理论力学第十一章

合集下载

《理论力学》课件 第十一章

《理论力学》课件 第十一章

第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。

质点的动量是矢量,它的方向与质点速度的方向一致。

kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。

)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。

李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。

求质点系的动量问题转化为求刚体质心问题。

cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。

用力与作用时间的乘积来衡量力在这段时间内积累的作用。

冲量是矢量,方向与常力的方向一致。

冲量的单位是N.S 。

§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。

)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。

理论力学第十一章 达朗贝尔原理(动静法)

理论力学第十一章 达朗贝尔原理(动静法)

讨论:1)脱离角α与滚筒的角速度和滚筒半径有关,而与钢球质量无关。
2)
筒壁。此时转筒
的转速称为临界转速,对球磨机而言,要求n小于nL,否则球磨机就不能工作。
§11-2 刚体惯性力系的简化
刚体平移时惯性力系的简化
当刚体平移时,任一瞬时体内各点的加速度相等。若记某瞬 时刚体质心加速度为aC,则该瞬时体内任一质量为m的质点 的加速度ai=aC,虚加在该点上的惯性力Fgi=-miai=-miaC 。 刚体内每一点都加上相应的惯性力,由静力学知,该空间平 行力系可简化为过质心的合力,即
式中,Fgτ=-maτ,称为切向惯性力 Fgn=-man称为法向惯性力(也称离心力)
负号表示它们分别与切向加速度和法向加速度的方向相反。
§11-1 惯性力与质点的达朗贝尔原理
质点系的动静法
对由n个质点组成的非自由质点系,设其中任一质点的质量 为mi,某瞬时加速度为ai,作用其上的主动力F,约束反力 Fni,假想在该质点上加上惯性力Fgi=-mai,由质点达朗贝 尔原理,则
=- maC
该力偶的力偶矩等于惯性力系对刚体惯性力系的简化
结论 当刚体有质量对称面,且绕垂直于质量对称面的定轴 转动时,惯性力系可以简化为对称面内的一个力和一个力偶。 该力等于刚体的质量与质心加速度的乘积,方向与质心加速 度方向相反,且力的作用线通过转轴;
该力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘 积,其转向与角加速度转向相反。惯性力系向点O简化的结 果如图b)所示。
Fg=-m a
质点的达朗伯原理:质点在运动的每一瞬时,作用 于质点上的主动力、约束反力与假想地在质点上 的惯性力,在形式上构成一平衡力系。
§11-1 惯性力与质点的达朗贝尔原理

理论力学第十一章 质点系动量定理讲解

理论力学第十一章 质点系动量定理讲解

结论与讨论
牛顿第二定律与 动量守恒
牛顿第二定律 动量定理 动量守恒定理
工程力学中的动量定理和动量守恒定理比 物理学中的相应的定理更加具有一般性,应 用的领域更加广泛,主要研究以地球为惯性 参考系的宏观动力学问题,特别是非自由质 点系的动力学问题。这些问题的一般运动中 的动量往往是不守恒的。
结论与讨论

O
第一种方法:先计算各个质点 的动量,再求其矢量和。
第二种方法:先确定系统 的质心,以及质心的速度, B 然后计算系统的动量。
质点系动量定理应用于简单的刚体系统
例题1
y vA
A

O
解: 第一种方法:先计算各个质点 的动量,再求其矢量和。
p mA v A mB vB
建立Oxy坐标系。在角度为任 意值的情形下
p mi vi
i
§11-1 质点系动量定理
动量系的矢量和,称为质点系的动量,又称 为动量系的主矢量,简称为动量主矢。
p mi vi
i
根据质点系质心的位矢公式
mi ri
rC
i
m
mi vi
vC i m
p mvC
§11-1 质点系动量定理
质点系动量定理
对于质点
d pi dt
质点系动量定理应用
动量定理的
于开放质点系-定常质量流 定常流形式
考察1-2小段质量流,其 受力:
F1、F2-入口和出口 处横截面所受相邻质量流 的压力;
W-质量流的重力; FN-管壁约束力合力。
考察1-2小段质量流, v1、v2-入口和出口处质量流的速度; 1-2 :t 瞬时质量流所在位置; 1´-2´ :t + t 瞬时质量流所在位置;

