武汉重点中学八年级数学下册期末试题及答案(三套)

合集下载

【三套打包】武汉市八年级下学期期末数学试题(2)

【三套打包】武汉市八年级下学期期末数学试题(2)

新八年级(下)数学期末考试题(含答案)一、选择题(本大题共10 小题,每小题3分,共30 分.每小题只有一个选项是正确的,把正确选项前的字母填入下表中)1.化简222a aa++的结果是A.-a B.-1 C.a D.12.在1x,12,212x+,3xyπ,3x y+,1am+中分式的个数有A.2 个B.3 个C.4 个D.5 个3.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有5个红球,且摸出红球的概率为13,那么袋中总共球的个数为A.15 个B.12 个C.8 个D.6 个4.若ab=25,则a bb+的值是A.75B.35C.32D.575.已知x<3A.-x-3 B.x+3 C.3-x D.x-36.如图,梯形A BCD 中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=A.140°B.120°C.110°D.100°7.已知△ABC 和△A'B'C'是位似图形.△A'B'C'的面积为6cm2,周长是△ABC 的一半,AB=8cm,则A B 边上的高等于A.3cm B.6cm C.9cm D.12cm8.如图,在△ABC 中,点E、D、F 分别在边AB、BC、CA 上,且DE∥CA,DF∥BA.下列四个判断中,是假命题的是A.四边形A E DF 是平行四边形B.如果∠BAC=90°,那么四边形AEDF 是矩形C.如果AD 平分∠BAC,那么四边形A EDF 是菱形D.如果A D⊥BC 且A B=AC,那么四边形A EDF 是正方形9.如果点A(x1,y1)和点B(x2,y2)是直线y=kx-b 上的两点,且当x1<x2 时,y2<y1,那么函数y=kx的图象大致是10.一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG=8cm,则两个三角形重叠(阴影)部分的面积为A.16+16 2B.16cm2C.16cm2D.48cm2二、填空题(本大题共10 小题,每小题2分,共20 分)11.当x=时,分式211xx-+的值为零.12.13.点A(2,1)在反比例函数y=kx的图象上,当1<x<4 时,y 的取值范围是.14.如图,正方体的棱长为 3,点 M ,N 分别在 C D ,HE 上,CM = 12DM ,HN =2NE ,HC 与 N M 的延长线交于点 P ,则 P C 的值为.15.对于平面内任意一个凸四边形 A BCD ,现从以下三个关系式①AB =CD ,②AD =BC ,③AB ∥CD 中任取两个 作为条件,能够得出这个四边形 ABCD 是平行四边形的概率 是 .16.若关于 x 的分式方程 121m x -=+的解为正数,则 m 的取值范围是 .17.如下图,将边长为 9cm 的正方形纸片 A BCD 折叠,使得点 A 落在边 C D 上的 E 点,折痕为 M N .若 C E 的长为 6cm ,则 M N 的长为 cm .18.如上图,点 A 在双曲线 y =6x上,且 O A =4,过 A 作 A C ⊥x 轴,垂足为 C ,OA 的 垂直平分线交 O C 于 B ,则△ABC 的周长为.19.设函数 y =2x与 y =x -1 的图象的交点坐标为(x 0,y 0),则0011x y -的值为 . 20.如图,在平面直角坐标系中,等边三角形 A BC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点 O 的 一条直线分别与边 A B ,AC 交于点 M ,N ,若 O M = MN ,则点 M 的坐标为( ).三、解答题(本大题共 8 小题,共 50 分,解答时应写出必要的计 算过程,推演步骤或文字说明) 21.计算化简(本题满分 8 分,每小题 4 分) (1)011()23-+ (2) 221()a b a ba b b a -÷-+-22.(本题 5 分)解方程:2431422x x x x x +-+=--+23.(本题满分 5 分)化简代数式:2224421142x x x x x x x-+-÷-+-+,并求当 x =2012 时,代 数式的值.24.(本题满分 5 分)如图,在正方形网格中,△T AB 的顶点坐标分别为 T (1,1)、A(2,3)、B(4,2). (1)以点 T (1,1)为位似中心,在位似中心的 同侧将△T AB 放大为原来的 3 倍,放大 后点 A 、B 的对应点分别为 A '、B',画出 △T A'B': (2)写出点 A '、B'的坐标: A'( )、B'( ); (3)在(1)中,若 C (a ,b)为线段 A B 上任一 点,则变化后点 C 的对应点 C'的坐标为 ( ).25.(本题满分6 分)如图,四边形ABCD 中,E、F、G、H 分别为各边的中点,顺次连结E、F、G、H,把四边形E FGH 称为中点四边形.连结A C、BD,容易证明:中点四边形E FGH 一定是平行四边形.(1)如果改变原四边形ABCD 的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形A B CD 的对角线满足A C=BD 时,四边形E FGH 为菱形;当四边形A BCD 的对角线满足时,四边形E FGH 为矩形;当四边形A BCD 的对角线满足时,四边形E FGH 为正方形.(2)试证明:S△AEH+S△CFG=14S□ABCD(3)利用(2)的结论计算:如果四边形A BCD新人教版数学八年级下册期末考试试题(含答案)一、选择题(共10小题,30分)1x的取值范围是()A、x<﹣2B、x≤-2C、x>-2D、x≥﹣22的值是()A、在2和3之间B、在3和4之间C、在4和5之间D、在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A、方差B、平均数C、中位数D、众数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A、3种B、4种C、5种D、6种5.下列式子一定成立的是()6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A、甲B、乙C、丙D、丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A、中位数是12.7%B、众数是15.3%C.平均数是15.98%D、方差是08.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A、52B、48C、40D、209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A、1B、112C、2D、212二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF 相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD,AE=,则AC=.三、解答题(8个小题,共75分)16.(8分)计算下列各式的值:(1(2)(12﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人.19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1. (1)求一次函数y =kx +b 的解析式; (2)若点D 在y 轴上,且满足S △COD ═12S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD 中,点E 是CD 的中点,连接AE 并延长交BC 延长线于点F (1)求证:CF =AD ; (2)连接BD 、DF ,①当∠ABC =90°时,△BDF 的形状是 ;②若∠ABC =50°,当∠CFD = °时,四边形ABCD 是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示. (1)求y 关于x 的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城分别有肥料210吨和290吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡肥料x吨①用含x的代数式完成下表②设总运费为y元,写出y与x的函数关系式,并求出最少总运费;(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时从A城运往C乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC中,AB=AC,点D是BC的中点,∠BAC=120°最新八年级(下)数学期末考试试题【含答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在函数y=11x中,自变量x的取值范围是()A、x>1B、x<1C、x≠1D、x=12.为了了解2016年扬州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A、2016年扬州市九年级学生是总体B、每一名九年级学生是个体C、1000名九年级学生是总体的一个样本D、样本容量是10003.如图,被笑脸盖住的点的坐标可能是( )A 、(3,2)B 、(﹣3,2)C 、(﹣3,﹣2)D 、(3,﹣2)4.如图,要测量的A 、C 两点被池塘隔开,李师傅在AC 外任选一点B ,连接BA 和BC ,分别取BA 和BC 的中点E 、F ,量得E 、F 两点间距离等于23米,则A 、C 两点间的距离为( )A 、46B 、23C 、50D 、255.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v (米/分钟)是时间t (分钟)的函数,能正确反映这一函数关系的大致图象是( )6.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x =3时,y =18,那么当成本为72元时,边长为( )A 、6厘米B 、12厘米C 、24厘米D 、36厘米7.某平行四边形的对角线长为x 、y ,一边长为6,则x 与y 的值可能是( )A 、4和7B 、5和7C 、5和8D 、4和178.如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组0y ax b kx y =+⎧⎨-=⎩的解是( ) A 、42x y =-⎧⎨=-⎩ B 、24x y =-⎧⎨=-⎩ C 、24x y =⎧⎨=⎩D 、24x y =⎧⎨=-⎩9.下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形10.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A、k>1,b<0B、k>1,b>0C、k>0,b>0D、k>0,b<011.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()A、1)B、(﹣1)C、,1)D、1)12.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A、140米B、150米C、160米D、240米13.在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y =﹣x+1上,则m的值为()A、﹣1B、1C、2D、314.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A、12B、10C、8D、615.如图,直线l:y=﹣23x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A、1<a<2B、﹣2<a<0C、﹣3≤a≤﹣2D、﹣10<a<﹣416.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A、3100B、4600C、3000D、3600二、填空题(共4小题,每小题3分,满分12分)17.已知点(﹣4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1,y2的大小关系为.18.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为.19.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是.20.如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为,平行四边形AO n C n+1B的面积为.三、解答题(本大题共6个题,共56分,解答应写出文字说眀、证明过程或演算步骤)21.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A、和同学亲友聊天;B、学习;C、购物;D、游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.22.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A 城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.23.(9分)如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD、(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为.24.(10分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A 型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?25.(10分)已知直线y=kx+3(1﹣k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)当k=1时,直线l1的解析式为,请在图1中画出图象;当k=2时,直线l2的解析式为,请在图2中画出图象;探索发现(2)直线y=kx+3(1﹣k)必经过点(,);类比迁移(3)矩形ABCD如图2所示,若直线y=kx+k﹣2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.26.(10分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=3,直接写出MN的值.参考答案一、选择题1.C;2.D;3.C;4.A;5.A;6.A;7.C;8.A;9.B;10.A;11.A;12.B;13.B;14.B;15.D;16.B;二、填空题17.y1>y2;18.(a+3,b+2);19.(0,53);20.58;152n;三、解答题50,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.22.(1)设S甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得:。

