《23函数的单调性与最值》教案

合集下载

函数的单调性与最大最小值的教案

函数的单调性与最大最小值的教案

函数的单调性与最大最小值的教案一、教学目标1. 让学生理解函数的单调性的概念,掌握判断函数单调性的方法。

2. 让学生了解函数的最大值和最小值的概念,掌握求函数最大值和最小值的方法。

3. 培养学生运用函数的单调性和最值解决实际问题的能力。

二、教学内容1. 函数的单调性1.1 单调增函数和单调减函数的定义1.2 判断函数单调性的方法1.3 单调性在实际问题中的应用2. 函数的最大值和最小值2.1 最大值和最小值的定义2.2 求函数最大值和最小值的方法2.3 最大值和最小值在实际问题中的应用三、教学重点与难点1. 教学重点:函数的单调性的概念及判断方法,函数最大值和最小值的求法及应用。

2. 教学难点:函数单调性的判断方法,求函数最大值和最小值的方法。

四、教学方法1. 采用讲解法,引导学生理解函数的单调性和最值的概念。

2. 采用案例分析法,让学生通过实际问题体验函数单调性和最值的应用。

3. 采用小组讨论法,培养学生合作解决问题的能力。

五、教学准备1. 教学课件:函数单调性和最值的定义、判断方法和求法。

2. 教学案例:实际问题涉及函数单调性和最值的解答。

3. 练习题:针对本节课内容的练习题,巩固所学知识。

六、教学过程1. 导入:通过复习上一节课的内容,引导学生回顾函数的概念和性质,为新课的学习做好铺垫。

2. 讲解:讲解函数的单调性,通过示例让学生理解单调增函数和单调减函数的定义,介绍判断函数单调性的方法。

3. 案例分析:分析实际问题,让学生运用函数的单调性解决实际问题,体会函数单调性的重要性。

4. 讲解:讲解函数的最大值和最小值的概念,介绍求函数最大值和最小值的方法。

5. 案例分析:分析实际问题,让学生运用函数的最值解决实际问题,体会函数最值的重要性。

6. 练习:让学生独立完成练习题,巩固所学知识。

7. 总结:对本节课的内容进行总结,强调函数的单调性和最值在实际问题中的应用。

七、课堂练习1. 判断下列函数的单调性:1. y = x^22. y = -x^23. y = 2x + 32. 求下列函数的最大值和最小值:1. y = x^2 4x + 52. y = -x^2 + 4x 53. 运用函数的单调性和最值解决实际问题。

高中数学教案函数的单调性与最值

高中数学教案函数的单调性与最值

高中数学教案函数的单调性与最值高中数学教案:函数的单调性与最值一、引言函数是数学中的一个重要概念,它描述了数值之间的关系。

而函数的单调性以及最值则是我们研究函数性质时的关键内容。

本教案将重点介绍函数的单调性以及最值的概念、性质和计算方法,帮助学生更好地理解和掌握这一知识点。

二、函数的单调性1. 定义函数的单调性指的是在定义域上的变化趋势。

具体而言,若函数在其定义域上递增,则称为函数的单调递增;若函数在其定义域上递减,则称为函数的单调递减。

2. 判断方法(1)对于函数y=f(x),当x1 < x2时,比较f(x1)与f(x2)的大小关系: - 若f(x1) < f(x2),则函数递增;- 若f(x1) > f(x2),则函数递减;- 若f(x1) = f(x2),则函数不单调。

(2)对于一阶导数存在的函数,可以通过导函数的正负性判断函数的单调性:- 若导函数f'(x) > 0,则函数递增;- 若导函数f'(x) < 0,则函数递减;- 若导函数f'(x) = 0,可以进一步分析。

3. 经典例题(1)求函数f(x)=x^2的单调性。

解:由f'(x) = 2x,当x > 0时,f'(x) > 0;当x < 0时,f'(x) < 0。

因此,函数f(x)=x^2在x > 0时单调递增,在x < 0时单调递减。

(2)求函数f(x)=3x^4-4x^3的单调性。

解:由f'(x) = 12x^3-12x^2 = 12x^2(x-1),可知当x < 0时,f'(x) < 0;当0 < x < 1时,f'(x) > 0;当x > 1时,f'(x) > 0。