理论力学课件第十一章 动量定理

理论力学课件第十一章 动量定理
dt
F (e) y
dPz
dt
F (e) z
质点系的动量某轴上的投影对时间的导数等于作用于质点系的
所有外力在同一坐标轴上投影的代数和。
§ 11-2 动量定理
v
设t=0时,v质点系的动量为P1 的动量为 P2 。则
,经过时间t后,质点系 v P1
v
dP
d(mivvi )
v Fi(e)dt
Mi
P
Pvx2
v
Py2
Pz2
cos(P, v
i) v
Px
/
P
cos(P, j) Py / P
vv
cos(P, k ) Pz / P;
§ 11-1 动量和冲量
例11-2:椭圆规如图所示,已知曲柄OC的质量为m,
规尺AB的质量为2m , 滑块A与B的质量为m , OC=CA=CB= l 。求在图示位置曲柄以匀角速度转动时
Fdt 0
2
的过m程vv中2 ,m速vv度1 分Iv别为质v点v1、动vv2量定理
vv2 积分式
某段时间间隔内,质点动量的变化等于作用于质点上力在此段
时间内的冲量
§ 11-2 动量定理
二、质点系的动量定理
设在由力nFv个i 的质作点用组下成,的获质得点速系度,为第ivv个i 质点的质量为 mi ,
椭圆规的动量。
vA
A
解:取整个刚体系统
P
为研究对象。
vC
C
P点为AB杆的速度瞬 心
O
vB
B
§ 11-1 动量和冲量
由运动学可知,速度 A v A
分别为
vC l
AB
vC PC
P
vC

理论力学第十一章,动量定理

理论力学第十一章,动量定理

的投影守恒。
y
α
px px0
vr m2g v

vm1
vr
A
FA m1g
x
vm1
α
B
FB
(b)
(a)
α
vm1
m2g x
p mi v i
p x mi vix
A
FA m1g
B
FB
例 题1
v

考虑到初始瞬时系统处于平衡,即有pox=0,于是有 px = m2vcos m1vm1 = 0 另一方面,对于炮弹应用速度合成定理,可得 v = ve + vr 考虑到 ve = vm1,并将上式投影到轴 x 和 y 上,就得到 vcos = vrcos vm1
质点系冲量定理投影形式
e e p2 y p1 y ( Fiy ) dt I iy t2 t1 e p2 z p1 z ( Fize ) dt I iz t2 t1
dp Fie dt

dpx e Fix dt
3,质点系动量守恒定律
Fi e 0 , 1)
y
α
vr vm1
m2g x
A
FA m1g
B
FB
(a)
例 题1
解: 取火炮和炮弹(包括炸药)这个系统作为研究对象。
设火炮的反座速度是 vm1,炮弹的发射速度是 v,对水平面的仰 角是 (图b)。 炸药(其质量略去不计)的爆炸力是内力,作用在系统上的外力 在水平轴 x 的投影都是零,即有Fx = 0;可见,系统的动量在轴 x 上
(m1 m2 ) C Fy m1 g m2 g y
质心 C 的坐标为

理论力学第十一章动量矩定理

理论力学第十一章动量矩定理

JO
d 2
dt 2
mga
即:
d 2
dt 2
mga
JO
0
解: 令 2 mga
JO
——固有频率

2 0
通解为 O sin(
mgat )
JO
周期为 T 2 2 JO
mga
例11-3 用于测量圆盘转动惯量的三线摆中,
三根长度相等(l)的弹性线,等间距悬挂被测量的圆盘。
已知圆盘半径为 R、重量为W。
dt
dt dt
v dr dt
r d(mv) d(r mv)
dt
dt
dLO dt
MO F
矢量式
质点对固定点的动量矩对时间的导数等于作 用于质点上的力对该点的矩。
★ 质点系的动量矩定理
0
d
dt
i
ri mivi
i
MO (Fii )
i
MO (Fie )
MO (Fie )
i
F2
z
F1
LO rC mvC LC
dLO d
dt dt
rC mvC LC
ri Fie (rC + ri) Fie
rC Fie ri Fie


drC dt
mvC
rC
d dt
mvC
dLC dt
rC
Fie
dLC dt
由于
① ① drC dt
② vC ,
drC dt
mvC
★ 相对质心的动量矩
LC MC mivi ri mivi
vi vC vir
LC = rimivC rimivir
其中
ri mivC ( miri)vC 0 (rC