湖北省武汉市武昌区2023-2024学年八年级下学期期末考试数学试卷(含答案)

湖北省武汉市武昌区2023-2024学年八年级下学期期末考试数学试卷(含答案)

八年级数学第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案自代号涂黑.1.能使有意义的的取值范围是()A. B. C. D.2.下列二次根式中,与是同类二次根式的是()A. B. C. D.3.学校准备从甲、乙、丙、丁四位同学中选出一名同学,参加区中小学科技创新竞赛,表格记录了四位同学10次平时成绩的平均数及方差:甲乙丙丁平均分92989298方差1 1.8 1.81若要选出一个成绩好且状态稳定的同学去参赛,那么应选的同学是()A.甲B.乙C.丙D.丁4.下列各式计算正确的是()A. B. C. D.5.在中,,,,则的长度是()A. B. C. D.6.一次函数,随的增大而减小,,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,四边形的对角线,相交于点,下列条件不能判定这个四边形是平行四边形的是()A.,B.,C.,D.,8.在某次综合与实践活动中,小明同学了解到鞋号(码)与脚长(毫米)的对应关系如下表:鞋号(码)…3334353637…脚长(毫米)……若小华的脚长为251毫米,则他的鞋号(码)是()A.39B.40C.41D.429.如图,正方形的边长为1,在轴上,点,分别在直线和直线上,若,则点的坐标为()A. B. C. D.10.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,直线与坐标轴围成的三角形区域(不含边界)中只有四个整点,则的取值范围是()A. B.且C. D.且第Ⅱ卷(非选择题,共90分)二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.计算的结果是________.12.写出一个图象过第一、三、四象限的一次函数解析式是________..在学校演讲比赛中,小明的得分为:演讲内容87分,演讲能力98分,演讲效果90分,若演讲内容、演讲能力、演讲效果按照的比确定,则小明的最终成绩是________分.14.矩形的两条对角线的夹角为,对角线的长为,则矩形的面积为________.15.已知一次函数的图象与轴交于点,且,则下列结论:①函数图象一定经过定点;②若函数图象不经过第四象限,则;③不等式的解集为,则;④直线与直线交于点,与轴交于点,则的面积为1.其中正确的结论是________(请填写序号).16.如图,在中,,,在左侧构造等边,在右侧构造等边,连接,点为中点,连接,则的最大值是________.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)计算:(1);(2).18.(本小题满分8分)如图,点,分别在平行四边形的边,上,与相交于点,.(1)求证:;(2)连接,.请添加一个条件,使四边形为矩形.(不需要说明理由)19.(本小题满分8分)某校开展了“安全伴我行”宣传教育活动.为了解活动效果,该校随机抽取名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级.将收集的数据整理绘制成如下不完整的统计图表.成绩频数分布表等级成绩x频数A46B nC32D8成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出,的值;(2)抽取的这名学生中,其成绩的中位数落在________等级;(3)该校有1500名学生参加这次测试,请估计有多少名学生的成绩达到A等级.20.(本小题满分8分)如图,在平面直角坐标系中,一次函数的图象经过,两点,与轴和轴分别交于点和点.(1)求一次函数的解析式;(2)若点在线段上,过点作于点,作于点,若四边形为正方形,求点的坐标;(3)点在轴上,点在第一象限,若以,,,为顶点的四边形是菱形,直接写出点的坐标.21.(本小题满分8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中,,,都是格点.仅用无刻度的直尺在给定网格中完成画图.图1图2(1)如图1,是上一点,在线段上找一点,使;连接,作一点,使四边形为平行四边形;(2)在图2中作的垂直平分线,分别交,于,;将四边形沿翻折,点的对应点为点,画出翻折后的四边形.22.(本小题满分10分).某中学计划租用客车送312名学生和8名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种型号的客车,它们的载客量和租金如下表所示.设租车总费用为元,租用甲型客车辆.甲型客车乙型客车载客量(人/辆)4530租金(元/辆)400280(1)共需租________辆客车;(2)求关于的函数解析式,并求出自变量的取值范围;(3)租车公司为了回馈学校,将甲型客车每辆租金下调元,乙型客车每辆租金下调元,若租车的最低费用是2160元,求的值.23.(本小题满分10分)问题提出如图1,正方形的对角线与交于点,点在上,连接,作交于点,平分交于,探究与的数量关系.问题探究(1)先将问题特殊化,如图2,当点与重合,点与重合时,直接写出与的数量关系;(2)再探究一般情形,如图1,探究与的数量关系:问题拓展(3)如图3,连接,若正方形的边长为,请直接写出的最小值为________(用含的式子表示).图1图2图324.(本小题满分12分)如图,一次函数的图象与轴交于点,与轴交于点,点在轴正半轴上,.(1)直接写出直线的解析式;(2)如图1,点在轴正半轴上,,求点的坐标;(3)如图2,点在上,过作交于点,将点向下平移长度到点,连接,当点从点运动至点过程中,求的最小值.图1图2参考答案一、选择题(每小题3分,共30分)题号12345678910答案A C D C B A C B B D二、填空题(每小题3分,共18分)11.12.(答案不唯一)13.9214.16 15.①③④(对一个得一分,选②不得分)16.16.提示:以为边向上构造等边,连接,易得可证为平行四边形,且过点作,取中点易得,,勾股可得则.三、解答题(共72分)17.解:(1)原式;(2)原式18.证明:(1)∵四边形为平行四边形,∴,∴.又∵,.∴.(2)或等(答案不唯一)19.解:(1)200,57;(2)B;(3).答:估计有345名学生的成绩达到A等级.20.解:(1)将,两点代入函数解析式中得解得∴一次函数解析式为;(2)∵四边形为正方形,∴可设,将代入一次函数得,解得∴;(3)或.21.第(1)小问4分;第(2)小问4分.图1图2另解:22.解:(1)8;(2)∵解得又∵,且为整数∴自变量的取值范围为,且为整数综上:解析式为,,且为整数;(3).①若,则,随的增大而增大∴当时,取最小值,则,∴②若,则此时不成立舍去③若,则,随的增大而减小∴当时,取最小值,则,∴∵不符合不成立舍去.综上:的值为40.23.解:(1);(2)过点作交延长线于.∴,易证,可得,连接,则为等腰直角三角形,则,∵为角平分线易得则;(3).简解:即作关于对称点则.24.解:(1);(2)如图,在轴上取点,使,连接,作交的延长线于,作轴于.由得,,则,可得,则,,∴,∴待定系数法可求:∴;(3)设,①当时,∵则则点轨迹为为线段则当时,在处当时,在处当且仅当时,最小易得,在中,由面积法可求;②当时,∵则则点轨迹为∵过,且与轴交于当且仅当时,最小易得,在中,由面积法可求;∵则的最小值为.。

