湖南省蓝山二中高中数学《3.2.2 直线的两点式方程》教案 新人教A版必修2

合集下载

高中数学新人教版必修2教案3.2.2 直线的两点式方程.doc

高中数学新人教版必修2教案3.2.2  直线的两点式方程.doc
课堂教学设计
备课人
授课时间
课题
3.2.2直线的两点式方程

学目Βιβλιοθήκη 标知识与技能掌握直线方程的两点的形式特点及适用范围,通过新旧知识的比较、分析、应用获得新知识的特点。
过程与方法
启发引导,充分发挥学生的主体作用
情感态度价值观
培养学生用联系的观点看问题。
重点
直线方程两点式。
难点
两点式推导过程的理解。








增强学生对直线方种四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解。
课后
反思
2
教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线 的方程?那种方法更为简捷?然后由求出直线方程:
教师指出: 的几何意义和截距式方程的概念。
例4
已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。
教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程。在此基础上,学生交流各自的作法,并进行比较。
教学内容
教学环节与活动设计
1、利用点斜式解答如下问题:
(1)已知直线 经过两点 ,求直线 的方程.
(2)已知两点
其中 ,求通过这两点的直线方程。
教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:
(1)
(2)
教师指出:当 时,方程可以写成
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

§3.2.2直线的两点式方程[教材]人教A版数学必修2:第三章直线与方程 3.2直线的方程第2课时[学情分析]我校为一所普通高中,部分学苗基础较差,学生在态度习惯、知识结构、思维品质、数学能力等方面相对薄弱。

本节课是在学生学习完直线的方程第一节:直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。

另外对于两点确定一条直线,直线的纵截距的概念也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。

但由于部分学生观察、类比、迁移、化归、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。

[学习内容分析]直线方程共有四种特殊形式,本节课是学习第三、四种特殊形式,在本大节3.2直线的方程中重要性略低于前两种形式,使用频率也不高。

但它在体现点斜式方程的应用,衬托点斜式方程的重要性,及为学习一般式方程作铺垫,体现由特殊到一般的知识归纳提升过程有着重要意义。

本节的主要知识点是两个方程的导出及应用,它们的教学基于点斜式方程,同时引领学生学会一个数学方法即待定系数法,说明这种方法在确定曲线方程问题中是常用的重要方法。

另外把方程思想、数形结合思想贯穿于课堂教学的始终,强调解析几何的一般方法和思想。

通过对两点式、截距式方程形式美的认识,让学生感受数学的对称美、和谐美等美的特质。

通过对两点式方程由分式到整式的变形,为学生了解一般式方程中系数A、B的几何意义(直线的方向向量即为(B,-A),法向量为(A,B)),为学习直线的参数方程做一铺垫。

同时教给学生这个整式形式的方程是已知两点求直线方程并化为一般方程的一个小技巧,并为学生感性认识行列式为进一步学习高等数学埋下伏笔。

以体现搭建共同基础,提供发展平台的课程理念。

[教学目标]1.知识与技能:掌握直线的两点式、截距式方程并会用于求直线方程的相关问题;2.过程与方法:理解两点式方程的导出过程,掌握求直线方程的直接法及间接法(待定系数法);3.态度、情感、价值观:通过对方程形式美的发现,感受数学美和数学文化,进一步体会方程思想、数形结合思想、分类讨论思想。

《3.2.2直线的两点式方程》教学案3-教学设计-公开课-优质课(人教A版必修二精品)

《3.2.2直线的两点式方程》教学案3-教学设计-公开课-优质课(人教A版必修二精品)

