1.3.1函数的单调性和最大小值
1.3.1 单调性与最大(小)值—第一课时单调性

练习:
利用刚才 的方法描 述一下左 侧四个函 数图象的 “上升” “下降” 的 情况.
思考
如何利用函数解析式f(x)=x2描述“随着x的增大, 相应的f(x)反而随着减小.”“随着x的增大,相应的 f(x)也随着增大.”? 有同学认为可以这样描述:在区间(0,+∞)上, x1<x2时, 有f(x1)<f(x2).他并且画出了如下示意图,你认为他的 说法对吗?
练习:
例1 下图是定义在区间[-5,5]的函数y=f(x),根据图象说出函数 的单调区间,以及在每一单调区间上,它是增函数还是减函数?
解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5].其中 y=f(x)在区间[-5,-2) ,[1,3)上是减函数,在区间[-2,1), [3,5]上是 增函数.
第一课时:单调性 :
教学目标:
知识教学目标: 知识教学目标: 1.理解函数的单调性概念 理解函数的单调性概念. 理解函数的单调性概念 2.会判定函数的单调性 会判定函数的单调性. 会判定函数的单调性 能力训练目标: 能力训练目标: 1.培养学生利用数学概念进行判断、推理的能力 培养学生利用数学概念进行判断、 培养学生利用数学概念进行判断 推理的能力. 2.加强化归转化能力的训练 加强化归转化能力的训练. 加强化归转化能力的训练 情感渗透目标: 情感渗透目标: 1.通过新概念的引进过程培养学生探索问题、发现规 通过新概念的引进过程培养学生探索问题、 通过新概念的引进过程培养学生探索问题 归纳概括的能力. 律、归纳概括的能力 2.培养学生辨证思维、求异思维等能力 培养学生辨证思维、 培养学生辨证思维 求异思维等能力.
例2:物理学中的波意耳定律p=k/V(k为正常数)告述我们,对于一定 量的气体,当其体积V减小时,压强p将增大.试用函数的单调性证明之. 证明: 1 2 1.设(自变量); 2.比(函数值); 3.判(函数值大小关系); 4.结(论) 3 4
函数的基本性质

例1. 如图是定义在区间[-5, 5]上的函数 y=f(x), 根据图象说出函数的单调区间, 以及在每一单调区间 上, 它是增函数还是减函数? y
解: 函数的单调区
间有 [-5, -2), [-2, 1). [1, 3), [3, 5].
例题(补充). 如图是函数 y=f(x) 的图象, 其定义域 为[-p, p], x0 为何值时, 有f(x)≥f(x0), 或 f(x)≤f(x0)? 函数的最大值是多少? 最小值是多少? 解: (1) 当 x0 = - p 时, f(x)≥f(x0),
2
-p y
-p 2
1
这时函数取得最小值
o
-1
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0. ax1x2+1x1-x2 Δy=f(x2)-f(x1)= , 2 x2 - 1 x - 1 1 2
∵-1<x1<x2<1,
2 ∴x1x2+1>0,x2 1-1<0,x2-1<0,
Байду номын сангаас
x1x2+1x1-x2 ∴ 2 <0, x1-1x2 - 1 2 ∴当 a>0 时,f(x2)-f(x1)<0, 故此时函数 f(x)在(-1,1)上是减函数, 当 a<0 时,f(x2)-f(x1)>0, 故此时 f(x)在(-1,1)上是增函数. 综上所述,当 a>0 时,f(x)在(-1,1)上为减函数, 当 a<0 时,f(x)在(-1,1)上为增函数.
• 3.函数单调性在图象上的反映:若f(x)是区间A上的单调增 函数,则图象在A上的部分从左向右是逐渐________ 的,若 上升 f(x)是单调减函数,则图象在相应区间上从左向右是逐渐 下降 的. ________ 取值 作差 , • 4.用定义证明单调性的步骤:__________ ,________ 变形 ,________ 定号 ,________. 结论 ________
人教版高中(必修一)数学1.3.1《单调性与最大(小)值》ppt课件

yx
2
f (x1 )
x1
O
x
y
yx
2
f (x1 )
x1 O
x
y
yx
2
f (x1 )
x1
O
x
y
yx
2
f (x1 )
Ox 1
x
y
yx
2
f (x1 )
O
x1
x
y
yx
2
f (x1 )
O
x1
x
y
yx
2
f y
yx
2
f (x1 )
O
x1
x
如何用x与 f(x)来描述上升的图象?