湖北省武汉市八年级(下)期末数学试卷(含答案)

湖北省武汉市八年级(下)期末数学试卷(含答案)

湖北省武汉市八年级(下)期末数学试卷(含答案)A. 一定是静止的B. 运动或静止都有可能C. 一定是运动的D.条件不足,无法判断2.下列关于加速度的说法正确的是( )A.物体的加速度越大,则物体的速度越大。

B.物体的加速度越大,则物体的速度变化越大。

C.物体的加速度越大,则物体的速度变化越快。

D. 甲计时员所记录的时间不正确5.小船匀速逆流而上,经过桥下时箱子落水了,船继续前进一段时间后才发现,并立即调头以相同的静水船速顺流而下,经过1h 在下游距桥7.2km 处追上,则河水流动速度为( )A. 7.2km/hB. 3.6km/hC. 1m/sD.条件不足,无法确定6.物体做匀变速直线运动, 一段时间中间时刻的瞬时速度为 v ₁,中间位置的瞬时速度为v ₂,则( )A.当物体做匀加速直线运动时,v ₁<v ₂B.当物体做匀加速直线运动时,n>v ₂C.当物体做匀减速直线运动时, n<v ₂D.当物体做匀减速直线运动时, n>n一、选择题1.甲物体以乙物体为参考系是静止的,甲物体以丙物体为参考系又是运动的,那么,以乙物体为参考系,丙物体的运动情况是( )D.物体的加速度方向改变,则物体的速度方向也一定改变。

3.两个人以相同的速率同时从圆形轨道的A 点出发,分别沿ABC 和 ADC 行走。

如图所示,当他们相遇时不相同的物理量是( )A.速度B.位移C. 路程D.速率4.在百米决赛时(如图),甲、乙两位计时员同时记录第一名的成绩,甲看到发令枪的烟雾时开始计时,乙听到发令枪响开始计时,当运动员到达终点,甲、乙同时停止计时,已知光在空气中的传播速度约为3.0×10'm/s,声音在空气中的传播速度为340m/s.那么( )A.甲、乙两位计时员所记录的时间相同B.甲计时员所记录的时间比乙计时员所记录的时间大约少了0.3sC.甲计时员所记录的时间比乙计时员所记录的时间大约多了0.3s7.2008年9月25日晚21点10分,我国在九泉卫星发射中心将我国自行研制的“神舟7号”宇宙飞船成功地送上太空,飞船绕地球飞行一圈时间为90分钟,则( )A.“21点10分”和“90分钟”前者表示“时刻”后者表示“时间”B.卫星绕地球飞行一圈,它的位移和路程都为0C.卫星绕地球飞行一圈平均速度为0,但它在每一时刻的瞬时速度都不为0D.地面卫星控制中心在对飞船进行飞行姿态调整时可以将飞船看作质点8. 两个质点甲和乙,同时由同一地点向同一方向做直线运动,它们的v-t图象如图所示。