因此,函数f(x)=3x^4-4x^3在x < 0时单调递减,在0 < x < 1时单调递增,在x > 1时单调递增。

函数单调性与最值教案

函数单调性与最值教案

函数单调性与最值教案教案标题:函数单调性与最值教案教案目标:1. 了解函数的单调性及其在数学和实际问题中的应用。

2. 掌握求解函数最值的方法和技巧。

3. 能够分析和解决与函数单调性和最值相关的问题。

教案步骤:步骤一:引入概念(15分钟)1. 引导学生回顾函数概念,并解释函数的单调性。

2. 通过示例图像展示函数的单调递增和单调递减的特点。

3. 提出问题:如何判断一个函数的单调性?步骤二:函数单调性的判断(20分钟)1. 介绍函数导数的概念,并解释导数与函数单调性的关系。

2. 讲解判断函数单调性的方法:a. 对函数求导,判断导数的正负性;b. 利用函数的图像和定义域的特点进行判断。

3. 通过练习题让学生巩固判断函数单调性的方法。

步骤三:函数最值的求解(20分钟)1. 引导学生思考如何求解函数的最值。

2. 解释求解函数最值的方法:a. 对函数求导,找出导数为零或不存在的点;b. 利用函数的图像和定义域的特点进行判断。

3. 通过练习题让学生掌握求解函数最值的方法和技巧。

步骤四:综合应用(15分钟)1. 提供一些实际问题,要求学生分析问题并应用函数单调性和最值的概念解决问题。

2. 引导学生讨论解决问题的思路和步骤。

3. 鼓励学生展示解决问题的过程和答案,并进行讨论和评价。

步骤五:总结与拓展(10分钟)1. 总结函数单调性和最值的概念和判断方法。

2. 引导学生思考函数单调性和最值在其他学科和实际问题中的应用。

3. 提供一些拓展问题,鼓励学生继续思考和研究相关概念。

教案评估:1. 在步骤二和步骤三的练习中,检查学生对函数单调性和最值的判断和求解能力。

2. 在步骤四的综合应用中,评估学生对函数单调性和最值在实际问题中的应用能力。

3. 在课堂讨论和总结中,评估学生对函数单调性和最值概念的理解和思考能力。

教案延伸:1. 鼓励学生独立研究更复杂的函数单调性和最值问题,拓展思维能力。

2. 引导学生探索函数单调性和最值在其他数学领域的应用,如微积分、优化问题等。

函数的单调性与最值教案

函数的单调性与最值教案

函数的单调性与最值教案一、教学目标:1. 理解函数单调性的概念,能够判断简单函数的单调性。

2. 掌握利用单调性求函数的最值的方法。

3. 能够运用函数的单调性和最值解决实际问题。

二、教学内容:1. 函数单调性的定义与判断方法。

2. 利用单调性求函数的最值。

3. 函数单调性和最值在实际问题中的应用。

三、教学重点与难点:1. 函数单调性的判断方法。

2. 利用单调性求函数的最值。

四、教学方法与手段:1. 采用讲授法,讲解函数单调性的定义与判断方法。

2. 利用数形结合法,结合图形讲解函数的单调性和最值。

3. 运用实例法,分析实际问题中的函数单调性和最值。

五、教学过程:1. 引入:通过举例,让学生感受函数的单调性和最值在实际问题中的重要性。

2. 讲解:讲解函数单调性的定义与判断方法,结合图形进行分析。

3. 练习:让学生练习判断一些简单函数的单调性。

4. 讲解:讲解如何利用单调性求函数的最值,结合实例进行分析。

5. 练习:让学生练习求解一些函数的最值。

6. 总结:总结本节课的主要内容,强调函数单调性和最值在实际问题中的应用。

7. 作业布置:布置一些有关函数单调性和最值的练习题,巩固所学知识。

六、教学拓展:1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。

2. 探讨函数单调性在高等数学中的应用,如微分方程、最优化问题等。

七、案例分析:1. 分析实际问题,引导学生运用函数的单调性和最值解决实际问题。

2. 举例说明函数单调性和最值在经济学、物理学、工程学等领域的应用。

八、课堂互动:1. 组织学生进行小组讨论,分享各自在练习中的心得体会。

2. 邀请学生上台展示自己的解题过程,互相学习和交流。

九、教学评价:1. 课堂讲解:评价学生对函数单调性和最值的理解程度。

2. 练习作业:评价学生运用函数单调性和最值解决实际问题的能力。

十、教学反思:1. 反思本节课的教学内容、教学方法是否适合学生的学习需求。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