《3.2.2直线的两点式方程》教学案3一、教学目标1、知识与技能(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围.2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题.二、教学重点、难点:1、 重点:直线方程两点式.2、难点:两点式推导过程的理解.三、教学过程Ⅰ.复习回顾师:上一节课,我们一起学习了直线方程的点斜式,并要求大家熟练掌握,首先我们作一简要的回顾(略), 这一节,我们将利用点斜式来推导直线方程的两点式. Ⅱ.讲授新课1. 直线方程的两点式:),(2121121121y y x x x x x x y y y y ≠≠--=-- 其中2211,,,y x y x 是直线两点),(),,(2211y x y x 的坐标.推导:因为直线l 经过点),(),,(222111y x P y x P ,并且21x x ≠,所以它的斜率1212x x y y k --=.代入点斜式,得,)(112121x x x x y y y y ---=-. 当12112112,x x x x y y y y y y --=--≠方程可以写成时. 说明:①这个方程由直线上两点确定;②当直线没有斜率(21x x =)或斜率为)(021y y =时,不能用两点式求出它的方程. 2. 直线方程的截距式:1=+by a x ,其中a ,b 分别为直线在x 轴和y 轴上截距. 说明:①这一直线方程由直线在x 轴和y 轴上的截距确定,所以叫做直线方程的截距式;②截距式的推导由例2给出.3. 例题讲解:例2.已知直线l 与x 轴的交点为(a ,0),与y 轴的交点为(0,b ),其中a ≠0,b ≠0,求直线l 的方程.解:因为直线l 经过A (a ,0)和B (0,b )两点,将这两点的坐标代入两点式,得:.1,000=+--=--by a x a a x b y 就是说明:此题应用两点式推导出了直线方程的截距式.例3.三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求这个三角形三边所在直线的方程.解:直线AB 过A (-5,0)、B (3,-3)两点,由两点式得)5(3)5(030----=---x y 整理得:01583=++y x ,即直线AB 的方程.直线BC 过C (0,2),斜率是3530)3(2-=---=k , 由点斜式得:)0(352--=-x y整理得:0635=-+y x ,即直线BC 的方程.直线AC 过A (-5,0),C (0,2)两点,由两点式得:)5(0)5(020----=--x y 整理得:01052=+-y x ,即直线AC 的方程.说明:例3中用到了直线方程的点斜式与两点式,说明了求解直线方程的灵活性,应让学生引起注意.Ⅲ.课堂练习:课本P 97练习 1、2、3Ⅳ.课堂小结师:通过本节学习,要求大家掌握直线方程的两点式,并能运用直线方程的多种形式灵活求解直线方程.Ⅴ.课后作业:P 100习题3.2 2、3、4。