2022-2023学年湖北省武汉市江夏区、蔡甸区、黄陂区八年级(下)期末数学试卷及答案解析

2022-2023学年湖北省武汉市江夏区、蔡甸区、黄陂区八年级(下)期末数学试卷及答案解析

2022-2023学年湖北省武汉市江夏区、蔡甸区、黄陂区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)若二次根式有意义,则实数a的取值范围是()A.a=1B.a>1C.a<1D.a≥12.(3分)已知直角三角形的两条直角边分别为6,8,则斜边的长为()A.5B.6C.8D.103.(3分)如图,在一束平行光线中插入一张对边平行的纸板如果光线与纸板左上方所成的∠1是72°15′,那么光线与纸板右下方所成的∠2的度数为()A.107°45′B.72°45′C.72°15′D.17°45′4.(3分)下列点在函数y=2x﹣1的图象上的是()A.(﹣1,0)B.(0,1)C.(1,1)D.(3,2)5.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A(0,1),B(2,0)均在坐标轴上,则点C的坐标是()A.(1,3)B.(3,2)C.(2,3)D.(2,4)6.(3分)电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足Q=I2Rt.已知导线电阻为5Ω,1s时间导线产生30J的热量,则电流I的值为()A.B.C.D.7.(3分)某电信运营商推出甲,乙,丙三种移动电话套餐的月收费金额y甲(元),y乙(元),y丙(元)与月通话时间x(分钟)的对应关系如图所示,下列结论错误的是()A.月通话时间不足200分钟,选择套餐甲最划算B.对于套餐乙,若月通话时间在600分钟以内,则月收费金额为30元C.当月通话时间恰好为400分钟,则套餐甲和套餐乙的收费相同D.对于套餐乙,若月通话时间超出600分钟,则超出的时间每分钟收费0.15元8.(3分)观察下列表格的对应值,则关于x的方程ax+b=0(a≠0,a,b为常数)解的取值范围是()x 2.13 2.14 2.15 2.16ax+b0.040.01﹣0.02﹣0.05A.2.1<x<2.13B.2.13<x<2.14C.2.14<x<2.15D.2.15<x<2.169.(3分)如图,在Rt△ABC中,∠ABC=90°,∠C=67.5°,点D为AB上一点,点E 为AC的中点,连接DE.若∠AED=∠A,则的值为()A.B.1C.D.10.(3分)如图,在矩形ABCD中,点E在边AB上,点F在边CD上,点G,H在对角线BD上.若四边形EGFH是菱形,AB=3,BC=2.则AE的长是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)化简:=.12.(3分)甲、乙、丙三名射击运动员在10次射击中的平均成绩都是9.2环,他们射击成绩的方差分别为:,,,则三人中成绩最好的是.13.(3分)某水库的水位在最近5小时内持续上涨,水库的初始水位高度为12米,水位以每小时0.3米的速度匀速上升,则该水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为.14.(3分)在同一平面内,以正方形ABCD的一边CD为边作等边三角形CDE,连接AE.则∠AED的度数为°15.(3分)一次函数y=mx+n(m,n为常数,且m≠0)中的x与y的部分对应值如下表:x﹣12y a0下列结论中一定正确的是.①方程mx+n=0(m≠0)的解为x=2;②若a>0,则m⋅n<0;③若0.5x﹣1>mx+n的解为x>2,则m<1;④若关于x的不等式(m﹣1)x+n>0的解集为,则m=﹣2.16.(3分)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作…若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶正边矩形.例如图矩形ABCD中,若AB=4,BC=6,两次操作后剩下的矩形为正方形,则称矩形ABCD为2阶正边矩形.已知一个3阶正边矩形的较长边为15,较短边为整数,则该矩形较短边的长为.三、解答题(共8小题,共72分)17.(8分)计算.(1);(2).18.(8分)如图,已知▱ABCD 的对角线AC ,BD 相交于O ,点E ,F 分别是OA ,OC 的中点,求证:BE =DF.19.(8分)如图,在平面直角坐标系中,A (1,0),B (5,0),矩形ABCD 的边BC =2,直线y =kx +b (k ≠0)经过B ,D 两点.(1)求直线y =kx +b 的解析式:(2)若直线y =kx +b 与y 轴交于点P ,连接CP ,求△CDP的面积.20.(8分)如表是某同学本学期体育素质历次测试成绩(百分制)如表所示:测试类别平时测试期中测试期末测试第1次第2次第3次成绩8286878290(1)该同学本学期五次测试成绩的众数为,中位数为;(2)该同学本学期体育素质平时测试的平均成绩为;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测试成绩、期末测试成绩按照2:3:5的比例计算所得,求该同学本学期体育素质的总评成绩.21.(8分)如图是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫做格点.线段AB 的端点在格点上,点P 是AB 与网格线的交点.仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)直接写出AB的长为;(2)请以AB为边,在图1中画格点正方形ABCD;(3)在图1中CD边上画点Q,连接PQ,使得四边形BCQP的面积为5;(4)连接DP,在图2中格线上找点M(找出两个即可),使DM=DP.22.(10分)随着夏季空调销售旺季的来临,某商场购进A型、B型两种型号的空调共100台用于销售,其中购进的B型空调数量不超过A型空调的2倍.调研发现,每销售一台A型空调商场可获利300元,销售一台B型空调可获利400元,设商场购进A型空调x 台,这批空调全部销售完的总利润为y元.(1)直接写出y与x之间的函数关系式,并写出x的取值范围;(2)求这批空调全部售完后的最大利润,此时A型、B型两种型号的空调各购进多少台?(3)在实际进货时,空调厂家对A型空调出厂价每台下调m元(且100<m<150),且两种空调的销售价格保持不变,若商场购进B型空调的不少于45台,且空调全部售出后商场所获的最大利润为41320元,求m的值.23.(10分)在边长为2的正方形ABCD中,点E,F分别在BC,AB上,AF=CE,连接DE,过点F作FG⊥DE,垂足为G.(1)如图1,延长GF,交DA的延长线于H,请完成画图并证明:AH=CD;(2)如图2,点E,F分别在CB,AB的延长线上,连接AG.求AG的长;(3)如图3,连接CG,则CG的最小值为(直接写出结果).24.(12分)如图,直线:y=kx+2k(k>0)分别交x轴,y轴于A,B两点,OB=3OA.(1)直接写出k的值为;(2)如图1,直线l1:y=x﹣2与l2:y=mx﹣4(m>1)分别交y轴于点C,D,将线段AB平移后的对应线段EF(点A的对应点为E,点B的对应点为F)的两个端点恰好落在l1,l2两条直线上,若四边形ABFE为菱形,求m的值;(3)如图2,点G在直线AB上,点H(3,0),以为GH边在GH右侧作正方形GHMN,连结OM,求OM的最小值.2022-2023学年湖北省武汉市江夏区、蔡甸区、黄陂区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据二次根式有意义的条件:被开方数为非负数,即可得出a的取值范围.【解答】解:由题意得:a﹣1≥0,∴a≥1,故选:D.【点评】本题考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件:被开方数为非负数.2.【分析】根据勾股定理直接解答即可.【解答】解:根据勾股定理可以得出:斜边长==10.