九年级数学下册 27.3《位似》(第1课时)教案 新人教版
九年级数学下册 27.3 位似教案 (新版)新人教版

27.3 位 似第1课时 位 似(1)知识与技能1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质. 2.掌握位似图形的画法,能够利用作位似图形的方法将—个图形放大或缩小. 过程与方法经历位似图形的探索过程,进一步发展学生的探究、交流能力. 情感、态度与价值观培养学生动手操作的能力,体验学习的乐趣.重点位似图形的有关概念、性质与作图. 难点利用位似将一个图形放大或缩小.一、问题引入1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.问:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、新课教授活动1:观察下图,图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?学生通过观察了解到有一类相似的图形,除具备相似的所有性质外,还有其他特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.每对位似对应点与位似中心共线(位似中心可在形上、形外、形内);不经过位似中心的对应线段平行.利用位似可以将一个图形放大或缩小.活动2:把图中的四边形ABCD 缩小到原来的12.师生活动:教师提出问题,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不唯一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O 可能选在四边形ABCD 外,可能选在四边形ABCD 内,可能选在四边形ABCD 的一条边上,可能选在四边形ABCD 的一个顶点上),并且同一个位似中心的两侧各有一个符合要求的图形,因此,位似中心的确定是关键.分析:把图形缩小到原来的12,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.作法一:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法二:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点A ′,B ′,C ′,D ′,使得OA ′OA=OB ′OB =OC ′OC =OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法三:如图.(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.三、例题讲解例1 如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O.(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2 画出所给图形的位似中心.答案四、课堂小结1.位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.2.位似的作用:利用位似可以将一个图形放大或缩小. 3.位似图形的画法.位似是相似的延伸和深化.位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形.本章编排的素材不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值.第2课时 位似(2)知识与技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程与方法会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小,体会数形结合的思想.情感、态度与价值观渗透数形结合的数学思想,培养学生良好的学习习惯.重点用图形的坐标的变化来表示图形的位似变换. 难点把一个图形按一定比例放大或缩小后,掌握点的坐标变化的规律.一、问题引入1.什么是位似图形?(如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.)2.如图,以点O 为位似中心,将△ABC 放大为原来的两倍.二、新课教授在前面,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.下面我们来研究如何表示.活动1:(1)如图(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?(2)如图(2),△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?学生小组讨论,共同交流,回答问题.解:可以看出,图(1)中把AB 缩小后,A ,B 两点的对应点分别为A ′(2,1),B ′(2,0);A ″(-2,-1),B ″(-2,0).图(2)中,作图略.将△ABC 放大后,A ,B ,C 对应的点分别为A ′(4,6),B ′(4,2),C ′(12,4);A ″(-4,-6),B ″(-4,-2),C ″(-12,-4).