高中数学 必修二(3.2.2 直线的两点式方程)示范教案 新人教A版必修2

高中数学 必修二(3.2.2 直线的两点式方程)示范教案 新人教A版必修2

3.2.2 直线的两点式方程教学过程导入新课思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程.(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. 思路2.要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x 1,y 1),B(x 2,y 2)(x 1≠x 2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k 及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?推进新课新知探究提出问题①已知两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),求通过这两点的直线方程. ②若点P 1(x 1,y 1),P 2(x 2,y 2)中有x 1=x 2或y 1=y 2,此时这两点的直线方程是什么? ③两点式公式运用时应注意什么?④已知直线l 与x 轴的交点为A(a,0),与y 轴的交点为B(0,b),其中a ≠0,b≠0,求直线l 的方程.⑤a、b 表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.∵x 1≠x 2,k=1212x x y y --, ∴直线的方程为y-y 1=1212x x y y --(x-x 1). ∴l 的方程为y-y 1=1212x x y y --(x-x 1).① 当y 1≠y 2时,方程①可以写成121121x x x x y y y y --=--.② 由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x 1≠x 2,它不能表示倾斜角为90°的直线的方程;②式中x 1≠x 2且y 1≠y 2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1),那么就可以用它来求过平面上任意两已知点的直线方程. ②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x 1=x 2时,直线与x 轴垂直,所以直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l 的方程?哪种方法更为简捷?然后求出直线方程.因为直线l 经过(a ,0)和(0,b)两点,将这两点的坐标代入两点式,得a a xb y --=--000.① 就是by a x +=1.② 注意:②这个方程形式对称、美观,其中a 是直线与x 轴交点的横坐标,称a 为直线在x 轴上的截距,简称横截距;b 是直线与y 轴交点的纵坐标,称b 为直线在y 轴上的截距,简称纵截距.因为方程②是由直线在x 轴和y 轴上的截距确定的,所以方程②式叫做直线方程的截距式. ⑤注意到截距的定义,易知a 、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x 1≠x 2且y 1≠y 2,则直线l 方程为121121x x x x y y y y --=--. ②当x 1=x 2时,直线与x 轴垂直,直线方程为x=x 1;当y 1=y 2时,直线与y 轴垂直,直线方程为y=y 1.③倾斜角是0°或90°的直线不能用两点式公式表示(因为x 1≠x 2,y 1≠y 2). ④by a x +=1. ⑤a、b 表示的截距分别是直线与坐标轴x 轴交点的横坐标,与y 轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x 轴上或y 轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例思路1例1 求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练已知Rt△ABC 的两直角边AC=3,BC=4,直角顶点C 在原点,直角边AC 在x 轴负方向上,BC 在y 轴正方向上,求斜边AB 所在的直线方程.答案:4x-3y+12=0.例2 如图1,已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A 、B 、C 三点坐标的特征,求AB 所在的直线的方程应选用两点式;求BC 所在的直线的方程应选用斜截式;求AC 所在的直线的方程应选用截距式.解:AB 所在直线的方程,由两点式,得)5(3)5(030----=---x y ,即3x+8y+15=0. BC 所在直线的方程,由斜截式,得y=-35x+2,即5x+3y-6=0. AC 所在直线的方程,由截距式,得25y x +-=1,即2x-5y+10=0. 变式训练如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ ,MN ,x 轴,y 轴则不能用截距式,其中PQ ,MN 应选用斜截式;x 轴,y 轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=2224=.因此A 、B 、C 、D 的坐标分别为(22,0)、(0,22)、(-22,0)、(0,-22). 所以AB 所在直线的方程是2222yx+=1,即x+y-22=0.BC 所在直线的方程是2222y x+-=1,即x-y+22=0. CD 所在直线的方程是22722-+-x=1,即x+y+22=0. DA 所在直线的方程是22722-+x=1,即x-y-22=0.对称轴方程分别为x±y=0,x=0,y=0.思路2例1 已知△ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM 的长;(3)求AB 边的高所在直线方程.解:(1)由两点式写方程,得121515+-+=---x y ,即6x-y+11=0. (2)设M 的坐标为(x 0,y 0),则由中点坐标公式,得x 0=242+-=1,y 0=231+-=1, 故M (1,1),AM=22)51()11(-++=25.(3)因为直线AB 的斜率为k AB =2315+-+=-6,设AB 边上的高所在直线的斜率为k, 则有k×k AB =k×(-6)=-1,∴k=61. 所以AB 边高所在直线方程为y-3=61(x-4),即x-6y+14=0. 变式训练求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程. 解:设直线方程为b y a x +=1,则由题意知,有21ab=3,∴ab=4. 解得a=4,b=1或a=1,b=4. 则直线方程是14y x +=1或41y x +=1,即x+4y-4=0或4x+y-4=0. 例2 经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.解:当截距为0时,设y=kx ,又过点A(1,2),则得k=2,即y=2x.当截距不为0时,设a y a x +=1或ay a x -+=1,过点A(1,2), 则得a=3,或a=-1,即x+y-3=0或x-y+1=0.这样的直线有3条:2x-y=0,x+y-3=0或x-y+1=0.变式训练过点A(-5,-4)作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5. 答案:2x-5y-10=0,8x-5y+20=0.知能训练课本本节练习1、2、3.拓展提升问题:把函数y=f(x)在x=a 及x=b 之间的一段图象近似地看作直线,设a≤c≤b,证明f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].证明:∵A、B 、C 三点共线,∴k AC =k AB , 即a b a f b f a c c f c f --=--)()()()(.∴f(c)-f(a)= a b ac --[f(b)-f(a)],即f(c)=f(a)+a b ac --[f(b)-f(a)].∴f(c)的近似值是f(a)+a b ac --[f(b)-f(a)].。