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.3.【分析】由平行线的性质可得∠3+∠1=180°,∠2+∠3=180°,从而可得∠1=∠2.【解答】解:如图,∵一束平行光线中插入一张对边平行的纸板,∴∠3+∠1=180°,∠2+∠3=180°,∴∠1=∠2,∵∠1=72°15′,∴∠2=72°15′.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.4.【分析】将A、B、C、D选项中的坐标分别代入y=2x﹣1,根据图象上点的坐标特征性质即可解答.【解答】解:A.当x﹣1时,y=﹣2﹣1=﹣3,故此选项不符合题意;B.当x=0时,y=0﹣1=﹣1,故此选项不符合题意;C.当x=1时,y=2﹣1=1,故此选项符合题意;D.当x=3时,y=6﹣1=5,故此选项不符合题意.故选:C.【点评】本题主要考查一次函数图象上点的坐标特征,熟知一次函数图象上各点的坐标一定适合此函数解析式是解题关键.5.【分析】过C作CH⊥x轴于H,证明△AOB≌△BHC(AAS),可得OA=BH=1,OB=CH=2,即可得到答案.【解答】解:过C作CH⊥x轴于H,如图:∵A(0,1),B(2,0),∴OA=1,OB=2,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABO=90°﹣∠CBH=∠BCH,∵∠AOB=∠BHC=90°,∴△AOB≌△BHC(AAS),∴OA=BH=1,OB=CH=2,∴OH=OB+BH=3,∴C(3,2);故选:B.【点评】本题考查正方形性质及应用,涉及全等三角形的判定与性质,点的坐标等知识,解题的关键是证明△AOB≌△BHC,求出OA=BH=1,OB=CH=2.6.【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,由此即可求解.【解答】解:∵Q=I2Rt,∴30=5×1×I2,∴I2=6,∴I=.故选:B.【点评】本题考查算术平方根,关键是掌握算术平方根的定义.7.【分析】根据图象,对四个选项分别分析判断即可.【解答】解:∵当x<200时,y甲值最小,∴选择套餐甲最划算.故A正确,不符合题意.∵当x<600时,y乙=30.故B正确,不符合题意.∵当x=400时,y甲=60,y乙=30,∴套餐甲和套餐乙的收费不相同,故C错误,符合题意.∵当x=600时,y乙=30;当x=800时,y乙=60;∴=0.15,∴对于套餐乙,若月通话时间超出600分钟,则超出的时间每分钟收费0.15元.故D正确,不符合题意.故选:C.【点评】本题考查一次函数的应用,比较简单,直接从图象即可得到相关信息.8.【分析】利用一元次方程的解的意义和表中数据解答即可.【解答】解:由表中数据可知:ax+b=0在ax+b=0.01与ax+b=﹣0.02之间,∴对应的x值在2.14和2.15之间,∴2.14<x<2.15.故选:C.【点评】本题主要考查了一元一次方程的近似值,熟练掌握一元一次方程的解的意义是解题的关键.9.【分析】过点E作EF⊥AB于点F,求出△DEF是等腰直角三角形,得出DE=EF,再根据三角形中位线定理得出EF=,即可求解.【解答】解:如图,过点E作EF⊥AB于点F,△在Rt△ABC中,∠ABC=90°,∠C=67.5°,∴∠A=90°﹣67.5°=22.5°,又∵∠AED=∠A,∴∠AED=22.5°,∴∠EDF=45°,∴∠DEF=45°,∴DF=EF,∴△DEF是等腰直角三角形,∴DE=EF,∵EF⊥AB,CB⊥AB,∴EF∥BC,∵点E为AC的中点,∴EF是△ABC的中位线,∴EF=,∴DE=BC,∴的值为,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,三角形中位线定理,含特殊角的直角三角形的性质,正确作出辅助线构造直角三角形是解题的关键.10.【分析】连接EF,DE,根据菱形的性质得到BD垂直平分EF,EH=EG,推出EF垂直平分HG,得到DE=BE,根据矩形的性质得到∠A=90°,根据勾股定理即可得到结论.【解答】解:连接EF,DE,∵四边形EGFH是菱形,∴BD垂直平分EF,EH=EG,∵EH=EG,EF⊥HG,∴EF垂直平分HG,∴DE=BE,∵四边形ABCD是矩形,∴∠A=90°,∵AE2+AD2=DE2,∴AE2+22=(3﹣AE)2,∴AE=,故选:B.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.二、填空题(每小题3分,共18分)11.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.12.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵,,,∴s甲2>s乙2>s丙2,∴射击成绩最稳定的是丙,∴三人中成绩最好的是丙.故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:因为初始的水位高度为12米,水位以每小时0.3米的速度匀速上升,所以k=0.3,b=12,根据题意可得:y=12+0.3x(0≤x≤5),故答案为:y=0.3x+12.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式.14.【分析】首先根据正方形和等边三角形的性质得AD=CD,∠ADC=90°,DE=CD,∠EDC=60°,然后分两种情况进行讨论:①当点E在正方形ABCD内部时,先求出∠ADE=30°,再证AD=DE,进而利用三角形的内角和定理可得出∠AED的度数;②当点E在正方形ABCD的外部时,先求出∠ADE=150°,再证AD=DE,进而利用三角形的内角和定理可得出∠AED的度数;【解答】解:∵四边形ABCD为正方形,∴AD=CD,∠ADC=90°,∵△CDE为等边三角形,∴DE=CD,∠EDC=60°,分两种情况讨论如下:①当点E在正方形ABCD内部时,如图所示:∵∠ADC=90°,∠EDC=60°,∴∠ADE=∠ADC﹣∠EDC=30°,∵AD=CD,DE=CD,∴AD=DE,∴;②当点E在正方形ABCD的外部时,如图所示:∵∠ADC=90°,∠EDC=60°,∴∠ADE=∠ADC+∠EDC=150°,∵AD=CD,DE=CD,∴AD=DE,∴.综上所述:∠AED的度数为75°或15°.故答案为:75°或15°.【点评】此题主要考查了正方形的性质,等边三角形的性质,等腰三角形的判定和性质,三角形的内角和定理等,解答此题的关键是理解正方形的四条边都相等、四个角都是直角;等边三角形的三条边都相等、三个角都等于60°,分类讨论是解答此题的难点之一,漏解是解答此题的易错点之一.15.【分析】根据表格数据即可判断①;利用一次函数的性质即可判断②;根据两条直线相交或平行的性质即可判断③;由题意可知直线y=mx+n与直线y=x的交点坐标为(,),利用待定系数法求得直线m的值即可判断④.【解答】解:根据表格数据可知当x=2时,y=0,∵方程mx+n=0(m≠0)的解为x=2,故①正确;若a>0,则函数y随x的增大而减小,∴m<0,n>0,∴m•n<0,故②正确;∵直线y=mx+n与直线y=0.5x﹣1都经过点(2,0),且函数y=0.5x﹣1随x的增大而增大,∴若0.5x﹣1>mx+n的解为x>2,则m<;故③错误;∵关于x的不等式(m﹣1)x+n>0的解集为,∴直线y=mx+n与直线y=x的交点坐标为(,),∵直线y=mx+n过点(2,0),(,),∴,解得m=﹣2,故④正确,故答案为:①②④.【点评】本题考查一次函数与一元一次不等式,一次函数与一元一次方程,熟练掌握一次函数的性质,能够应用数形结合思想是解题的关键.16.【分析】根据已知条件得出符合条件的有4种情况,画出图形作出判断即可.【解答】解:裁剪线的示意图如下:综上所述:a的值是9或6,故答案为:9或6.【点评】本题考查规律型——图形的变化类,主要考查学生的变换能力和理解能力,找到规律正确画出图形是解题的关键.