《函数的基本性质──单调性与最值》教学设计

《函数的基本性质──单调性与最值》教学设计

《函数的基本性质──单调性与最值》教学设计《函数的基本性质──单调性与最值》教学设计一、内容和内容解析函数思想是贯穿高中数学的一根主线,函数的基本性质又是函数一章的重点内容。

一方面,它是对以前所学具体函数的一次总结,又是函数知识的一次拓展,对后续学习指、对数函数、三角函数有重要的指导作用。

另一方面,函数的单调性与最大(小)值是初等数学与高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的单调性与最大(小)值在解决实际问题中有着相当重要的作用。

因此,函数单调性与最大(小)值的教学,在教材体系中有着不可替代的位置,又有着重要的现实意义。

函数的单调性最大(小)值是函数的重要性质之一,它是研究函数值与自变量变化的一种关系,既要求学生结合函数的图象(直观性)来研究函数单调性和最大(小)值,也要求学生利用函数单调性和最大(小)值的定义(严谨性)来研究函数单调性和最大(小)值。

因此本节课的教学重点是函数的单调性与最大(小)值的概念及其几何4、学会运用函数图象理解和研究函数的性质,利用函数的性质来画函数的图象(草图),培养学生数形结合的思想和应用数学意识。

5、函数单调性和最大(小)值的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程。

培养学生的探究能力和创新精神,体验到思考与探索的乐趣,培养学生勇于探索,善于研究的精神,挖掘其非智力因素的资源,培养学生良好的思维品质。

三、教学问题诊断分析函数的单调性这一性质学生在初中曾经接触过,但只是从图象上直观分析图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。

这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。

在函数的单调性的概念教学中,学生往往在理解“任意两个”、“都”这两个词的含义出现障碍,误认为“有两个”、“某两个”,而教学中利用函数的图象,举一些反例加以理解巩固。

