点】用代数式表示规律5. 【答案】C【解析】根据前面式子的规律,可知ba =1099,所以a+b的值为109的倍数.【知识点】列代数式6. 【答案】C【解析】在多项式−3x3−5x2y2+xy中,次数最高的项的系数为:−5.故选:C.【知识点】多项式的次数7. 【答案】D【知识点】简单列代数式8. 【答案】D【解析】根据分析可知:当达到第五阶段时,余下的线段之和为(23)5.【知识点】用代数式表示规律9. 【答案】B【解析】由题意得a+b=0,cd=1,m=±2,代数式可化为m2−cd=4−1=3.【知识点】简单的代数式求值10. 【答案】B【解析】由题意得:c<b<0<a,∴a−b>0,c−b<0,c−a<0,∴ ∣a−b∣−∣c−b∣+∣c−a∣=a−b−b+c−c+a=2a−2b.【知识点】整式的加减运算二、填空题11. 【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,⋯⋯则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【知识点】用代数式表示规律12. 【答案】1【解析】试题观察(1)中的各数,我们可以得出f(2008)=2007,观察(2)中的各数,我们可以得出f(12008)=2008.则:f(12008)−f(2008)=2008−2007=1.【知识点】用代数式表示规律13. 【答案】n×(n+2)+1=(n+1)2【知识点】用代数式表示规律14. 【答案】(2x+y)2【知识点】简单列代数式15. 【答案】n2【解析】将条件数据1,3,6,10,15,21,⋯,依次扩大2倍得到:2,6,12,20,30,42,⋯,这组新数据中的每一个数据可以改写成两个相邻正整数的乘积,即2=1×2,6=2×3,12=3×4,20=4×5,⋯,∴x n=n(n+1)2,(n≥1)∴x n−1+x n=n(n−1)+n(n+1)2=n2.【知识点】用代数式表示规律16. 【答案】−1【解析】因为−2x m−1y3与12x n y m+n是同类项,所以{m−1=n, m+n=3,解得{m=2, n=1,则(n−m)2019=−1.【知识点】同类项17. 【答案】−4【知识点】简单的代数式求值三、解答题18. 【答案】(1) 观察图形的变化可知:第1个图案中有白色纸片张数为:3×1+1=4;第2个图案中有白色纸片张数为:3×2+1=7;第3个图案中有白色纸片张数为:3×3+1=10;第4个图案中有白色纸片张数为:3×4+1=13.(2) 根据(1)发现规律:第n个图案中有白色纸片张数为:(3n+1)张.(3) 根据(2)可知:3n+1=2011,解得n=670.答:第670个图案有白色纸片有2011张.【知识点】有理数的乘法、解常规一元一次方程、用代数式表示规律19. 【答案】原式=3x2−xy−2y2−2x2−2xy+4y2 =x2−3xy+2y2.【知识点】整式的加减运算20. 【答案】(1) 30x+3400;27x+3600(2) x=30时,方案①:30×30+3400=4300元,方案②:27×30+3600=4410元.∵4300<4410,∴选择方案①购买较为合算.【解析】(1) 方案①:200×20+30(x−20)=30x+3400;方案②:200×20×90%+30x−90%=27x+3600.【知识点】简单列代数式、简单的代数式求值21. 【答案】(1) S=1+3+32+33+34+35+36+37,两边同时乘以3,得3S=3+32+33+34+35+36+37+38,∴2S=38−1,∴S=12(38−1),∴1+3+32+33+34+35+36+37的值为12(38−1).(2) 12(3m+1−1).【解析】(2) S=1+3+32+33+34+35+36+⋯+3m,3S=3+32+33+34+35+36+⋯+3m+3m+1,∴2S=3m+1−1,∴S=12(3m+1−1),(3m+1−1).∴1+3+32+33+34+35+36+⋯+3m的值12【知识点】用代数式表示规律、有理数的乘方22. 【答案】∵2x m y2与−3xy n是同类项,∴m=1,n=2,∴ m−(m2n+3m−4n)+(2nm2−3n)=m−m2n−3m+4n+2nm2−3n=nm2−2m+n.当m=1,n=2时,原式=2−2+2=2.【知识点】整式的加减运算23. 【答案】(1) 727或797(2) 由已知这个四位数的千位数字是13−y,百位数字是13−x,且4≤x≤9,4≤y≤9,∵四位数是“要塞数”,∴100(13−y)+10(13−x)+y−2x=1430−99y−12x能被7整除,∴x=5,y=5;x=6,y=7;x=7,y=9;x=9,y=6;∴F(M)=∣x−y∣的最大值是3.【解析】(1) 设三位数的十位数是a(0≤a≤9),∵个位数字和百位数字都是7,∴这个三位数是7a7,∵这个三位数是“要塞数”,∴70+a−2×7=54+a能被7整除,∴a=2或a=9,∴这个三位数是727或797.【知识点】简单的代数式求值、用代数式表示规律24. 【答案】(1) 2a2−1+2a−2a+2−2a2=1.(2) 3y2+2x2+2x−y−x2−3y2−2x=x2−y.当x=1,y=−2时,原式=1+2=3.【知识点】整式的加减运算25. 【答案】(1) 1800+60x;2880+48x(2) 方案① 4200元,方案② 4800元,∵4200<4800,所以选方案①.【知识点】简单列代数式、简单的代数式求值11。