三、解答题(共8小题,共72分)17.【分析】(1)根据二次根式的性质化简后合并解答即可;(2)根据二次根式的化简合并后相除即可.【解答】解:(1)原式==;(2)原式===1.【点评】此题考查二次根式的混合计算,关键是根据二次根式的性质和运算解答.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】(1)根据矩形的性质求出AB=DC=4,AD=BC=2,求出点D的坐标,把把点B和点D的坐标代入y=kx+b得出方程组,求出方程组的解即可;(2)求出点P的坐标,再根据三角形面积公式求出△CDP的面积即可.【解答】解:(1)∵四边形ABCD是矩形,A(1,0),BC=2,∴AD=BC=2,∴点D的坐标是(1,2),把点B(5,0),点D(1,2)代入y=kx+b得:,解得:,∴直线y=kx+b的解析式是y=﹣x+;(2)如图:在y=﹣x+中,令x=0得y=,∴P(0,),∵CD=AB=4,∴△CDP的面积S=4×(﹣2)=1.【点评】本题考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征和矩形的性质等知识点,能用待定系数法求出直线BD的解析式是解此题的关键.20.【分析】(1)根据众数和中位数的概念得出结论即可;(2)根据平均数的概念即可求解;(3)根据各种成绩的比例得出综合成绩即可.【解答】解:(1)∵该同学的5次成绩分别为82、86、87、82、90,∴该同学5次成绩的众数为82,中位数为86,故答案为:82,86;(2)×(82+86+87)=85,故答案为:85;(3)=86.6,即该同学本学期体育素质的总评成绩为86.6.【点评】本题主要考查中位数、众数、平均数的概念,熟练掌握中位数、众数、平均数的概念是解题的关键.21.【分析】(1)根据勾股定理求解;(2)根据网格线的特点及正方形发判定定理作图;(3)根据正方形的性质及梯形的面积公式作图;(4)根据正方形的性质及相似三角形的选择作图.【解答】解:(1)AB==,故答案为:;(2)如图1:正方形ABCD即为所求;(3)如图1:四边形BCQP即为所求;(4)如图2:点M1,M2即为所求.【点评】本题考查了作图的应用与设计,掌握网格线的特点、正方形的性质及梯形的面积公式是解题的关键.22.【分析】(1)根据题意,商场购进B型空调(100﹣x)台.根据两种空调的数量和相应每台利润可写出总利润y与x的关系式,并根据题意确定x的取值范围;(2)根据y随x的变化特点,分析当x为多少时y值最大,并计算y的最大值,从而求得A型、B型两种型号的空调各购进多少台;(3)A型空调进价每台下调m元,且两种空调的销售价格保持不变,故总利润比原来增加了mx元.写出现在的总利润y与x的关系式,并由题意确定x的取值范围.分析该关系式,当x为多少时y值最大,进而求出m的值.【解答】解:(1)商场购进A型空调x台,那么商场购进B型空调(100﹣x)台.根据题意得,y=300x+400(100﹣x)=﹣100x+40000.∵购进的B型空调数量不超过A型空调的2倍,∴100﹣x≤2x,解得x≥.∵x为整数,∴34≤x<100.∴y与x之间的函数关系式为y=﹣100x+40000(34≤x<100).(2)y=﹣100x+40000(34≤x<100).∵y随x的减小而增大,∴当x=34时,y最大,y=﹣100×34+40000=39600.∴这批空调全部售完后的最大利润是39600元,此时A型、B型两种型号的空调各购进34台、66台.(3)∵商场购进B型空调的不少于45台,∴100﹣x≥45,∴34≤x≤55.空调厂家对A型空调出厂价每台下调m元后,y=﹣100x+40000+mx=(m﹣100)x+40000.∴y=(m﹣100)x+40000(34≤x≤55).∵当100<m<150时,y随x的增大而增大,∴当x=55时,y最大,y=55(m﹣100)+40000=41320,解得m=124.∴m=124.【点评】本题考查一次函数及一元一次不等式的应用,解题过程比较复杂,要求思路清晰,每一步都要做到有理有据.23.【分析】(1)由正方形ABCD,FG⊥DE,可得出∠FGE=∠DGH=90°,结合在四边形BFGE中:∠FGE+∠B+∠2+∠3=360°,∠4+∠3=180°,可得出∠2=∠4,即可得出∠1=∠4,由ASA即可得而出△HAF≌△DCE,即可证得AH=CD.(2)延长FG交DA的延长线于H,由ASA即可得而出△HAF≌△DCE,故H是DH的中点,根据直角三角形的性质可得出AG的长为2.(3)连接AG、AC,由(1)可知:AH=CD,∠DGH=90°,根据直角三角形的性质可得出AG的长为2,根据勾股定理可得AC=2,根据CG≥AC﹣AG即可得出答案.【解答】(1)证明:如图:在正方形ABCD中:∠C=∠BAD=∠B=90°,∴∠BAH=90°,∵FG⊥DE,∴∠FGE=∠DGH=90°,在四边形BFGE中:∠FGE+∠B+∠2+∠3=360°,∴∠2+∠3=180°,∵∠4+∠3=180°,∴∠2=∠4,∵∠1=∠2.∴∠1=∠4.又∵AF=CE,∠FAH=∠C=90°,∴△HAF≌△DCE(ASA),∴AH=CD.(2)解:延长FG,交DA的延长线于H,如图:在正方形ABCD中:∠C=∠BAD=∠ABC=90°,AD=2,∴∠BAH=90°,∠EBF=90°,∴∠2+∠F=90°,∴FG⊥DE,∴∠DGH=∠FGE=90°,∵∠1+∠E=90°,∴∠1=∠2,∴∠F=∠E,又∵AF=CE,∠FAH=∠C=90°,∴△HAF≌△DCE(ASA),∴AH=CD,∴A是DH的中点,∴AH=4,在Rt△HDG中,AG=AH=2,∴AG的长为2.(3)解:连接AG、AC,如图:由(1)可知:AH=CD,∠DGH=90°,∴H是DH的中点,在Rt△HDG中,AG=DH=2,在正方形ABCD中:∠ADC=90°,AD=CD=2.∴AC===2.∴CG≥AC﹣AG,当A、G、C三点共线时,CG取得最小值,最小值为:2﹣2.故答案为:2﹣2.【点评】此题考查了正方形的性质和勾股定理,直角三角形的性质,三角形全等的性质与判定,线段最小的求法,其中直角三角形斜边上的中线等于斜边的一半,线段最小的求法是解题的关键.24.【分析】(1)求出A、B点坐标,再求k的值即可;(2)设E(t,t﹣2),根据菱形的性质AB=AE,建立方程2=,求出t的值,从而得到A点到E点的平移方向,从而确定F点的坐标,再求m的值即可;(3)过M点作MK⊥x轴交于K点,过点G作GQ⊥x轴交于Q点,设M(x,y),通过证明△QGH≌△KHM(AAS),可得G(3﹣y,x﹣3),从而判断出M点在直线y=﹣x+6上,再由OM==,可知当x=时,OM的最小值为.【解答】解:(1)当y=0时,kx+2k=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∵OB=3OA,∴OB=6,∴B(0,6),当x=0时,y=2k=6,∴k=3,故答案为:3;(2)设E(t,t﹣2),∵A(﹣2,0),B(0,6),∴AB=2,∵四边形ABFE是菱形,∴AB=AE,∴2=,解得t=4或t=﹣4(舍),∴E(4,2),∴点A向右平移6个单位,向上平移2个单位得到E点,∴B点向右平移6个单位,向上平移2个单位得到F点,∴F(6,8),∵F点在直线l2:y=mx﹣4上,∴6m﹣4=8,解得m=2;(3)过M点作MK⊥x轴交于K点,过点G作GQ⊥x轴交于Q点,设M(x,y),∵∠GHM=90°,∴∠GHA+∠MHK=90°,∵∠GHA+∠QGH=90°,∴∠MHK=∠QGH,∵GH=HM,∴△QGH≌△KHM(AAS),∴GQ=KH,HQ=MK,∴G(3﹣y,x﹣3),∴x﹣3=3(3﹣y)+6,∴y=﹣x+6,∴M点在直线y =﹣x+6上,∴OM ==,当x =时,OM 的最小值为.【点评】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,正方形的性质,三角形全等的判定及性质,灵活应用配方法,平方的非负性求最小值是解题的关键。