《函数的单调性与最大值》教学设计

《函数的单调性与最大值》教学设计

《函数的单调性与最大值》教学设计教学设计:函数的单调性与最值一、教学目标:1.了解函数的单调性的概念,能够判断函数在一些区间内的单调性。

2.理解函数的最值的概念,能够求解函数在一些区间上的最大值和最小值。

3.能够运用函数的单调性和最值的概念解决实际问题。

二、教学内容:1.函数的单调性:A.单调递增与单调递减的概念及判断方法。

B.设计一些示例,让学生观察函数图像,并判断函数在一些区间内的单调性。

2.函数的最大值和最小值:A.最大值和最小值的概念及求解方法。

B.设计一些函数并给出定义域,让学生求解函数在一些区间上的最大值和最小值。

3.实际问题的解决:A.设计一些实际问题,例如求解函数在一些时间段内的最大速度、最小成本等,让学生运用函数的单调性和最值的概念解决问题。

三、教学过程:1.引入:通过展示一个山峰的图片,并问:“在山峰的哪个位置有最高点?在山谷的哪个位置有最低点?”引导学生思考什么是最值。

2.导入函数的单调性概念:A.讲解函数的单调递增与单调递减的定义。

B.给出函数图像,让学生判断函数在一些区间内的单调性。

C.给出一些判断函数单调性的例题,让学生独立完成并讲解思路和答案。

3.引入函数的最值概念:A.讲解函数的最大值和最小值的定义。

B.给出一个函数图像,让学生找出函数在一些区间上的最大值和最小值。

C.给出一些求解函数最值的例题,让学生独立完成并讲解思路和答案。

4.实际问题的解决:A.给出一个实际问题,例如一辆汽车的速度随时间的变化函数,让学生运用函数的单调性和最值的概念求解汽车在一些时间段内的最大速度。

B.设计几个类似的实际问题,让学生分组讨论解决方法,并展示解决过程和答案。

5.小结与拓展:A.总结函数的单调性与最值的概念。

B.引导学生思考函数单调性与最值的应用领域,例如应用于经济学、物理学等领域。

C.布置相关的作业,要求学生运用函数的单调性和最值的概念解决实际问题。

四、教学评价与反思:1.对于函数的单调性的判断,可以通过让学生观察函数图像,找出函数的增减规律,提高学生的图形观察能力。

函数的单调性与最大最小值的教案

函数的单调性与最大最小值的教案

函数的单调性与最大最小值的教案一、教学目标1. 知识与技能:(1)理解函数单调性的概念,能够判断函数的单调性;(2)掌握利用导数研究函数的单调性,能够求解函数的单调区间;(3)了解函数的最大最小值的概念,能够利用导数求解函数的最大最小值。

2. 过程与方法:(1)通过实例引导学生理解函数单调性的概念,培养学生的抽象思维能力;(2)利用导数研究函数的单调性,培养学生的逻辑推理能力;(3)通过实例引导学生掌握利用导数求解函数的最大最小值,提高学生的解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习函数的积极性;(2)培养学生克服困难的意志,提高学生解决问题的能力;(3)培养学生团队合作的精神,提高学生的沟通能力。

二、教学内容1. 函数单调性的概念;2. 利用导数研究函数的单调性;3. 函数的最大最小值的概念;4. 利用导数求解函数的最大最小值。

三、教学重点与难点1. 教学重点:(1)函数单调性的判断;(2)利用导数研究函数的单调性;(3)利用导数求解函数的最大最小值。

2. 教学难点:(1)函数单调性的证明;(2)利用导数求解函数的最大最小值的过程。

四、教学过程1. 导入:通过生活中的实例,引导学生理解函数单调性的概念,激发学生的学习兴趣。

2. 新课导入:讲解函数单调性的定义,引导学生掌握判断函数单调性的方法。

3. 实例分析:利用导数研究函数的单调性,让学生通过实例体会导数在研究函数单调性中的作用。

4. 方法讲解:讲解如何利用导数求解函数的最大最小值,让学生掌握求解方法。

5. 练习与讨论:布置练习题,让学生巩固所学知识,并通过讨论培养学生的团队合作精神。

五、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习题,加深对函数单调性和最大最小值的理解;3. 准备下一节课的内容,提前预习。

六、教学评价1. 知识与技能:(1)学生能准确判断函数的单调性;(2)学生能利用导数研究函数的单调性;(3)学生能利用导数求解函数的最大最小值。

《函数的单调性与极值》教案(优质课)

《函数的单调性与极值》教案(优质课)

《函数的单调性与极值》教案【教学目标】:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 【教学重点】:利用导数判断函数单调性; 【教学难点】:利用导数判断函数单调性 【教学过程】: 一 引入:以前,我们用定义来判断函数的单调性.在假设x 1<x 2的前提下,比较f(x 1)<f(x 2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.二 新课讲授 1 函数单调性我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342+-=x x y 的图像可以看到:在区间(2,∞+)内,切线的斜率为正,函数y=f(x)的值随着x 的增大而增大,即/y >0时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内,切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间(∞-,2)内为减函数.定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/y <0,那么函数y=f(x) 在为这个区间内的减函数。