建立数学模型
实际问题
有解吗?
数学问题
求解
实际问题的解
实践验证
数学问题的解
作业:
P43 3、4、5
同学们再见!
证明: 设 2 x x 4 , 1 2
16(x x ) 2 1 (x x ) 1 2 x 1 x 2 (x x (x 16) 1 2) 1 x 2 x 1 x 2 2 x x 4 , x x 0, 1 2 1 2 4 x x 16 , 即 x x 16 0 1 2 1 2
1971
年份
人数 (万人)
15 10 5
上海市高等学校 在校学生数统计表
10.79 12.13 14.04 15.38
1985
1990
1994 1997
年份
人数 (人)
450 350 250 150
上海市日平均 出生人数统计表
423 359 209 176
1985
1990
1.3.1 单调性与最大(小)值 教案

1。
3.1 单调性与最大(小)值第1课时错误!教学目标1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点难点教学重点:函数单调性的概念、判断及证明.教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.教学方法教师启发讲授,学生探究学习.教学手段计算机、投影仪.错误!创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.图1引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.【设计意图】由生活情境引入新课,激发兴趣.归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数y=x+2,y=-x+2,y=x2,y =错误!的图象,并且观察自变量变化时,函数值有什么变化规律?图2预案:(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.(2)函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.(3)函数y=错误!在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y 越来越小,我们说函数f(x)在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数y=x+错误!(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图3学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.(3)任取x1,x2∈[0,+∞),且x1<x2,因为x12-x22=(x1+x2)(x1-x2)<0,即x12<x22,所以f(x)=x2在[0,+∞)为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2。
函数的基本性质-1.3.1单调性与最大(小)值-学生用

三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。
3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。
2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。
【高中数学必修一】1.3.1 单调性与最大(小)值-高一数学人教版(必修1)(解析版)

第一章 集合与函数概念1.3.1 单调性与最大(小)值一、选择题1.集合{x |x ≤–1}用区间形式表示正确的是A .(–∞,–1]B .(–∞,–1)C .[–1,+∞)D .(–1,+∞)【答案】A【解析】集合{x |x ≤–1}用区间表示为(–∞,–1],故选A . 2.区间(–3,2]用集合表示为A .{–2,–1,0,1,2}B .{x |–3<x <2}C .{x |–3<x ≤2}D .{x |–3≤x ≤2}【答案】C【解析】由开区间闭区间的概念,可得区间(–3,2]可表示为{x |–3<x ≤2},故选C . 3.设集合A ={x |–4<x <3},B ={x |x ≤2},则A ∩B =A .(–4,3)B .(–4,2]C .(–∞,2]D .(–∞,3)【答案】B【解析】∵集合A ={x |–4<x <3},B ={x |x ≤2},∴A ∩B ={x |–4<x ≤2},故选B . 4.函数f (x )=1xx-的单调增区间是 A .(–∞,1)B .(1,+∞)C .(–∞,1),(1,+∞)D .(–∞,–1),(1,+∞)【答案】C 【解析】()()111111x f x xx --+==-+--,∴f (x )的图象是由y =1x-的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到,而y =1x-的单调增区间为(–∞,0),(0,+∞),∴f (x )的单调增区间是(–∞,1),(1,+∞).故选C .5.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B6.函数254y x x =-+A .52⎡⎫+∞⎪⎢⎣⎭,B .542⎡⎫⎪⎢⎣⎭,C .[4,+∞)D .[)5142⎡⎫+∞⎪⎢⎣⎭,,,【答案】C【解析】令x 2–5x +4≥0,解得x ≥4或x ≤1,而函数y =x 2–5x +4的对称轴是x =52,由复合函数同增异减的原则,可得函数254y x x =-+[4,+∞),故选C . 7.f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f [8(x –2)]的解集是A .(0,+∞)B .(0,2)C .(2,+∞)D .