七年级上册第三章整式及其加减小结与复习

七年级上册第三章整式及其加减小结与复习
【解析】 (1)此题直接利用去括号法则,去掉括 号,再合并同类项;(2)先利用去括号法则和乘 法分配律去掉括号,再合并同类项.
解:(1)2a+(a+1)-(2a-1) =2a+a+1-2a+1 =(2a+a-2a)+(1+1) =a+2. (2)(5a2-3b)-3(a2-2b) =5a2-3b-3a2+6b =(5a2-3a2)+(-3b+6b) =2a2+3b.
3 【解析】解决问题的基本步骤是先去括号,然后合并同类 项.去括号时应注意去括号法则的应用.
解:(3a2-ab+7)-(5ab-4a2+7) =3a2-ab+7-5ab+4a2-7 =7a2-6ab. 当 a=2,b=1时,原式=28-4=24.
3
针对训练
7.先化简,再求值: ab3 2b1 2ab2 3a1, 其中a=2,b=1. 解 : 原 式 = a b 3 b 1 a b 3 a 1 = 3 a 3 b 3 .
针对训练
(6n+6)
考点六 数字规律问题
例6 从2开始,连续偶数相加,它们的和的情况如下表:
1
2=1×2
2
2+4=6=2×3
3
2+4+6=12=3×4
4
2+4+6+8=20=4×5
5
2+4+6+8+10=30=5×6


当n个连续偶数相加时,它们的和用含n的代数式如何
表示?并计算2+4+6+8+10+···+2016的值.
22 2 222 其中a=2,b=1. 原 式 =32313=0.
2 22
考点五 图形规律问题
例5 如图,第(1)个图有1个黑色圆圈;第(2)个图为3个 同样大小的圆圈叠成的图形,最下一层的2个圆圈为黑 色,其余为白色;第(3)个图为6个同样大小的球叠成的 图形,最下一层的3个圆圈为黑色,其余为白色;…; 则第(n)个图中白色圆圈的个数为( B )

七年级数学上册 第三章 整式及其加减 4 整式的加减(二)课件

七年级数学上册 第三章 整式及其加减 4 整式的加减(二)课件
答案(dáàn) C 由题意得,所求多项式为(x3-3x2y)-(3x2y-3xy2)=x3-3x2y-3x2y+3xy2 =x3-6x2y+3xy2. 3.(2016广东深圳锦华实验学校期中(qī zhōnɡ))长方形的一边长等于3x+2y,其邻边 比它长x-y,则这个长方形的周长是 ( ) A.4x+y B.12x+2y C.8x+2y D.14x+6y 答案 D 长方形的周长为2(3x+2y)+2(3x+2y+x-y)=6x+4y+8x+2y=14x+ 6y.故选D.
=(4y-4y)+(-4+2)+(-2x-2x)
=-2-4x.
当x=- 1
2
时,原式=-2-4×
1 2
= -2+2=0.
(2)原式=6m2+4n2-12m2+3n2
=(6m2-12m2)+(4n2+3n2)=-6m2+7n2.
当m=-2,n=1时,原式=-6×(-2)2+7×12=-24+7=-17.
A.A>B C.A=B
B.A<B D.不能确定
答案 A A-B=(5x2-3x+4)-(3x2-3x-2)=5x2-3x+4-3x2+3x+2=2x2+6>0,所以 A>B.
2021/12/10
第十四页,共四十二页。
3.甲对乙说:“有一个游戏,规则是任想一个数,把这个数乘2,结果加上8, 再除以2,最后减去所想的数,此时(cǐ shí)我就能知道运算结果.”请你解释甲为
22