武汉八年级下册数学试卷

武汉八年级下册数学试卷

武汉市八年级下册期末数学试卷一、选择题(每小题3分,共30分)1.(3分)化简的结果是()A.﹣2B.2C.±2D.42.(3分)若二次根式有意义,则a的取值范围是()A.a>3B.a≥3C.a≤3D.a≠33.(3分)下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1xB.y=2x2C.y2=4xD.y=2x+14.(3分)如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD 周长的,那么BC的长是()A.6B.8C.10D.165.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120°D.45°6.(3分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220B.220,210C.200,220D.230,2107.(3分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:节水量x/t 0.5~x~1.5 1.5~x~2.5 2.5~x~3.5 3.5~x~4.5 人数 6 4 8 2请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180tB.230tC.250tD.300t8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°9.(3分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.5C.6D.1010.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2B.0<x<2C.0<x<1D.1<x二、填空题(每小题3分,共18分)11.(3分)计算:2﹣6=.12.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.13.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为.14.(3分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为.15.(3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为.16.(3分)已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为.三、解答题(共8小题,共72分)17.(8分)计算:5÷﹣3+2.18.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.19.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.20.(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?21.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B 恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.(10分)某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700 100售价(元/台)900 160他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?23.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.24.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C 是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.。

【三套打包】武汉市八年级下学期期末数学试卷及答案

【三套打包】武汉市八年级下学期期末数学试卷及答案

新八年级下册数学期末考试题(答案)一、填空题(本大题共6个小题,每小题3分,共18分) 1. 若二次根式1-a 有意义,则a 的取值范围是 .2. 正比例函数kx y =(0≠k )的图象过点(-1,3),则k = .3.一个五边形的内角和等于 .4. 分解因式:12-a = .5. 如图,在平行四边形ABCD 中,AB =5cm , BC =7cm ,BE 平分∠ABC 交AD 边于点E , 则线段DE 的长度为 cm .6. 若一次函数m x m y --=)1(的图象经过第二、三、四象限,则m 的取值范围 是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列二次根式中,属于最简二次根式的是( ) A . 7 B .31C .8D . 98. 以下列各组数为边长,不能构成直角三角形的是( )A . 5,12,13B . 1,2,5C .1,3,2D . 4,5,69. 甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s 2甲=5,s 2乙=12,则甲、乙两个同学的数学成绩比较稳定的是( )A . 甲B .乙C .甲和乙一样D .无法确定 10.下列各式中,运算正确的是( ) A .532=+ B .336)2(a a = C . 1)2019(0=- D .2)2(2-=-11.如图,已知:函数b x y +=2和2-=ax y 的图象交于点P (﹣3,﹣4),则根据图象可得不等式b x +2>2-ax 的解集是( ) A .x >﹣4 B .x >﹣3 C .x >﹣2 D .x <﹣312. 如图,四边形ABCD 的对角线AC 和BD 交于点,则下列不能判断四边形ABCD 是平行四边形的条件是( ) A . OC OA =,AD ∥BCDABCOCADBEPO-3 -4B . ∠ABC =∠ADC ,AD ∥BC C . DC AB =,AD =BC D .∠ABD =∠ADB ,∠BAO =∠DCO13. 在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )A .这次比赛的全程是500米B .乙队先到达终点C .比赛中两队从出发到1.1分钟时间段,乙队 的速度比甲队的速度快D .乙与甲相遇时乙的速度是375米/分钟14. 如图,D 、E 分别是AB 、AC 的中点,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是 ( )A .CF EF =B . DE EF =C .CF <BD D .EF >DE 三、解答题(本大题共9个小题,共70分) 15.(本小题6分)计算:218÷2112⨯-2)3(24-+16. (本小题6分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).17.(本小题7分)如图, ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.求证△ADE ≌△CBF1.9 1.1 2 甲乙500 (终点) 200O /分钟 /米 A BCDEF地面尺3尺B FAD EO18.(本小题7分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表: 评委 评委 1 评委 2 评委 3 评委 4 评委5 评委 6 评委7 打分9.29.49.39.49.19.39.4(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.19.(本小题7分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(本小题8分)如图,直线1l 的解析式为2+-=x y ,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C最新八年级下学期期末考试数学试题【含答案】一、选择题(本大题共12小题;每小题3分,共36分.)1.在下列数据6,5,7,5,8,6,6中,众数是( )DCABOA.5B.6C.7D.82.下列式子中为最简二次根式的是()A B C D3.下列运算正确的是()A B+ 4 C=3D4.以下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B cm cm,5cmC.6cm,8cm,10cm D.5cm,12cm,18cm5.下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行且相等C.两组对角分别相等D.一组对边相等且一组对角相等6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2=57 7.12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的()A.众数B.方差C.中位数D.平均数8.已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是()A.k≥1B.k≤4C.k<1D.k≤19.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.-4,2B.﹣4,﹣2C.4,-2D.4,210.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1B.2C.3D.411.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC 为()A.45°B.55°C.60°D.75°12.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm二、填空题(每小题3分,共18分)13=.14.已知直角三角形的两边长为3、4,则另一条边长是.15.一个多边形的外角和是内角和的25倍,这个多边形的边数是.16.某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为.17.一组数据:5,8,7,6,9,则这组数据的方差是.18.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.三、解答题(本大题共7小题,共46分.)19.(5分)计算:20.(5分)解方程:3(x﹣7)=4x(x﹣7)21.(7分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.22.(7分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的△ABC,请你根据所学的知识回答下列问题:(1)求△ABC的面积;(2)判断△ABC的形状,并说明理由.23.(7分)我市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?24.(7分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?25.(8分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?2019年春季期期末抽考八年级数学科参考答案及评分意见一、选择题:(每小题3分,共36分)二、填空题(每小题3分,共18分)13. 2 14. 5或7 15. 7 16.21x (x ﹣1)=15 17. 2 18.34 三、19.解:原式=6264+-………………………………………………………………3分=64+………………………………………………………………………5分20.解:(1)移项,得 3(x -7)-4x (x -7)=0. ……………………………………1分因式分解,得 (3-4x ) (x -7)=0. ……………………………………2分 由此得 3-4x =0或x -7=0. ……………………………………3分 解得 x 1=34,x 2=7. ……………………………………5分 21.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC最新八年级下册数学期末考试试题(答案)一、选择题(每道题后面的四个选项中,有且只有一个正确.每小题3分,共30分)1a 的取值范围是( ) A .a >1B .a≥1C .a=1D .a≤12.下列二次根式中能与合并的是( )AB C D 3.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为( ) A .4B .3C .5D .64.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD ∥BC ,AB ∥CD B .AB ∥CD ,AB=CDC .AD ∥BC ,AB=DC D .AB=DC ,AD=BC5.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .抛掷一枚硬币100次,一定有50次“正面朝上”D .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定 6.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AD ,AC 的中点,若CB=4,则EF 的长度为( )A .2B .1C .32D .7.若b <0,则一次函数y=-x+b 的图象大致是( )A .B .C .D .8.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .D .9.如图,在矩形ABCD 中,E 为AD 的中点,∠BED 的平分线交BC 于点F ,若AB=3,BC=8,则FC 的长度为( )A .6B .5C .4D .310.在平面直角坐标系内,已知点A 的坐标为(-6,0),直线l :y=kx+b 不经过第四象限,且与x 轴的夹角为30°,点P 为直线l 上的一个动点,若点P 到点A 的最短距离是2,则b 的值为( )ABC .D .或二、填空题(每小题3分,共18分)11.计算:2=;= .12.若点A (2,m )在平面直角坐标系的x 轴上,则点P (m -1,m+3)到原点O 的距离为 .13.小华用S 2=110{(x 1-8)2+(x 2-8)2+……+(x 10-8)2计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .14.一个有进水管与出水管的容器,从某时刻开始,2min 内只进水不出水,在随后的4min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则每分钟出水 升.15.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若AB=8,AD=6,则EC= .16.在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=10cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .三、解答题(本大题满分为72分)17.计算题(1)(2)2-18.已知22a b ==-b a a b-的值. 19.如图,在四边形ABCD 中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD 的面积.20.某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的众数是分,九(2)班复赛成绩的中位数是分;(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.21.在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:一次函数与方程(组)的关系:(1)一次函数的解析式就是一个二元一次方程;(2)点B的横坐标是方程kx+b=0的解;(3)点C的坐标(x,y)中x,y的值是方程组①的解.一次函数与不等式的关系:(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:①;②;(二)如果点B坐标为(2,0),C坐标为(1,3);①直接写出kx+b≥k1x+b1的解集;②求直线BC的函数解析式.22.已知:如图,平行四边形ABCD中,对角线AC与BD相交于点E,点M为AD的中点,连接CM,CM的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AM=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.23.A城有肥料400t,B城有肥料600t,现要把这些肥料全部运往C、D两乡,所需运费如下表所示:现C乡需要肥料480t,D乡需要肥料520t.(1)设从A城运往C乡肥料x吨,总运费为y元;①求B城运往C、D两乡的肥料分别为多少吨?(用含x的式子表示).②写出y关于x的函数解析式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少m元(0<m<6),这时怎样调运才能使总运费最少?24.如图(1),在平面直角坐标系中,直线y=-x+m交y轴于点A,交x轴于点B,点C为OB的中点,作C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)直接写出点F的坐标(用m表示);(2)求证:OF⊥AC;(3)如图(2),若m=2,点G的坐标为(-13,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;①求k的取值范围;②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.2018-2019学年湖北省荆州市松滋市八年级(下)期末数学试卷参考答案与解析1.【分析】根据二次根式有意义的条件可得a-1≥0,再解不等式即可.【解答】解:由题意得:a-1≥0,解得:a≥1,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【解答】解:A=合并,错误;B3=能与CD3不能与故选:B.【点评】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.3.【分析】根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高【解答】解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD= AB2−BD2=4.故选:A.【点评】本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.4.【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.5.【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,一组数据1、2、5、5、5、3、3的中位数和众数分别是3、5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D 正确,故选:D.【点评】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.6.【分析】根据直角三角形的性质求出CD,根据三角形中位线定理计算即可.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC=8,∵∠ACB=90°,D为AB的中点,∴CD=12BC=4,∵E,F分别为AD,AC的中点,∴EF=12CD=2,故选:A.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=-x+b中k=-1<0,b<0,∴一次函数的图象经过二、三、四象限,故选:C.【点评】要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【解答】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF==故选:D.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.9.【分析】根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【解答】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=12AD=12×8=4,在Rt△ABE中,5BE===,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=3.故选:D.【点评】本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.10.【分析】直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.【解答】解:如图:分两种情况:(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,∴AB=2AP1=4,∴OB=OA -AB=6-4=2,在Rt △BCO 中,∠CBO=30°,∴OC=tan30°×OB=3,即:b=3;(2)同理可求得AD=4,OD=OA+AD=10,在Rt △DOE 中,∠EDO=30°,∴,即:; 故选:A .【点评】考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类. 二、填空题(每小题3分,共18分)11. 【分析】根据二次根式的性质计算即可.【解答】解:2(2π==-.故答案为:5,π-2.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.12. 【分析】首先根据x 轴上的点纵坐标为0得出m 的值,再根据勾股定理即可求解.【解答】解:∵点A (2,m )在直角坐标系的x 轴上,∴m=0,∴点P (m -1,m+3),即(-1,3)到原点O =.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m 的值是解题的关键13. 【分析】根据S 2=110{(x 1-8)2+(x 2-8)2+……+(x 10-8)2可得平均数为8,进而可得答案.【解答】解:由S2=110{(x1-8)2+(x2-8)2+……+(x10-8)2知这10个数据的平均数为8,则x1+x2+x3+…+x10=10×8=80,故答案为:80.【点评】此题主要考查了方差公式,关键是掌握方差公式:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].14.分析】出水量根据后4分钟的水量变化求解.【解答】解:根据图象,每分钟进水20÷2=10升,设每分钟出水m升,则10×(6-2)-(6-2)m=30-20,解得:m=7.5.故答案为:7.5【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.【解答】解:连接EA,如图,由作图得到MN垂直平分AC,∴EC=EA,∵四边形ABCD为矩形,∴CD=AB=8,∠D=90°,设CE=x,则AE=x,DE=8-x,在Rt△ADE中,62+(8-x)2=x2,解得x=254,即CE的长为254.故答案为254.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.16.【分析】首先求出DE的长,再分两种情形分别求解即可解决问题;【解答】解:如图1中,∵∠A=90°,∠C=30°,AC=10cm,∴,设AD=DE=x,在Rt△CDE中,(10-x)2=x2+)2,∴x=103,∴DE=103,①如图2中,当ED=EF时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长=4×103=403(cm).②如图2-1中,当FD=FB时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长=10442DF =(cm ) 综上所述,满足条件的平行四边形的周长为403cm或9cm , 故答案为403cm或9cm . 【点评】本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题满分为72分)17. 【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式==5; (2)原式=6--(20-2)=-【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18. 【分析】先计算出a+b ,b -a 以及ab 的值,再把所求代数式变形为()()b a b a ab +-,然后代值计算即可.【解答】解:∵22a b =+=,∴4,431a b b a ab +=-=-=-=,∴原式=22()()b a b a b a ab ab -+-===- 【点评】本题二次根式的化简求值,通过先计算a+b ,b -a 以及ab 的值,变形所求代数式,从而使计算变得简便.19. 【分析】连接AC ,根据勾股定理求出AC ,根据勾股定理的逆定理求出△ACD 是直角三角形,分别求出△ABC 和△ACD 的面积,即可得出答案.【解答】解:连结AC ,在△ABC 中,∵∠B=90°,AB=3,BC=4,∴, S △ABC =12AB•BC=12×3×4=6, 在△ACD 中,∵AD=13,AC=5,CD=12,∴CD 2+AC 2=AD 2,∴△ACD 是直角三角形,∴S △ACD =12AC•CD=12×5×12=30. ∴四边形ABCD 的面积=S △ABC +S △ACD =6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC 和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.20.【分析】(1)利用众数、中位数的定义分别解答即可;(2)根据平均数和方差的公式分别计算出各自的平均数和方差,然后利用方差的意义进行判断即可.【解答】解:(1)九(1)班复赛成绩的众数是85分;九(2)班复赛成绩的中位数是80分,故答案为:85,80;(2)九(1)班的选手的得分分别为85,75,80,85,100,所以九(1)班成绩的平均数=15(85+75+80+85+100)=85(分),九(1)班的方差S22=15[(85-85)2+(75-85)2+(80-85)2+(85-85)2+(100-85)2]=70(分);九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=15(70+100+100+75+80)=85(分),九(2)班的方差S22=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分)因为在平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.21.【分析】(一)①因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;②函数y=kx+b中,当y<0时,kx+b<0,因此x的取值范围是不等式kx+b<0的解集;(二)①由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值;②利用待定系数法即可求出直线BC的函数解析式.【解答】解:(。