(2,167) 【答案】D【解析】由f (x )是定义在(0,+∞)上的增函数,得()()82082x x x x ⎧>⎪->⎨⎪>-⎩,解得2<x <167,故选D .8.已知y =ax +1,在[1,2]上的最大值与最小值的差为2,则实数a 的值是A .2B .–2C .2,–2D .0【答案】C【解析】①当a =0时,y =ax +1=1,不符合题意;②当a >0时,y =ax +1在[1,2]上递增,则(2a +1)–(a +1)=2,解得a =2;③当a <0时,y =ax +1在[1,2]上递减,则(a +1)–(2a +1)=2,解得a =–2.综上,得a =±2,故选C .9.函数y =(k +2)x +1在实数集上是减函数,则k 的范围是A .k ≥–2B .k ≤–2C .k >–2D .k <–2【答案】D【解析】要使函数y =(k +2)x +1在实数集上是减函数,则k +2<0,∴k <–2,故选D . 二、填空题10.函数f (x )=–x 2+2(a –1)x +2在(–∞,4)上为增函数,则a 的范围是__________.【答案】a ≥511.已知f (x )在R 上是增函数,且f (2)=0,则使f (x –2)>0成立的x 的取值范围是__________.【答案】(4,+∞)【解析】∵f (x )在R 上是增函数,且f (2)=0,要使f (x –2)>0,则有x –2>2,即x >4,成立的x 的取值范围是(4,+∞),故答案为:(4,+∞).12.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是__________.【答案】(–∞,2]【解析】由题意,得m +3≤5,解得m ≤2,故答案为:(–∞,2].13.已知y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),则a 的取值范围是__________.【答案】(–∞,23) 【解析】因为y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),所以1–a >2a –1,解得a <23.所以a 的取值范围是(–∞,23).故答案为:(–∞,23). 14.已知函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,则实数a 的取值范围是__________. 【答案】12⎛⎤-∞ ⎥⎝⎦,【解析】∵函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,∴24486a a ≤⎧⎨-≥-⎩,∴a ≤12,故答案为:12⎛⎤-∞ ⎥⎝⎦,. 三、解答题15.用单调性定义证明函数f (x )=21x x +-在(1,+∞)上单调递减. 【解析】任取x 1、x 2,且1<x 1<x 2≤+∞, 则f (x 1)–f (x 2)=121221121222233–11(1)(1)x x x x x x x x x x +++-=----. ∵1<x 1<x 2<+∞,∴x 1–1>0,x 2–1>0,x 1x 2>0,x 2–x 1>0, ∴f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2).∴f (x )=在(1,+∞)上是单调减函数. 16.若函数f (x )=1axx +在(2,+∞)上为增函数,求实数a 的取值范围. 【解析】f (x )=1ax x +=a –1ax +由于函数f (x )在(2,+∞)上为增函数,所以a >0, 故所求的a 的范围为(0,+∞).17.函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数,求a .【解析】∵函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数 ∴函数f (x )=x 2–ax +b 的对称轴为x =2a=1, 解得a =2.18.已知f (x )的定义域为(0,+∞),且在其定义域内为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )+f (x –2)<3.【解析】∵f (xy )=f (x )+f (y ),f (2)=1, ∴f (2×2)=f (2)+f (2)=2, f (2×4)=f (2)+f (4)=3, 由f (x )+f (x –2)<3,又f(x)的定义域为(0,+∞),得()()2820f x x fxx⎧⎡⎤-<⎣⎦⎪⎪>⎨⎪->⎪⎩,又在其上为增函数所以()2820x xxx⎧-<⎪>⎨⎪->⎩解得,2<x<4.所以不等式f(x)+f(x–2)<3的解集为{x|2<x<4}.19.已知函数()28f x x x=-.(1)求函数f(x)的单调区间;(2)求函数f(x)的最值.(2)由8x–x2=0求得x=0,或x=8,所以,当x=0,或x=8时,f min(x)=0;当x=4时,u max=16,这时()max 164f x==.。
1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间
函数单调性与最值(单调性)

方法二 设x1>x2,则x1-x2>0,
从而f(x1-x2)>1,即f(x1-x2)-1>0.
f(x1)=f[x2+(x1-x2)]=f(x2)+f(x1-x2)-1>f(x2),故f(x)在R上是增函数.
反思与感悟 解析答案
(2) 已知函数 f(x) 的定义域是 R ,对于任意实数 m , n ,恒有 f(m + n) = f(m)· f(n),且当x>0时,0<f(x)<1.求证:f(x)在R上是减函数.
(2) 如果对于定义域 I 内某个区间 D上的任意两个自变量的值 x1 ,x2 ,当
x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是 减函数 .