七年级数学上册 第三章 整式及其加减 4 整式的加减 整式加减试题归类浅析素材 北师大版(2021

七年级数学上册 第三章 整式及其加减 4 整式的加减 整式加减试题归类浅析素材 北师大版(2021

七年级数学上册第三章整式及其加减4 整式的加减整式加减试题归类浅析素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章整式及其加减4 整式的加减整式加减试题归类浅析素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章整式及其加减4 整式的加减整式加减试题归类浅析素材(新版)北师大版的全部内容。

整式加减试题归类浅析纵观近两年以整式加减为载体的中考题,新颖别致、注重实际应用,较好的考查了同学们的创新能力。

现列举部分试题并加以归类浅析,探索解题规律,供大家参考。

一、定义新运算例1 现规定一种运算:b a ab b a -+=*,其中a b ,为有理数,则a b b a *+*等于____. 分析:解答本题关键是理解公式,并灵活利用给出的公式计算a b *的值。

解:a b b a *+*=(b a ab -+)+(a b ba -+)=ab 2.说明:解答本题首先要学会模仿,但不是机械地模仿,还要能变通,才能正确解题。

二、结论开放型例2 给出三个多项式:①1212-+x x ;②13212++x x ;③x x -221, 请你选择其中两个进行加法运算.分析:本题答案不惟一,按题目要求解答即可,计算时要注意整体思想应用和避免符号错误.解:若选择①②,则1212-+x x +13212++x x =x x 42+; 若选择①③,则1212-+x x +x x -221=12-x ; 若选择②③,则13212++x x +x x -221=122++x x . 说明:设计适量开放性题目是新课程要求,也是培养我们开放性思维能力,加深对概念的理解和灵活应用的要求.三、还原结果型例3 为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a b c ,,对应的密文为12439a b c +++,,.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为( )A .4,5,6B .6,7,2C .2,6,7D .7,2,6分析:关键是逆用加密规则的规律来推算解密的规则。