归纳位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.活动2:如图,△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2). ①将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1,B 1,C 1三点的坐标; ②写出△ABC 关于x 轴对称的△A 2B 2C 2的三个顶点A 2,B 2,C 2的坐标; ③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3,B 3,C 3三点的坐标.①将△ABC 向左平移三个单位得到△A 1B 1C 1,则A 1(-1,3),B 1(-1,1),C 1 (3,2); ②△ABC 关于x 轴对称的△A 2B 2C 2三个顶点坐标分别为A 2(2,-3),B 2 (2,-1),C 2 (6,-2) ;③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,则A 3(-2,-3),B 3(-2,-1),C 3(-6,-2).三、例题讲解例 如图,四边形ABCD 四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4).画出它的—个以原点O 为位似中心、相似比为12的位似图形.解法一:如上图,利用位似变换中对应点的坐标的变化规律,分别取点A ′(-3,3),B ′(-4,1),C ′(-2,0),D ′(-1,2).依次连接点A ′,B ′,C ′,D ′,四边形A ′B ′C ′D ′就是要求作的四边形ABCD 的位似图形.解法二:点A 的对应点A ″的坐标为(-6×(-12),6×(-12)),即A ″(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)四、巩固练习1.在平面直角坐标系中,已知点A(3,4),B(-4,3),以原点O 为位似中心,相似比为2,将△OAB 放大为△OA ′B ′,则对应点A ′,B ′的坐标分别为________.答案 A ′(6,8),B ′(-8,6)或A ′(-6,-8),B ′(8,-6).2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 答案 C五、课堂小结本节课首先巩固位似图形及其有关概念方面的知识,要求学生会用图形坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律;了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.关于位似图形的概念,教学中应注意解释:几何变换、相似变换、位似变换三者之间的关系.相似变换是特殊的几何变换,位似变换又是特殊的相似变换,位似图形是具有特殊位置关系的相似图形.四种变换中,平移、轴对称、旋转都是保距变换,变换前后图形全等.而相似变换(包括位似变换)前后得到的图形不一定全等,是保角变换.。
人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
人教版数学九年级下册27.3《位似(1)》教学设计

人教版数学九年级下册27.3《位似(1)》教学设计一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的概念,掌握位似图形的性质,并能够运用位似性质解决实际问题。
教材通过丰富的图形和实例,引导学生探究、发现位似的性质,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备了一定的几何知识基础。
但九年级学生的空间想象能力和抽象思维能力仍需进一步提高。
因此,在教学过程中,教师应注重引导学生通过观察、操作、思考、交流等活动,自主探究位似图形的性质,提高学生的空间想象能力和抽象思维能力。
三. 教学目标1.知识与技能:理解位似的概念,掌握位似图形的性质,能够运用位似性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:位似的概念,位似图形的性质。
2.难点:位似性质的证明和运用。
五. 教学方法1.情境教学法:通过丰富的图形和实例,引导学生观察、操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考,培养学生的问题解决能力。
3.合作学习法:分组讨论,培养学生团队合作意识和交流能力。
4.启发式教学法:引导学生自主探究,培养学生的抽象思维能力。
六. 教学准备1.准备相关的图形和实例,用于引导学生观察和操作。
2.准备投影仪或大屏幕,用于展示图形和实例。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的位似图形,如放大或缩小的地图、图片等,引导学生观察并提问:“这些图形有什么共同特点?”让学生思考位似图形的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过展示位似图形的定义和性质,引导学生理解和掌握位似的概念。