例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。

例2 确定函数76223+-=x x y 的单调区间。

2 极大值与极小值观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。

一般地,设函数y=f(x)在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、课堂导入问题1:大家一起来举出生活中描述上升或下降的变化规律的成语(蒸蒸日上、每况愈下、波澜起伏)问题2:请你根据上述的成语分别给出一个函数,并在直角坐标系中绘制相应的函数图象.二、复习预习1、函数的概念2、函数的三要素3、函数的表示方法三、知识讲解考点1 函数的单调性(1)单调函数的定义:(2)如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在区间D具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.考点2 函数的最值四、例题精析【例题1】【题干】讨论函数f(x)=axx2-1(a>0)的单调性【解析】由x 2-1≠0,得x ≠±1,即定义域为(-∞,-1)∪(-1,1)∪(1,+∞).①当x ∈(-1,1)时,设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0,函数f (x )在(-1,1)上为减函数.②设1<x 1<x 2,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵1<x 1<x 2,∴x 21-1>0,x 22-1>0,x 2-x 1>0,x 1x 2+1>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(1,+∞)上为减函数.又函数f (x )是奇函数,∴f (x )在(-∞,-1)上是减函数.【例题2】【题干】求函数y=x2+x-6的单调区间【解析】令u=x2+x-6,y=x2+x-6可以看作有y=u与u=x2+x-6的复合函数.由u=x2+x-6≥0,得x≤-3或x≥2.∵u=x2+x-6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y=u在(0,+∞)上是增函数.∴y=x2+x-6的单调减区间为(-∞,-3],单调增区间为[2,+∞)【例题3】【题干】已知f(x)=xx-a(x≠a),若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.【解析】]任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立.∴a ≤1.综上所述,a 的取值范围是(0,1].【例题4】【题干】设函数f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,求实数m 的取值范围.【解析】由题意知,x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.即实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.五、课堂运用【基础】1.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是() A .y =ln(x +2) B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12x D .y =x +1x解析:选A选项A的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是()A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]解析:选D ∵函数f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.又∵函数g (x )=ax +1在区间[1,2]上也是减函数,∴a >0.∴a 的取值范围是(0,1].3.若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间⎝ ⎛⎭⎪⎫0,12内恒有f (x )>0,则f (x )的单调递增区间为() A.⎝ ⎛⎭⎪⎫-∞,-14 B.⎝ ⎛⎭⎪⎫-14,+∞C .(0,+∞) D.⎝ ⎛⎭⎪⎫-∞,-12解析:选D 令g (x )=2x 2+x >0,得x >0或x <-12,所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞).易知函数g (x )在⎝ ⎛⎭⎪⎫0,12上单调递增,所以在⎝ ⎛⎭⎪⎫0,12上,0<g (x )<1.又因为f (x )>0恒成立,故0<a <1,故函数y =log a x 在其定义域上为减函数.而g (x )=2x 2+x 在⎝ ⎛⎭⎪⎫-∞,-12上是单调递减的,所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-12.【巩固】4.函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:由于y =⎝ ⎛⎭⎪⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.答案:35.已知函数f (x )=⎩⎨⎧ e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数; ③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________(写出所有正确命题的序号).解析:根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确.答案:①③④【拔高】6.讨论函数f (x )=mx x -2(m <0)的单调性.解:函数定义域为{x|x≠2},不妨设x1,x2∈(-∞,2)且x1<x2,f(x2)-f(x1)=mx2x2-2-mx1x1-2=mx2(x1-2)-mx1(x2-2)(x1-2)(x2-2)=2m(x1-x2)(x1-2)(x2-2).∵m<0,x1,x2∈(-∞,2),且x1<x2,∴x1-x2<0,(x2-2)(x1-2)>0.∴m(x1-x2)(x2-2)(x1-2)>0,即f(x2)>f(x1),故函数f(x)在区间(-∞,2)上是增函数.同理可得函数f(x)在区间(2,+∞)上也是增函数.综上,函数f(x)在(-∞,2),(2,+∞)上为增函数.7.已知函数f(x)对任意的a,b∈R恒有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.解:(1)证明:任取x1,x2∈R, 且x1<x2,∵f(x2)=f((x2-x1)+x1)=f(x2-x1)+f(x1)-1,又x2-x1>0,∴f(x2-x1)>1.∴f(x2)-f(x1)=f(x2-x1)-1>0,即f(x2)>f(x1).∴f(x)是R上的增函数.(2)令a=b=2,得f(4)=f(2)+f(2)-1=2f(2)-1,∴f(2)=3.而f(3m2-m-2)<3,∴f(3m2-m-2)<f(2).又f(x)在R上是单调递增函数,∴3m2-m-2<2,解得-1<m<43.故原不等式的解集为⎝⎛⎭⎪⎫-1,43.课程小结函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.。

相关文档
最新文档