忻府区九中七年级数学上册 第三章 整式及其加减4 整式的加减第3课时 整式的加减教案 北师大版

忻府区九中七年级数学上册 第三章 整式及其加减4 整式的加减第3课时 整式的加减教案 北师大版

第3课时整式的加减【知识与技能】掌握整式加减的一般步骤,熟练地进行整式的加减运算.【过程与方法】通过探究整式加减的一般步骤,培养学生观察、分析、归纳及概括能力.【情感态度】结合本课教学特点,教育学生热爱生活,热爱学习,激发学生观察,探究数学问题的兴趣. 【教学重点】整式的加减.【教学难点】归纳整式加减的一般步骤.一、情境导入,初步认识按照下面的步骤做一做:1.任意写一个两位数;2.交换这个两位数的十位数字和个位数字,又得到一个数;3.求这两个数的和.再写几个两位数重复上面的过程.这些和有什么规律?这个规律对任意一个两位数都成立吗?【教学说明】学习通过操作,初步感受整式的加减.二、思考探究,获取新知1.整式加减的一般步骤问题1按照下面的步骤做一做.教材第95页的“做一做”.【教学说明】学生通过导入的操作已经知道解决问题的方法,进一步感受整式的加减.问:在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的.通过这个问题得到整式加减的一般步骤.【归纳结论】进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.2.整式的加减问题2计算:【教学说明】通过计算,使学生熟练地掌握整式的加减的计算方法.【归纳结论】几个整式相加减,通过用括号将一个整式括起来,再用加减号连接,然后去括号,合并同类项.3.整式加减的应用问题3我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米收费为1.5元;乙市为:起步价10元,3千米后每千米收费为1.2元.(1)试问在甲、乙两市乘坐出租车S(S>3)千米的价钱差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?【分析】先把甲、乙两市乘坐出租车S(S>3)千米的价钱分别用含S的式子表示出来,再求甲、乙两市的价钱差.【教学说明】学生分析、思考,与同伴交流,感受整式的加减在实际问题中的应用.问题4已知M=4x2-3x-2,N=6x2-3x+6,试比较M与N的大小关系.【分析】比较两个式子的大小,一般采用“作差法”,即先将两式作差,再把所得的差与0比较,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体验知识的综合运用.三、运用新知,深化理解4.已知A=-2x2+x-6,B=4+3x+5x2.求:(1)A+B;(2) A-B;(3)3A-B.5.某学生计算2x2-5xy+6y2加上某多项式时,由于粗心,误算为减去这个多项式而得到7y2+4xy+4x2,你能帮他求出正确的答案吗?6.一个长方形的宽为a,长比宽的2倍少1.(1)写出这个长方形的周长;(2)当a=2时,这个长方形的周长是多少?7.蔬菜供应站以每千克a元的价格购进某种蔬菜m千克,如果按10%的损耗计算,若以5元/千克的价格出售,那么利润是多少?【教学说明】学生自主完成,检测对整式的加减有关知识的掌握情况,加深对新学知识的理解,使学生学会综合运用所学的知识,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.四、师生互动,课堂小结1.师生共同回顾整式加减的一般步骤.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流进行知识的提炼和归纳,加深对知识的理解.1.布置作业:从教材“习题3.7”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究整式加强的一般步骤,到运用整式的加减解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.6.2 立方根一、新课导入:1.导入课题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?为了解决这一问题,这节课我们就来学习立方根(板书课题).2.学习目标:(1)知道什么是立方根,什么是开立方,并能运用开立方与立方之间互为逆运算的关系求一个数的立方根.(2)知道立方根的性质,会用符号正确表示一个数的立方根.(3)能用计算器求立方根,知道立方根的小数点的位置移动规律.(4)类比平方根来学习立方根,体会类比思想.3.学习重、难点:重点:立方根的概念.难点:立方根与平方根的区别与联系.二、分层学习1.自学指导:(1)自学内容:课本P49至P50例题为止的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,并做好圈点标记,类比平方根来理解相关内容.(4)自学参考提纲:①什么叫立方根(或三次方根)?什么叫开立方?开立方与立方之间有何关系?②根据开立方与立方的关系,完成P49“探究”中的填空.③根据填空的结果,归纳出立方根的性质,你能说说它与平方根的性质有什么不同吗?④一个数a的立方根,用符号a表示,读作三次根号a.⑤符号a中,3是根指数,能省略吗?(不能)根指数在什么情况下可以省略?a 是实数,这里的a还需满足“a≥0”的条件吗?⑥完成P50“探究”,从中可以归纳出:对于任意数a,都有-a=-a.⑦求下列各式的值:1000-0.01-1 -64 27上面4个小题的答案依次为:10,-0.1,-1,-4 32.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流和纠错.4.强化:(1)立方根的概念,性质和符号表示.(2)3-a=-3a.(3)利用开立方与立方互为逆运算求一个数的立方根.1.自学指导:(1)自学内容:课本P50倒数第三行至P51“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,熟悉用计算器求立方根的方法;小组合作探究立方根的小数点的位置移动规律.(4)自学参考提纲:23、523、4等开方开不尽的数也都是无限不循环小数,可以用夹逼法求其近似值,也可以用计算器求其近似值.②若a、b是两个连续整数,且a<50,求a+b的值.(7)③用计算器计算:0.002160.216216216000上面4小题答案依次为:0.06,0.6,6,60.