九年级数学下册人教版27.3位似第一课时优秀教学案例

在教学过程中,教师引导学生进行自我反思和总结,帮助他们梳理所学知识,发现自身在知识掌握、方法运用、合作交流等方面的不足。同时,教师组织学生开展互评活动,让学生在评价他人的过程中,学会客观、公正地看待问题,提高自己的审美观念和评价能力。
此外,教师还应及时给予学生反馈,肯定他们的优点,指出不足之处,并给出具体的改进建议。通过反思与评价,学生能够更好地认识自己,提高自我监控和自我调节的能力,为后续学习奠定基础。
3.培养学生的合作意识和团队精神,提高学生的表达和沟通能力。
通过小组合作、成果展示等形式,学生学会倾听他人意见,表达自己的观点,共同解决问题。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,增强学生的自信心和成就感。
教师通过设计富有挑战性的问题和任务,鼓励学生克服困难,解决问题,从而提高学生的学习兴趣和自信心。
1.生活化的情景创设,激发学生的学习兴趣
本案例通过展示生活中的位似现象,引导学生从现实情境中发现数学问题,激发了学生的学习兴趣。这种生活化的情景创设,使得学生在轻松愉快的氛围中,感受到数学与生活的紧密联系,提高了学习的积极性。
2.问题驱动的教学策略,培养学生的探究能力
本案例以问题为导向,设计了一系列具有挑战性和层次性的问题。这些问题引导学生逐步深入探讨位似图形的性质和应用,培养了学生的探究能力和解决问题的能力。在问题解决过程中,学生通过独立思考、合作交流等方式,不断提高自己的数学素养。
九年级的学生已经具备了一定的几何图形基础和逻辑思维能力,但对于位似图形的认识还不够深入。因此,本节课将围绕位似图形的性质展开,通过具体的实例和动手操作,帮助学生建立起位似的概念,并运用到实际问题中。在教学过程中,教师将引导学生关注位似图形在生活中的应用,如摄影、地图制作等领域,让学生感受到数学与生活息息相关,提高他们的学习积极性。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
人教版最新九年级数学下册27.3 第1课时 位似图形的概念及画法教案

27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE 、BF ,并延长的交点就是位似中心;(2)连接对应点AN 、BM ,并延长的交点就是位似中心;(3)连接AA ′,BB ′,它们的交点就是位似中心.解:(1)连接对应点AE 、BF ,分别延长AE 、BF ,使AE 、BF 交于点O ,点O 就是位似中心;(2)连接对应点AN 、BM ,延长AN 、BM ,使AN 、BM 的延长线交于点O ,点O 就是位似中心;(3)连接AA ′、BB ′,AA ′、BB ′的交点就是位似中心O .方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 画位似图形按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC=25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
27.3 位似(第一课时)( 教学设计)九年级数学下册同步备课系列(人教版)

27.3 位似(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十七章“相似”27.3 位似(第一课时),内容包括:位似图形的概念和利用位似作图的方法将一个图形放大或缩小.2.内容解析学生已学过轴对称、平移、旋转、中心对称,相似等几种图形变换,类比“全等”变换,位似变换是一种特殊位置的相似变换,是相似的延续.学生已经学习了相似的相关知识,对图形有了丰富的认知基础,本节课将按照几何图形研究的基本思路,分别学习位似图形的相关概念,性质以及识别.培养学生动手操作能力,强调作图的准确性和规范性将成为本节课的着力点.基于以上分析,确定本节课的教学重点:了解位似图形及其相关概念,会识别位似图形,确定位似中心.二、目标和目标解析1.目标1)了解位似图形及其相关概念,会识别位似图形,确定位似中心.2)理解位似图形的性质,能利用位似作图的方法将一个图形放大或缩小.2.目标解析达成目标1)的标志是:能够根据位似图形的概念判定位似图形,理解两组对应点连线的交点即为位似中心的位置.达成目标2)的标志是:理解与掌握位似图形的性质,能利用位似作图的方法将一个图形放大或缩小,需注意:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.三、教学问题诊断分析利用位似作图的方法将一个图形放大或缩小是本节课知识的一个难点.针对这一问题,在教学中应引导学生理解位似图形中每对对应点都在位似中心的同侧或在位似中心的异侧,通过实际操作,理解与掌握位似多边形的画法.基于以上分析,本节课的教学难点是:能利用位似作图的方法将一个图形放大或缩小.四、教学过程设计(一)复习巩固【提问一】我们学过哪些图形变化形式?【提问二】什么叫相似图形?相似与全等有什么区别与联系?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习位似图形的相关知识打好基础.