理论力学第11章动量定理

理论力学第11章动量定理
动量定理关注物体的运动状态,而能量守恒定律关注物体的能量转化与守恒。在一些特定情况下,两个 定律是相关的。
总结和应用
动量定理是解释和分析物体运动的重要工具,可以应用于各个领域,帮助我们理解世界的运动规律。
理论力学第11章动量定理
动量定理是研究物体运动的基本定律之一。它包括动量的基本概念、动量守 恒定律、数学表达式、弹性碰撞和非弹性碰撞的动量定理、应用举例、与能 量守恒定律的关系等内容。
动量的概念
动量是描述物体运动状态的物理量,是质量和速度的乘积。它能够帮助我们理解物体如何受力而改变运 动状态。
动量守恒定律
动量定理的应用举例
1
汽车碰撞
动量定理可以帮助我们分析汽车碰撞的力学过程,对交通事故进行研究和安全设计提 供指导。
2
火箭发射
火箭发射过程中动量定理的运用可以帮助我们计算火箭的推力和速度变化,实现太空 探索。
3
球类运动
动量定理可以解释为什么球在击打或投掷时会有反冲,以及如何提高球的射击速度和 力量。
动量定理与能量守恒定律的关系
动量守恒定律指出,在一个封闭体系内,当没有外力作用时,系统的总动量保持不变。这个定律在研究 碰撞和爆炸等过程中非常重要。
动量定理的数学表达式
动量定理的数学表达式为力的作用时间等ቤተ መጻሕፍቲ ባይዱ物体动量变化的量。它可以帮助 我们计算力对物体的作用效果以及物体的运动状态。
弹性碰撞和非弹性碰撞的动量定理
弹性碰撞中,动量守恒定律成立,而非弹性碰撞中,动量守恒定律不完全成立。这两种碰撞过程中动量 定理的应用有所不同。

理论力学第十一章动量矩定理

理论力学第十一章动量矩定理
当物体作直线运动时,可以用质量作为物体运动惯性的度量; 而当物体绕某轴转动时,转动惯性的大小不仅与质量有关,而 且与半径有关。物体的质量分布距转轴的距离越远,转动惯性 就越大,亦即,越不容易改变转动运动的状态。
2.规则几何形状物体的转动惯量
J Z = ∫ r 2 dm
均质圆环:
J z = ∑ ΔmR 2 =MR 2
往三个坐标轴投影:得到质点对轴的动量矩定理: d m x (mv ) = m x ( F ) dt d m y (mv ) = m y ( F ) dt d m z (mv ) = m z ( F ) dt (1)若Σmo(F)≡0, mo(mv)=常矢量; 两种特殊情况: (2)若Σmx(F)≡0, mx(mv)=常量。 以上两种情况均称为动量矩守恒
R 别为J 1 和J 2 ,两轮的半径分别为 R1 、 2 ,传 动比 i12 = R2 / R1 。轴Ⅰ上作用主动力矩 M 1 , 轴Ⅱ上有阻力矩 M 2,转向如图。忽略摩擦。 求轴Ⅰ的角加速度。
例 图示传动轴,轴Ⅰ和轴Ⅱ的转动惯量分

M2
M1

解 :分别取轴Ⅰ和Ⅱ为研究对象。受力如图。 两轴对各自轴心的转动微分方程分别为
体积
2π R
π R2
4 π R3 3
4π R 2
Δm
1 1 J O = ∑ ΔMR 2 = MR 2 2 2
N维球
均质直杆:
J z = ∫ x 2 ρ l dx =
0
l
ρl l 3
3
1 2 J z = Ml 3
z
1 1 2 2 J z = ∑ (Δm)l = Ml 3 3
l
x
z
dx
Δm
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点对某定点的 动量矩对时间的一阶 导数,等于作用力对 同一点的矩。
11.2.1 质点的动量矩定理
将上式投影在直角坐标轴上,并将对点的动量 矩与对轴的动量矩的关系代入,得
d M x (mv ) M x ( F ) dt d M y (mv ) M y ( F ) dt d M z (mv ) M z ( F ) dt
LO=ΣMO(mivi)
质点系对某轴 z 的动量矩等于各质点对同一 z 轴的 动量矩的代数和。
LZ=ΣMz(mivi)
质点系对某点O的动量矩矢在通过该点的 z 轴上的 投影,等于质点系对 该轴的动量矩。
[LO]z= Lz
刚体的动量矩
3 平动刚体的动量矩
刚体平移时,可将全部质量集中于质心,作为一个 质点计算其动量矩。 z
质点对某 固定轴的动量 矩对时间的一 阶导数等于质 点所受的力对 同一轴的矩。
质点的动量矩定理
例2 图示为一单摆(数学摆),摆锤质量为m,摆线长为l, 如给摆锤以初位移或初速度(统称初扰动),它就在经过O点 的铅垂平面内摆动。求此单摆在微小摆动时的运动规律。
解:以摆锤为研究对象,受力如图,建立 如图坐标。在任一瞬时,摆锤的速度为 v , 摆的偏角为 ,则
x
q
O
r
y
Q
质点的动量矩
类似于力对点之矩和力对轴之矩的关系,质点 对点O的动量矩矢在 z 轴上的投影,等于对 z 的动 量矩。
[MO(mv)]z=Mz(mv)
在国际单位制中,动量矩的单位是 kg· m2/s。
质点系的动量矩
2 质点系的动量矩
质点系对某点 O 的动量矩等于各质点对同一点 O 的 动量矩的矢量和。
第11章 动量矩定理
• • • • • • 质点和质点系的动量矩 动量矩定理 刚体绕定轴转动的微分方程 刚体对轴的转动惯量 质点系相对质心的动量矩定理 刚体平面运动微分方程
引言