④由③中计算结果,可以归纳出被开方数的小数点的移动与它的立方根的小数点的移动规律:被开方数的小数点每向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位.⑤用计算器计算100=4.642(精确到0.001),并利用④)中总结的规律填空:①0.1=0.4642;②0.0001=0.04642;③100000=46.42.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流、纠错.4.强化:被开方数的小数点与它的立方根的小数点的位置移动规律.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)审查下列说法:(1)2是8的立方根;(2)±4是64的立方根;(3)-1 3是-127的立方根;(4)(-4)3的立方根是-4,其中正确的个数是(C)A.1个B.2个C.3个D.4个2.(10分)下列各式:(1)-3;(2) 3;(3)()33-3110中,有意义的有(D)A.1个B.2个C.3个D.4个3.(10分)已知0.343=0.7,则343000=70; -0.000343=-0.07.4.(20分)求下列各数的立方根:(1)-0.008;(2)64125; (3)106; (4)(-110)3.解:(1)-0.008=-0.2;(2)6412545;(3)6102=100;(4)33110⎛⎫⎪⎝⎭-=-110. 5.(20分)求下列各式的值:二、综合运用(20分) 6.(10分)求下列各式中x 的值: (1)x 3=0.008; (2)x 3-3=38; (3)(x-1)3=64. 解:(1)∵0.23=0.008,∴x=0.2. (2)x 3=278,∵32⎛⎫ ⎪⎝⎭3=278,∴x=32. (3)∵43=64,∴x-1=4,∴x=5. 7.(10分)比较下列各组数的大小: (1)9 2.5; (2)332. 解:(1)∵(93=9,2.53=15.625,∴(93<15.625, ∴9(2)∵(3)3=3,3·(32)2=278, ∴3<278, ∴3332. 三、拓展延伸(10分) 8.若x 2y =4,2x y +的值.解:∵x 2y ∴x=23,y 2=16, ∴x=8,y=±4,∴x+2y=8+2×4=16或x+2y=8-2×4=0, 2x y +162x y +0=0.第2章整式加减1. 用字母表示数【知识与技能】1.在现实情境中理解用字母表示数的意义.2.能用字母运算律和计算公式.3.让学生在探索基本数量关系的过程中,建立符号意识.【过程与方法】从一个学生熟悉的实例引入用字母表示数,并通过各种师生活动加深学生对“奇偶数”的概念和用字母表示数的意义的理解;并使学生会用字母表示数和数量关系,使学生进一步发展符号感.【情感态度】从学生的生活实际中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生思维严谨的良好素养.【教学重点】重点是会用字母表示数和规律.【教学难点】难点是探索一般规律并用字母表示.一、情境导入,初步认识【情境1】实物投影,并呈现问题:科学家爱因斯坦上小学的时候,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,12+23=23+12.他认为,这是数学运算的一个重要规律,于是就把这个规律告诉了他的老师和同学,得到了大家的赞赏.你能发现这个规律吗?你能把这个规律用简明的方法表示出来吗?你还能用简明的方法表示哪些运算规律?【情境2】实物投影,并呈现问题:游戏:如果你能把你想到的一个数扩大2倍后再减去2的差的一半告诉我,我就能猜到你想到的是什么数,信吗?试试看.老师为什么能猜到你想到的数呢?【教学说明】学生独立思考后,小组讨论,教师注意引导学生发现用字母表示数的意义,从而会用字母表示数和规律.情境1中有理数加法的交换律,用字母表示为:a+b=b+a,还可以表示:加法结合律(a+b)+c=a+(b+c),乘法结合律(a×b)×c=a×(b×c),乘法交换律a×b=b×a,乘法分配律a×(b+c)=a×b+a×c.情境2中学生体验并感受到了用字母表示数的优越性.【教学说明】通过现实情景再现,让学生体会到用字母表示数的意义,发展学生的数学符号意识.通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知1.奇数和偶数问题1什么是奇数?什么是偶数?问题2用字母如何表示奇数和偶数?【教学说明】学生通过阅读教材和观察生活,在经过观察、分析后能得出结论.2.字母表示数的意义问题用字母表示数有什么作用?【教学说明】一方面让学生经历用字母表示数,在用字母表示数和数量关系的过程中体会用字母表示数的意义,另外发展学生运用符号的意识.【归纳结论】用字母所表示的数是某个范围内所有数的代表,具有普遍性,又是这个范围内的任意一个数,具有任意性.因此,用字母表示数,可以把数和数量关系简明地表示出来.用字母可以简明地表示数学运算律、公式、数量关系、未知数等.三、运用新知,深化理解1.字母与数相乘的3v表示什么,下面同学的说法中,正确的个数是()①我一小时走v千米,3小时共走3v千米;②小明说小彬一分钟跑v米,3分钟跑3v 米;③晶晶说一个瓶子体积共v升,3个同样的瓶子体积是3v升;④媛媛说老虎一顿吃3公斤肉,v顿吃3v公斤肉.2.下列用字母表示“分数的分子、分母同乘以不等于0的数,分数的值不变”正确的是()3.请用字母表示:(1)三角形底边为a,高为h,面积为s,则s= ;(2)梯形的上底为a,下底为b,高为h,面积为s,则s= ;(3)圆的半径为R,面积为s,周长为L,则S= , L= .4.如图,用字母表示图中阴影部分的面积:5.如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识.【答案】1.A 2.D四、师生互动,课堂小结1.什么叫做奇数?什么叫做偶数?2.用字母表示数有什么意义?3.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第57页“练习”中选取.2.完成同步练习册中本课时的练习.本节课精心预设教学的各个环节,给学生提供了较大的思考空间,创设了多个贴近学生认知规律且适合学生学习的教学情境,使学生在现实情境中了解用字母表示数的意义,理解奇偶数的概念,掌握奇偶数的表示方法和能用字母来表示数和数量关系,为代数式的学习打好基础,同时发展了学生的符号意识.。