(二)探究新知【情景导入】在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?师生活动:学生认真观察图形,尝试回答问题.教师做如下总结:放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.摄影师通过照相机,把人物的影像缩小在底片上.这样的放大或缩小,没有改变图形的形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【设计意图】让学生体会数学来源于生活,激发学生学习的兴趣,为本节课的学习打好基础.【问题一】观察下列图形,这些图形相似吗?【问题二】除了相似,还有其它共同特征吗?师生活动:学生认真观察图形,尝试回答问题.教师通过图象引导学生发现如下内容:1)这些相似图形对应顶点的连线都经过点O;2)点O与对应顶点所连线段成比例;【设计意图】引导学生回忆知识间的联系,理解概念的本质,对概念认识进一步清晰化.【问题三】简述位似图形的概念?师生活动:根据上述问题发现的内容,学生尝试回答问题.【设计意图】让学生理解位似图形的概念.【问题四】如果△ADE和△ABC是位似图形,DE和BC平行吗?为什么?师生活动:学生认真观察图形,尝试回答问题并写出证明过程.具体证明过程如下:∵△ADE和△ABC是位似图形∴ADAB =AEAC=DEBC∴△ADE∽△ABC∴∠ADE=∠ABC∴ DE‖BC【设计意图】通过探索与证明的环节,使学生理解位似图形的性质.【问题五】简述位似图形的性质?师生活动:回顾本节课所学内容,归纳总结位似图形的性质,得出:1)位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.(位似图形的相似比也叫做位似比)3)对应线段平行或者在一条直线上.针对第三条性质不好理解,教师可通过多媒体给出实例,加深学生理解与记忆.【设计意图】通过探索、观察、分析的环节,主动探究新知,真正实现学生的学习主体地位.【问题六】类比位似图形的概念,尝试归纳位似多边形的概念?师生活动:学生积极回答问题.【设计意图】提高学生类比、归纳总结的能力.(三)典例分析与针对训练例1 下列各组图形中不是位似图形的是()【针对训练】1. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相比.其中正确的序号是( )A.②B.①② C.③④ D.②③④2.下图所示的四种画法中,能使得△DEF是△ABC位似图形的有()A.①② B.③④ C.①③④D.①②③④【设计意图】考查学生对位似图形概念的理解.(四)探究新知【问题七】如图,已知△ABC,以点O为位似中心画△DEF,使其与△ABC位似,且位似比为2.师生活动:学生动手操作画位似图形.教师巡视,强调作图细节.同时利用多媒体展示当位似中心选取在其他位置时位似图形的画法.解:1)画射线OA,OB,OC;2)在射线OA,OB,OC上分别取点D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.解:1)画射线OA,OB,OC;2)沿着射线OA,OB,OC反方向上分别取D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.【设计意图】培养学生动手画图的能力,掌握利用位似知识对图形进行放大与缩小的多种方法.充分给学生自我展示的机会,使其获得成功体验.【问题八】由此你发现了什么?师生活动:先由学生回答,再由教师引导与总结,得出:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.【问题九】简述位似多边形的画法?师生活动:先由学生回答,再由教师引导与总结,得出:1) 确定位似中心.2) 确定原图形的关键点(每对对应点都在位似中心的同侧或在位似中心的异侧).3) 确定位似比.4) 根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点.【设计意图】让学生理解与掌握位似多边形的画法.(五)典例分析与针对训练例2 已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.【设计意图】让学生理解与掌握位似多边形的画法.例3.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=____.【针对训练】1.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若S△DECS△ABC =49,AC=3,则DC=_____.2. 如图,△ABC与△DEF位似,点O是它们的位似中心,且位似比为1∶2,则△ABC与△DEF的周长之比是()A.1∶2 B.1∶4 C.1∶3 D.1∶93.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为()A.1∶2 B.1∶3 C.1∶4 D.1∶54.如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知OAOA′=13,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是()A.4 B.6 C.16D.18【设计意图】利用位似的性质求解.