由静力学力系简化理论知:平面任意力系向任一 简化中心简化可得一力和一力偶,此力等于平面力 系的主矢,此力偶等于平面力系对简化中心的主矩。 • 由刚体平面运动理论知:刚体的平面运动可以分 解为随同基点的平动和相对基点的转动。 • 若将简化中心和基点取在质心上,则动量定理(质 心运动定理)描述了刚体随同质心的运动的变化和外 力系主矢的关系。它揭示了物体机械运动规律的一 个侧面。刚体相对质心的转动的运动变化与外力系 对质心的主矩的关系将由本章的动量矩定理给出。 它揭示了物体机械运动规律的另一个侧面。
g 0 l
11.2.2 质点系的动量矩定理
设质点系内有n个质点,作用于每个质点的力分为外力Fi(e)
和内力Fi 。由质点的动量矩定理有
(i)
d M O (mi vi ) M O ( Fi (e) ) M O ( Fi (i) ) dt
这样的方程共有n个,相加后得
n n d (e) (i) M ( m v ) M ( F ) M ( F O i i O i O i ) i 1 d t i 1 i 1 n
11.2.1 质点的动量矩定理
因为 所以
d dr (mv ) F , v dt dt
MO(m v) MO(F ) x M O ( mv ) v mv r F dt
O
r
又因为
v mv 0, r F M O (F )
所以
d M O ( mv ) M O ( F ) dt
其中A和为积分常数,取决于 初始条件。可见单摆的微幅摆 动为简谐运动。摆动的周期为
d (ml 2 ) mgl sin dt

g sin 0 l
l T 2 g
显然,周期只与 l 有关,而与 初始条件无关。
这就是单摆的运动微分方程。 当 很小时摆作微摆动,sin ≈ ,于是上式变为
质点系的动量矩
例1 均质圆盘可绕轴O转动,其上缠有一 绳,绳下端吊一重物A。若圆盘对转轴O的转 动惯量为 J ,半径为 r ,角速度为 ,重物 A的 质量为m,并设绳与原盘间无相对滑动,求系 统对轴O的动量矩。

O
r
A
mv
解:
LO L块 L盘 m vr J 2 2 m r J (m r J )
11.1 质点和质点系的动量矩
1 质点的动量矩
质点 Q 的动量对于点 O 的 矩,定义为质点对于点 O MO(mv ) 的动量矩,是矢量。
z
A
Mz(mv)
mv

Q
A
MO (mv ) r mv
质点动量 mv 在 oxy 平面 内的投影(mv)xy对于点O的 矩,定义为质点动量对于 z 轴的矩,简称对于 z 轴的 动量矩,是代数量。
4 定轴转动刚体的动量矩
Lz Mz (mi vi ) mi vi ri mi ri 2
令 Jz=Σmiri2 称为刚体对 z 轴的转动惯 量, 于是得

ri Mi
mi vi
Lz J z
即:绕定轴转动刚体对其转轴的动量矩等于刚体对 转轴的转动惯量与转动角速度的乘积。
LO的转向沿逆时针方向。
11.2 动量矩定理
11.2.1 质点的动量矩定理
设质点 Q 对 定点 O 的动 量矩为MO(mv),作用力F对 同一点的矩为MO(F) ,如图 所示。 将动量矩对时间取一 次导数,得 MO(mv ) z F mv
Q
MO(F)
O x
r
y
d d M O (mv ) (r mv ) dt dt dr d mv r (mv ) dt dt
由于内力总是成对出现,因此上式右端的第二项
(i) M ( F O i )0 i 1 n
11.2.2 质点系的动量矩定理
上式左端为
d d n d M O (mi vi ) MO (mi vi ) LO d t i 1 dt i 1 d t
O
M z (mv) mvl ml 2
M z (F ) mgl sin
式中负号表示力矩的正负号恒与角坐标 的正负号相反。它表明力矩总是有使 摆锤回到平衡位置的趋势。
Nl
y v
M mg
x

此微分方程的解为
d M z ( mv ) M z ( F ) dt

g A sin( t ) l
相关文档
最新文档