答案
知识点二
思考
函数的单调区间
2
1 我们已经知道 f(x)=x 的减区间为(-∞,0],f(x)=x的减区间为
(-∞,0),这两个减区间能不能交换?
fx1-fx2 (x1-x2)[ f(x1)-f(x2)] >0 或 >0.对减函数的判断,当 x1<x2 时,都有 x1-x2 f(x1)>f(x2) ,相应地也可用一个不等式来替代: (x1 -x2)[ f(x1) -f(x2)] <0 或 fx1-fx2 <0. x1-x2
3. 熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函 数等. 4.若f(x),g(x)都是增函数,h(x)是减函数,则:①在定义域的交集(非空) 上,f(x)+g(x)单调递增,f(x)-h(x)单调递增,②-f(x)单调递减,
第一章
1.3.1 单调性与最大(小)值
第1课时 函数的单调性(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定号
下结论 作差 变形
所以f(x1)- f(x2)>0, 即f(x1)> f(x2)
因此 f(x)=1/x 在(0,+∞)上是减函数。
类比单调增函数的研究方法定义单调减函数. y y
f(x2) f(x1) f(x1) f(x2)
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I. 如果对于属于定义域I内某个区间D上 如果对于属于定义域I内某个区间D上 的任意两个自变量的值x1,x2, 的任意两个自变量的值x ,x ,
2.函数最大(小)值应该是所有函数值中 最大(小)的,即对于任意的x∈I,都有 f(x)≤M(f (x)≥M). 3.最大值和最小值统称为最值。
判断以下说法是否正确。
1、函数f ( x) x ( x R), 任意x R, 都有f ( x) 1,
2
则1为函数f ( x)的最大值 .
单调区间之间必须用“,”隔开,或者用“和” 连接,但千万不能用“∪”连接,也不能用“或” “且”连接。
指出下列函数的单调区间:
(1) y 7 x 2
y
2
(2) y 2x 4
y
4
归纳:函数 y kx b(k 0) 的单调性
2 7
o
x
o 2
x
y kx b
k>0
k<0
------函数的单调性
永 远 联 系 莫 分 华 离
罗 庚
切 莫 忘 几 何 代 数 统 一 体
隔 离 分 家 万 事 休
数 形 结 合 百 般 好
形 少 数 时 难 入 微
数 无 形 时 少 直 觉
焉 能 分 作 两 边 飞
数 与 形 本 是 相 倚 依
,
,
——
北京市8月8日一天24小时内气温随时间变化曲线图
指出下列函数的单调区间:
y
1 y x
1 , 0), (0, ) y 的单调减区间是 ( 解: _____________ 1 x y x 没有单调增区间
O
x 1 能不能说y 在定义域(, 0) (0, )上 思考1: x
是单调减函数?
1 y 的单调增区间是 (,0), (0,) x k 归纳:y (k 0)在 ,0 和 0, 上的单调性? x
如果在函数f(x)定义域内存在x1和 x2,使对定义域内 任意x都有 f ( x1 ) f ( x) f ( x2 ) 成立,由此你能得到 什么结论?
如果函数f(x)的最大值是b,最小值是a,那么 函数f(x)的值域是[a,b]吗? 函数f(x)在定义域中既有最大值又有最小值.
探究:函数单调性与函数的最值的关系
单调增区间
单调减区间
(,)
(,)
指出下列函数的单调区间:
(1) y x 2.
2
y
y=-x2+2
(2) f ( x) x 2 x y
2
2
f ( x) x 2 2 x
1
-2 -1 O -1 1 2
x
2
-2
o
1
2
x
归纳: 函数 y ax
bx c(a 0) 的单调性
y
y
y
1
-1 1 -1 x -1
1
1
x
1 -1 1 x
-1
-1
问:随x的增大,y的值有什么变化?
问题1
画出f(x)=x的图像,并观察其图像。 上升 1、从左至右图象上升还是下降 ____?
, )上,随着 x 的增大, f(x) 的值 2 、在区间 (________
增大 随着 ______. 5 -5 o
y
f(2)
f(1) O 1 2x
2.单调性与单调区间 如果函数y=f(x)在某个区间D上是增函数或减函数,
那么就说函数y=f(x)在这一区间具有(严格的)单调性,
区间D 叫做y=f(x)的单调区间: (1)这个单调区间可以是整个定义域 如y=x在定义域上是增函数,y=-x是减函数 (2) 这个单调区间也可以是定义域的真子集 如y=x2在定义域上没有单调性,但在(-∞,0]是减函数, 在 [0,+∞)是增函数. (3)有的函数没有单调性区间
f(x)=x
5
-5
问题2
2 f(x) = x 画出 的图像,并观察图像.