例4 图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点OC.点M D.点N【针对训练】1.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【设计意图】判断位似图形的位似中心.(七)直击中考1.(2023·辽宁阜新真题)如图,△ABC与△DEF是以点O为位似中心的位似图形,若OA:OD=2:3,则△ABC与△DEF的面积比是.2.(2023·吉林长春真题)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为.(八)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述位似图形的概念和性质?3. 简述位似多边形的画法?(九)布置作业P48:练习第2题P51:习题27.3 第2题、第4题五、教学反思。
人教版数学九年级下册27.3《位似(第一课时)》表格优秀教学案例

1.分组讨论:我将学生分成若干小组,每个小组选择一个具体实例,分析其中的位似关系,并总结位似的性质。
2.小组汇报:每个小组选代表进行汇报,分享自己的发现和总结。其他小组成员和教师进行点评和补充。
(四)总结归纳
1.位似的定义和性质:我引导学生总结位似的定义和性质,使学生能够系统地掌握位似的概念。
三、教学策略
(一)情景创设
1.以生活实例引入:我选择了几个现实生活中常见的位似现象,如相似的建筑、动物的生长变化等,通过展示图片或视频,让学生直观地感受到位似的存在。这样的引入方式能够激发学生的兴趣,使他们更加关注本节课的内容。
2.几何图形展示:在课堂上,我展示了多种几何图形,让学生观察并分析其中的位似关系。通过观察和分析,学生能够发现位似的性质,并逐步理解位似的概念。
2.培养学生运用位似的概念解决实际问题的能力,提高学生的几何思维能力。
3.通过对位似概念的学习,使学生能够灵活运用位似性质,解决一些相关的几何问题。
为了实现这一目标,我在教学中采用了多种教学手段。首先,我通过生活实例引入位似的概念,让学生感受到位似在生活中的存在。然后,我通过几何图形的展示,引导学生发现位似的性质,并通过小组讨论的方式,让学生共同探讨位似的特征。在讲解位似图形的画法时,我以具体例子为例,引导学生动手操作,加深对位似概念的理解。
(四)反思与评价
1.学生自我反思:在课堂结束后,我要求学生进行自我反思,总结自己在课堂上的学习情况和收获。通过自我反思,学生能够更好地了解自己的学习状态,发现自己的不足之处,从而调整学习策略,提高学习效果。
2.教师评价:在课后,我对学生的学习情况进行评价。我注重评价学生的知识掌握程度、思维能力、团队合作能力等多个方面。通过教师的评价,学生能够了解自己的学习成果和不足之处,从而激发学生的学习动力,提高他们的学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章《位似》第一课时教案
教学目标:
1、掌握位似图形的定义、性质和画法。
2、掌握位似图形与相似图形的区别与联系
3、会用刻度尺、圆规等作图工具画出位似图形。
教学重点:位似的定义、作图以及与相似的关系。
教学难点:位似图形的准确作图,动手能力的落实。
教学方法:讲授法
教具:黑板、多媒体、三角板
教学过程设计:
(一)、观察:观察下列图形,它们有什么特征?
特点:(1)两个图形
(2)每组点所在的交于一点。
如果两个相似图形的对应点连线,对应边互相,那么这样的两个
图形叫做位似图形
....,这个交点叫做。
这时两个相似图形的又叫做
它们的位似比
...。
议一议:
观察上图中的五个图形,回答下列问题:
(1)在各图形中,位似图形的位似中心与这两个图形有什么位置关系?
(2)在各图中,任取一对对应点,度量这两个点到位似中心的距离。
它们的比与位似比有什么关系?再换一对对应点试一试。
由此得出结论:。
(二)、例题讲解
例1如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心。
分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:
例2把图1中的四边形ABCD缩小到原来的。
分析:把原图形缩小到原来的,也就是使新图形上各顶点到
位似中心的距离与原图形各对应顶点到位似中心的距离之比为。
作法一:如图2
(1)在四边形ABCD外
(2)过点O分别作射线
(3)分别在射线上取点,使得
(4)顺次连接,得到所要画的四边形A′B′C′D′,
思考:还有其他做法吗?试试看!
(三)、检测练习
1、画一画:
⑴如图①,以AB的中点为位似中心,按比例尺1∶2把矩形ABCD缩小。
⑵如图②,以点B为位似中心,按比例尺2∶1把△ABC放大。
(4)、按照1:3的比例,将下图中的图形缩小。
2、用作位似形的方法,可以将一个图形放大或缩小,位似中心()。
(A)只能选在原图形的外部(B)只能选在原图形的内部
(C)只能选在原图形的边上(D)可以选择任意位置
3、以点P为位似中心,按相似比2∶1将图形放大,得图①;以点Q为位似中心,按相似比1∶2将图形缩小,得图②。
图①与图②的相似比是,面积的比是。
五、总结反思
(1)本节课你有什么收获?
六、作业。