高中数学 3.2.2 直线的两点式方程导学案 新人教A版必修2

高中数学 3.2.2 直线的两点式方程导学案 新人教A版必修2
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。
D.(x2-x1)(x-x1)-(y2-y1)(y-y1)=0
4.直线ax+by=1与两坐标轴围成的三角形的面积是()
A. abB. |ab| C. D.a-
6.若三角形ABC的顶点A(-5,0),B(3,-2),C(1,2),则经过AB,BC两边中点的直线方程为________.
7.过(5,7)及(1,3)两点的直线 方程为________,若点(a,12)在此直线上,则a=________.
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获.幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。幸福是“零落成泥碾作尘,只有香如故”的圣洁。幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。鲜花,如果害怕凋谢,那它永远不能开放。矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。井底的蛙,当你自我欢唱时,视野便窄了。笼中的鸟,当你安于供养时,自由便没了。山中的石!当你背靠群峰时,意志就坚了。水中的萍!当你随波逐流后,根基就没了。空中的鸟!当你展翅蓝天中,宇宙就大了。空中的雁!当你离开队伍时,危险就大了。地下的煤!你燃烧自己后,贡献就大了

高一数学 3.2.2 直线的两点式方程教案 人教新课标A版 必修2

高一数学  3.2.2 直线的两点式方程教案 人教新课标A版 必修2

3.2.2 直线的两点式方程【教学目标】(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

【教学重难点】重点:直线方程两点式。

难点:两点式推导过程的理解。

【教学过程】(一)情景导入、展示目标。

思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗?问题: 已知直线l 过A (3,-5)和B (-2,5),求直线l 的方程解:∵直线l 过点A (3,-5)和B (-2,5)()23255-=----=∴l k将A (3,-5),k=-2代入点斜式,得y -(-5) =-2 ( x -3 )即 2x + y -1 = 0(二)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(三)合作探究、精讲点拨。

思考2:设直线l 经过两点P1(x1,y1),P2(x2,y2),其中x1≠x2,y1≠y2,则直线l 斜率是什么?结合点斜式直线l 的方程如何?直线方程的两点式经过直线上两点P1(x1,y1), P2(x2,y2)(其中x1≠x2, y1≠y2 )的直线方程叫做直线的两点式方程,简称两点式。

),(2121121121y y x x x x x x y y yy ≠≠--=--B(5,0)(2)A(0,5), 3);(0,P (2,1),P (1):两点式方程写出过下列两点直线的:21-小试身手讨论:1、两点式适用范围是什么?答:当直线没有斜率或斜率为0时,不能用2、若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?例1:求过(2,1),(3,3)A B -两点的直线的两点式方程,并转化成点斜式. 分析:直接代入两点式方程 解:323)3(1)3(--=----x y 点斜式(y-1)=-4(x-2)练习:教材P97面1题例2:已知直线l 与x 轴的交点为A (a ,0),与y 轴的交点为B (0,b ),其中a ≠0,b ≠0求l 的方程解析:说明(1)直线与x 轴的交点(a,0)的横坐标a 叫做直线在x 轴的截距,此时直线在y 轴的截距是b;当直线l 不经过原点时,其方程可以化为1x y a b += ⑵, 方程⑵称为直线的截距式方程,其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b .点评:截距式适用于横、纵截距都存在且都不为0的直线变式:1.求过点P(2, 3),并且在两坐标轴上的截距相等的直线的方程。

人教A版高中数学必修2《三章 直线与方程 3.2直线的方程 3.2.2 直线的两点式方程》优质课教案_3

人教A版高中数学必修2《三章 直线与方程  3.2直线的方程  3.2.2 直线的两点式方程》优质课教案_3
二、教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。
三、教学设想
问题
设计意图
师生活动
1、利用点斜式解答如下问题:
(1)已知直线 经过两点 ,求直线 的方程.
(2)已知两点 其中 ,求通过这两点的直线方程。
遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。
教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:
(1)
(2)
教师指出:当 时,方程可以写成
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form).
使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。
教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线 的方程?那种方法更为简捷?然后由求出直线方程:
教师指出: 的几何意义和截距式方程的概念。
4、例4教学
已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。
教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?
(2)要求一条直线的方程,必须知道多少个条件?
7、布置作业
巩固深化,培养学生的独立解决问题的能力。
学生课后完成
2、若点 中有 ,或 ,此时这两点的直线方程是什么?
使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。