七年级数学上册第3章整式及其加减复习试题

七年级数学上册第3章整式及其加减复习试题

第三章整式的加减运算复习目的:1.梳理所学知识,形成一定的体系,并逐步掌握用代数式表达数量关系或者变化规律的方法;2.理解代数式的含义,能解释一些简单的代数式的实际背景或者几何意义,体会数学与现实世界的联络;经历探究事物之间的数量的关系,并用字母与代数式表示,建立初步符号感,开展抽象思维.3.会进展整式的加减运算,会去括号和合并同类项.化简求值.复习重难点:化简求值---去括号考点一:用字母表示数(注意代数式的书写要求)1.组织老师和学生到森林公园春游,每位老师的车费为x元,每位学生的车费为y元,学生每满100人可优惠2人的车费,假如该校七年级有老师25人,学生530人,那么需要付给汽车公司的总费用为_____________元.2.回收废纸用于造纸可节约木材.据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收m吨废纸可以节约_______ 立方米木材.3.对单项式“5x〞,我们可以解释:香蕉每千克5元,某人买了x千克,一共付款5x元.请你对“5x〞再给出另一个实际生活方面的合理解释:_________________________________.4.假设x是一个三位数,如今把数字1放在它的右边,得到的四位数是__________.考点二:代数式注解:列代数式时,要分清运算顺序,正确使用括号,在表达数量关系中,一般先说的先写.列代数式表示数量关系是本章重点之一,在整个数学学习中都有很大的作用.1.“a 的3倍与b 的差的平方〞用代数式表示是____________.2.在式子 x -2,2a 2b ,a ,c =πd,,a +1>b 中,代数式有〔 〕.A.6个B.5个C.4个D.3个 3.以下各题中,错误的选项是 ( ) .A .代数式22y x +的意义是y x ,的平方和.B .代数式)(5y x +的意义是5与y x +的积.C .x 的5倍与y 的和的一半,用代数式表示是25y x +. D .x 的21与y 的31的差,用代数式表示是y x 3121-. 4.如右图,正方形ABCG 和正方形CDEF 的边长分别为b a ,,用含b a ,的代数式表示阴影局部的面积________________ .5.〔1〕小红家9月份用了a 度电,10月份比9月份节约了b 度电,每用一度电须缴电费53.0元,那么小红家10月份应缴电费____________元.〔2〕一辆汽车有甲地以每小时65千米的速度驶向乙地,行驶3小时即可到达乙地,那么在行驶)30(≤<t t 小时后离甲地_________千米,距乙地________千米.〔3〕随着计算机技术的迅速开展,电脑价格不断降低,某品牌电脑按原价降价20%,现售价为n 元,那么该电脑的原价为__________元.考点三:代数式求值注解:代数式求值的根本步骤:1、准确地将确定的字母的取值代入代数式中;2、按照代数式指明的运算,计算出结果.代数式求值的常用方法有直接代入法和整体代入法.x=-1时,代数式-1-x 的值是_____.210,(3)0a b -=+=,那么1b a+的值是_____. 3.a 为3的倒数,b 为最大的负整数,那么代数式32)(2+-+ab b a 的值________.a ab4.1=+y x ,那么=--y x 223________.5.623,10222=+=+xy y xy x ,那么22984y xy x ++的值________.考点四:合并同类项注解:判断同类项的HY :①所含字母一样;②一样字母的指数也必须一样;二者缺一不可.特别地,同类项与项的系数大小及字母的排列顺序无关.1.249x 与n n x 5是同类项,那么n 等于〔 〕A . 4B .37C .2或者4D .2 32323265y x y ax y x =+-,那么=a _______.25ab 的两个同类项,且这两个同类项与25ab 合并后为0,你给出的两个同类项为__________.4. 假如关于字母x 的多项式3322+-++-x nx mx x 的值与x 的取值无关,那么m=_______,n=_______.考点五:去括号注解:一般来说,去括号问题注意两点:1.要掌握去括号的法那么;2.要按照去括号的顺序计算。