(-∞,0] 上,f(x)的值随着x的增大而 1、在区间 ________ 减小 ______. 2 f(x) = x (0,+∞) 上, 2、 在区间 ________ f(x) 的 值 随 着 x 的 增 大 而 5 增大 _____. -5 o 5
思 考
设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何? f(x) ≤ M
1是此函数的 例如函数f 最大值 x = -x2 +1 x∈R
ƒ(0)=1
2
1
1、对任意的 x R 都有ƒ(x)≤1.
2、存在0,使得ƒ(0)=1.
O
知识要 点
0 ( x是无理数) 思考函数单调性: y 1 ( x是有理数)
(二)典型例题 [例1]下图是定义在[-5,5]上的函数y=f(x)的 图象,根据图象说出y=f(x)的单调区间,以及在每 一单调区间上, y= f(x)是增函数还是减函数 . y
3 2 1 -5 -4 -3 -2 -1 O 1 2 3 4 5x -1
函数y=f(x)的单调区间有 -2 [-5,-2),[-2, 1),[1, 3),[3, 5], 其中y=f(x)在[-5,-2),[1, 3)上是减函数, 在区间[-2, 1),[3, 5]上是增函数.
• 书写单调区间时,注意区间端点的写法。
对于某一个点而言,由于它的函数值是一个确定的 常数,无单调性可言,因此在写单调区间时,可以 包括端点,也可以不包括端点。 但对于某些不在定义域内的区间端点,书写时就必 须去掉端点。
1 思考2:函数 y 的单调区间是什么? x
k y (k 0) 的单调区间 x k y 单调增区间 x
单调减区间
(, 0)
,
k 0
(0, )
k 0
(, 0)
,
(0, )
证明:函数f(x)=1/x 在(0,+∞)上是减函数。
证明:设x1,x2是(0,+∞)上任意两个实数,取值
f(x2)
f(x1) O
M
N
?
对区间D内
x1,x2 ,
有f(x1)<f(x2)
D x 1
当x1<x2时,
x2
x
y
图象在区间D逐渐上升 区间D内随着x的增大,y也增大
f(x2)
f(x1) O
M
N
对区间D内
x1,x2 ,
有f(x1)<f(x2)
D x 1
当x1<x2时,
x2
x
y
图象在区间D逐渐上升
区间D内随着x的增大,y也增大
-5
y
10 8 6 4
2
O -2 2 4
D
6 8 10 12
14 16
18
20
22 24
x
y
图象在区间D逐渐上升 区间D内随着x的增大,y也增大
f(x2)
f(x1) O
M
N
?
对区间D内
x1,x2 ,
有f(x1)<f(x2)
D x 1
当x1<x2时,
x2
x
y
图象在区间D逐渐上升 区间D内随着x的增大,y也增大
1 2
x1 O x2 x 设函数y=f(x)的定义域为I,区间D I.
当x1<x2时,都有f(x1 ) < f(x2 ),
当x1<x2时,都有 f (x1 )
>
f(x 2 ),
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调 函数,D称为f(x)的单调 增 区间. 减函数,D称为f(x)的单调 减 区间. 单调区间
f(x2)
f(x1) O
M
N
对区间D内 任意 x1,x2 ,
D x 1
当x1<x2时,都 有f(x1)<f(x2)
x2
x
定 义 那么就说 f (x)在区间D上 是单调增函数, (x)的定义域为I,区间D I. 如果对于区间D上的任意 两个自变量的值x1,x2, 当x1<x2时,都有 f(x1 ) < f(x2 ), f (x)的单调
(1)若函数y=f (x)在区间[m,n] (m<n)上单调递增,
则函数y=f (x)的最值是什么?
y
f(n)
当x=m时,f (x)有最 小值f (m),当x=n时,f (x) 有最大值f (n).
注意: ① 函数的单调性是在定义域内的某个区间上的性 质,是函数的局部性质; ②必须是对于区间D内的任意两个自变量x1,x2;
判断1:函数 f (x)= x2 在 , 是单调增函数;
y
y x2
o
x
判断2:定义在R上的函数 f (x)满足 f (2)> f(1), 则函数 f (x)在R上是增函数;
一般地,设函数y=f(x)的定义域为I,如果实数
M满足:
(1)对于任意的的x∈I,都有f(x) ≥M;
(2)存在 x0 I,使得 f(x0 ) = M, 那么我们称M是函数y=f(x)的最小值(minimun value).