高中数学人教版必修2 3.2.2直线的两点式方程 教案1

高中数学人教版必修2 3.2.2直线的两点式方程 教案1

3.2.2《直线的两点式方程》教案【教学目标】1.直线的两点式方程的推导过程;2.直线的截距式方程的构成,了解直线方程截距式的形式特点及适用范围; 3 截距的含义。

掌握直线方程的两点的形式特点及适用范围。

【导入新课】 问题导入:利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程。

(2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。

新授课阶段1.直线的两点式方程的推导过程已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232-=-x y(2))(112121x x x x y y y y---=-指出:当21y y ≠时,方程可以写成),(2121121121y y x x x x x x y y y y ≠≠--=--由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式。

思考:若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y轴垂直,直线方程为:1y y=。

例1 已知直线l :120kx y k -++= (1) 证明直线l 经过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程;(3) 若直线不经过第三象限,求k 的取值范围。

解:(1)(-2,1);(2)由直线l 的方程得A (-12kk+,0),B (0,1+2k),由题知:-12kk+<0,且1+2k >0,∴k >0 ∵S=12 |OA||OB|=11(44)2k k++≥4.当且仅当k >0,4k=1k ,即k=12时,面积取最小值4,此时直线的方程是:x -2y +4=0.(3)由(2)知直线l 在坐标轴上的截距,直线不经过第四象限则-12kk+≤0,且1+2k≥0,∴k >0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓝山二中高一数学《3.2.2 直线的两点式方程》教案 新人教A 版必
修2
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学2》(人教版)第三章直线方程第二节的第二课时。

直线的两点式方程是高中数学重要内容之一,有着广泛的实际应用,而且起着承前启后的作用。

一方面,与直线的点斜式密不可分;另一方面,学习直线的两点式方程也为进一步学习直线方程的一般式做好准备。

二、学生学习情况分析
本节课学生很容易在以下两个地方产生错误:
1. 直线的两点式方程的适用范围;
2. 直线的截距式的适用范围.
三、教学目标
知识与技能
1.掌握直线方程的两点的形式特点及适用范围;
2.了解直线方程截距式的形式特点及适用范围。

过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

情感与价值观
1.认识事物之间的普遍联系与相互转化;
2.培养学生用联系的观点看问题。

四、教学重点,难点
重点:直线方程两点式;
难点:两点式推导过程的理解.
五、教学过程
(一).复习旧知
问题1: 确定一条直线的方法有几种?
(二).问题情境
问题2: 已知直线l 经过111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)两点,如何求直线的点斜式方程?
(三).探索研究
已知直线l 经过111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)两点,直线的点斜式方程为
211121
()y y y y x x x x --=
-- (四).归纳总结
两点式方程:由上述知, 经过111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)两点的直线方程为
112121
y y x x y y x x --=-- ⑴, 我们称⑴为直线的两点式方程,简称两点式. 问题3:若点)
,(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?
问题4: 在斜率满足什么条件时,能用两点式方程?
(五).应用举例
例1:求过(2,1),(3,3)A B -两点的直线的两点式方程,并转化成点斜式.
例2:已知直线l 与x 轴的交点为A (a ,0),与y 轴的交点为B (0,b ),其中a ≠0,b ≠0
求l 的方程
结论:当直线l 不经过原点时,其方程可以化为
1x y a b
+= ⑵, 方程⑵称为直线的截距式方程,其中
直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b . 中点:线段AB 的两端点坐标为1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,其中212
122x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩
例3.已知∆ABC 的三个顶点是A(0,7) B(5,3) C(5,-3),求
(1) 三边所在直线的方程;(2)中线AD 所在直线的方程;(3)高AE 所在直线的方程。

例4.习案153面第5题
(六).课堂练习
教材P97 练习 1.2.3.
(七).归纳总结
1. 两点式.截距式.中点坐标.
2. 到目前为止,我们所学过的直线方程的表达形式及关系.
(八).课外作业:
《习案》与《学案》。

相关文档
最新文档