(最新整理)北师大版七年级上册数学第三章整式及其加减同步测试题

(最新整理)北师大版七年级上册数学第三章整式及其加减同步测试题

北师大版七年级上册数学第三章整式及其加减同步测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版七年级上册数学第三章整式及其加减同步测试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版七年级上册数学第三章整式及其加减同步测试题的全部内容。

单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列各式中不是单项式的是( ) A .-Error! B .- C .0 D .-Error!2.单项式-3xy 2z 3的系数是( ) A .-1 B .5 C .6 D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )A .30%aB .(1-30%)a C. D.a 30%4.下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与Error!yxD .6x 3y 4与-6x 3z 45.当a =-1,b =2时,代数式a 2b 的值是( ) A .-2 B .1 C .2D .-16.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n8.化简2x -(x -y )-y 的结果是( ) A .3x B .x C .x -2y D .2x -2y9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=110.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 211.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,都是代数式D .多项式与多项式的和一定是多项式12.十位数字是x,个位数字是y的两位数是( )A.xy B.x+10y C.x+y D.10x+y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x元的衣服以(Error!x-10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A.原价减去10元后再打8折 B.原价打8折后再减去10元C.原价减去10元后再打2折 D.原价打2折后再减去10元14.(湘西中考)已知x-2y=3,则代数式6-2x+4y的值为()A.0 B.-1 C.-3 D.315.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A.32 016 B.32 015 C.32 016-1 D.32 015-1二、填空题(本大题共5小题,每小题5分,共25分)16.去括号:-(3x-2)=________。

整式的加减回顾与思考

整式的加减回顾与思考

第三章整式及其加减回顾与思考一、教材分析本章的主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等,是以后学习分式和根式运算、方程以及函数等知识的基础.由数到式的学习过程,也是学生改进认识方式,数学思想发生飞跃的变化过程.因此,教学中要注意发挥实际问题的作用,结合实际问题回忆、再现单项式、多项式等概念以及整式加减运算法则等,引导学生分析实际问题中数量关系,培养学生列式表示数量关系的能力,逐步让学生养成善于利用数学解决实际问题的习惯.整式的加减运算是本章主要内容,合并同类项和去括号是进行整式加减的基础,它们是本章的重点也是难点,应该在复习时加以重视,考虑到所教学生的数学基础较好,在本节课中本着数学教育“要面向全体学生,适应学生个性发展的需要,使得不同的人在数学上得到不同的发展”的课程理念,在突出整式加减运算变式训练的基础上,适当重视与学生身边的生活实际问题的联系,加强了用式表示数量关系的能力培养,同时注意渗透模型化和数学整体思想.二、教学目标分析知识与技能:进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;理解同类项概念,掌握合并同类项法则和去括号法则,熟练地进行整式加减运算.过程与方法通过回顾与思考,帮助学生梳理本章内容,提高学生分析、归纳、语言表达能力;提高运算能力及综合应用数学知识的能力.情感态度与价值观培养严谨的学习态度和积极思考的学习习惯,通过列式表示数量关系,体会数学知识与实际问题的联系.教学重点:回顾归纳本章内容,形成知识体系;体验数学建模的过程,认识数学模型思想.教学难点:用式表示实际问题的数量关系,建立学生的符号意识.三、教学过程分析活动1 实例引入活动内容投影:例老师的想法:若光明中学七年级五班50名同学,想参加元旦长跑活动的同学就举手.当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.议一议:老师的想法是什么呢?请用本章知识说说看.活动方式学生思考,四人小组讨论派代表解决问题.教师根据学生的回答简要板书并在投影上出示解题过程.例解:设举手的有x人,依题意得x - (50-x)= x- 50+x=2x- 50所以……活动效果:由学生的生活情境引入新课,激发了学生的学习热情,引发了本节回顾与思考课的主线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式加减试题归类浅析
纵观近两年以整式加减为载体的中考题,新颖别致、注重实际应用,较好的考查了同学们的创新能力.现列举部分试题并加以归类浅析,探索解题规律,供大家参考.
一、定义新运算
例1 现规定一种运算:b a ab b a -+=*,其中a b ,为有理数,则a b b a *+*等于____.
分析:解答本题关键是理解公式,并灵活利用给出的公式计算a b *的值.
解:a b b a *+*=(b a ab -+)+(a b ba -+)=ab 2.
说明:解答本题首先要学会模仿,但不是机械地模仿,还要能变通,才能正确解题.
二、结论开放型
例2 给出三个多项式:①1212-+x x ;②132
12++x x ;③x x -221, 请你选择其中两个进行加法运算.
分析:本题答案不惟一,按题目要求解答即可,计算时要注意整体思想应用和避免符号错误. 解:若选择①②,则1212-+x x +132
12++x x =x x 42+; 若选择①③,则12
12-+x x +x x -221=12-x ; 若选择②③,则132
12++x x +x x -221=122++x x . 说明:设计适量开放性题目是新课程要求,也是培养我们开放性思维能力,加深对概念的理解和灵活应用的要求.
三、还原结果型
例3 为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由
密文→明文(解密).已知加密规则为:明文a b c ,,对应的密文为12439a b c +++,
,.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为( )
A .4,5,6
B .6,7,2
C .2,6,7
D .7,2,6
分析:关键是逆用加密规则的规律来推算解密的规则。

由加密规则为:明文a b c ,,对
应的密文12439a b c +++,,,可知密文a,b,c 对应明文为1a -,42b -,93
c -.故将7,18,
15代入1a -,42b -,93
c -,解密得到的明文为6,7,2. 解:选(B ).
说明:本题就是考查列式和求值的问题,还考查了观察、分析、转化以及逆向思维的能力。

四、判断说理题
例4 有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x-3)+(-5x 2+6x-1)-3,其中x=2010.”小明做题时把“x=2010”错抄成了“x=2001”.但他计算的结果却是正确的,请你说明这是什么原因?
分析:本题可将多项式进行计算后,根据计算结果判断.实际上当x=2010和x=2001时,多项式的值不变,说明合并同类项后,结果与x 无关.
解:17x 2-(8x 2+5x )-(4x 2+x -3)+(-5x 2+6x -1)-3
=17x 2-8x 2-5x-4x 2-x+3-5x 2+6x-1-3
=(17-8-4-5)x 2+(-5-1+6)x+(3-1-3)=-1.
由计算知多项式的结果与字母x 的取值无关,故小明将x=2010错抄成x=2001时,计算的结果不变.
说明:此类题一般应先从化简入手,这样我们可以透过现象看本质,抓住解题的关键,最后才能揭开它神秘的面纱.
五、实际应用型
例5 某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤
2
x y +元的价格卖完后,结果发现自己赔了钱,其原因是( )
A .x y <
B .x y >
C .x y ≤
D .x y ≥ 分析:由题意可以知道该商贩买黄瓜所花去的本钱是(3020x y +)元,他卖完后得到的是(2030)25()2
x y x y +⨯+=+元,结果是赔了钱,由此应该有(3020)25()x y x y +-+ 5()x y =->0,因此必然有x y >。

解:选择(B ).
说明:新的课程标准强调用数学的眼光从生活中捕捉数学问题,运用数学知识分析生活现象,自主地解决生活中的实际问题。

数学只有回到生活中,才会显示其价值和魅力;同学
们只有回到生活中运用数学,才能真实地显现其数学学习的水平.。

相关文档
最新文档