武汉初中数学八年级下期末测试(答案解析)

武汉初中数学八年级下期末测试(答案解析)

一、选择题1.(0分)[ID :10230]当12a <<时,代数式2(2)1a a -+-的值为( ) A .1 B .-1C .2a-3D .3-2a2.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 3.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,244.(0分)[ID :10203]三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形 C .直角三角形 D .锐角三角形 5.(0分)[ID :10201]若点P 在一次函数y =−x +4的图像上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.(0分)[ID :10196]已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .47.(0分)[ID :10143]如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A.10米B.16米C.15米D.14米8.(0分)[ID:10141]计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.129.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-610.(0分)[ID:10195]如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()A.2√3cm B.3cm C.4√3cm D.3√3cm11.(0分)[ID:10186]如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.812.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.13.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.614.(0分)[ID:10158]下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=15.(0分)[ID:10155]如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上.若AFD的周长为18,ECF的周长为6,四边形纸片ABCD的周长为(的点F处)A.20B.24C.32D.48二、填空题16.(0分)[ID:10329]如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.17.(0分)[ID:10327]如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)18.(0分)[ID:10322]24的结果是__________.____.19.(0分)[ID:10313]函数x20.(0分)[ID :10307]如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.21.(0分)[ID :10290]一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.(0分)[ID :10270]如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.23.(0分)[ID :10269]已知0,0a b <>2()a b -=________24.(0分)[ID :10264]某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.25.(0分)[ID :10263]直角三角形两直角边长分别为3+1,31,则它的斜边长为____.三、解答题26.(0分)[ID :10390]为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.(0分)[ID :10384]国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <组:1 1.5tD <组: 1.5t请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.28.(0分)[ID :10373]如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.29.(0分)[ID :10351]已知:2y -与x 成正比例,且2x =时,8y =. (1)求y 与x 之间的函数关系式; (2)当3y <时,求x 的取值范围.30.(0分)[ID :10426]如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.D 3.A 4.C 5.C 6.B 7.B8.D9.A10.D11.D12.C13.C14.C15.B二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为17.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK是矩形四边形18.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:19.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变20.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B22.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1观23.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式24.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙25.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:首先由,即可将原式化简,然后由1<a<2,去绝对值符号,继而求得答案.详解:∵1<a<2,(a-2),(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.A解析:A 【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5, 这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形,【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5.C解析:C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.6.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.7.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.8.D解析:D【解析】【分析】【详解】12===. 故选:D. 9.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A .【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.10.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE ≌△ADF ,然后连接AC 可推出△ABC 以及△ACD 为等边三角形.根据等边三角形三线合一的性质又可推出△AEF 是等边三角形.根据勾股定理可求出AE 的长,继而求出周长.【详解】解:∵四边形ABCD 是菱形,∴AB =AD =BC =CD =2cm ,∠B =∠D ,∵E 、F 分别是BC 、CD 的中点,∴BE =DF ,在△ABE 和△ADF 中,{AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF .连接AC ,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm,∴△AEF是等边三角形,AE=√AB2−BE2=√22−12=√3,∴周长是3√3cm.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.11.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.12.C解析:C【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误.故选:C.本题考查二次根式得运算,熟练掌握运算法则是解题关键.15.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD 的周长等于△AFD 和△CFE 的周长的和.【详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm .故矩形ABCD 的周长为24cm .故答案为:B .【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题16.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠= .AB AD AE ==150.BAE ∴∠=ABE △是等腰三角形15.AEB ∴∠=故答案为15.17.=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积△MBK 的面积=△QKB 的面积△PKD 的面积=△NDK 的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK 是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,进而求出答案.【详解】解:∵四边形ABCD 是矩形,四边形MBQK 是矩形,四边形PKND 是矩形,∴△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.18.4【解析】【分析】根据二次根式的性质直接化简即可【详解】故答案为:4【点睛】此题主要考查了运用二次根式的性质进行化简注意:解析:4【解析】【分析】根据二次根式的性质直接化简即可.【详解】|4|4=.故答案为:4.【点睛】(0)||0 (0)(0)a aa aa a⎧⎪===⎨⎪-⎩><.19.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.20.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x 的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观解析:x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.23.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式-解析:b a【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,2-=|a−b|=b−a.()a b-.故答案为:b a【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.24.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙解析:乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.25.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+(−1)2=斜边2,斜边,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.三、解答题26.(1)()()130,03008015000.300x xyx x⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m,乙种花卉种植面积为2400m,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a 的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -.()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想. 27.(1)141;(2)C ;(3)估算其中达到国家规定体育活动时间的人数大约有8040 人.【解析】【分析】(1)C 组的人数为总人数减去各组人数;(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】(1)C 组人数为321(2010060)141-++=(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C 组,所以本次调查数据的中位数落在C 组内,故答案为:C .(3)估算其中达到国家规定体育活动时间的人数大约有14160128408040321+⨯=(人). 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数. 28.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥根据勾股定理,得12AE == (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.29.(1)y=3x+2(2)x <13 【解析】【分析】(1)根据y-2与x 成正比例可设y 与x 之间的函数关系式为y-2=2k ,将点的坐标代入一次函数关系式中求出k 值,此题得解;(2)令y<3,由此即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:(1)∵2y -与x 成正比例,∴设2y kx -=,∵2x =时,8y =,∴822k -=,∴3k =,∴32y x =+;(2)∵3y <,∴323x +<, 即13x <.故答案为(1)y=3x+2;(2)x<1 3 .【点睛】本类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用不等式解决问题.30.3cm.【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.【点睛】本题考查翻折变换(折叠问题);矩形的性质;勾股定理;方程思想的应用.。

湖北省武汉市 八年级(下)期末数学试卷 含答案

湖北省武汉市   八年级(下)期末数学试卷  含答案

八年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1−x1.函数y=中自变量x的取值范围是( )A. B. C. D.x>1x≥1x≤1x≠152.已知三角形三边的长分别为3、2、,则该三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定3.在平行四边形中,不一定具有下列性质的是( )A. 对边相等B. 对边平行C. 对角线相等D. 内角和为360∘4.如图分别给出了变量x与y之间的对应关系,其中y不是x的函数是( )A. B.C. D.5.如果一组数据3、4、x、5的平均数是4,那么x的值为( )A. 2B. 3C.D. 43.56.已知A(x1,y1)、B(x2,y2),是一次函数y=-2x+3的图象上的点.当x1>x2时,y1、y2的大小关系为()A. B.y1<y2y1>y2C. D. 以上结论都有可能y1=y27.如图,函数y=kx和y=ax+b的图象相交于点A(1,3),则不等式kx≥ax+b的解集为( )A. x≥1B. x≤3C. x≤1D. x ≥38.如图所示,购买水果所付金额y (元)与购买量x (千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省( )元A. 10B. 6C. 5D. 49.如图,在3×3的网格中(每一个小正方形的边长为1),直角△ABC 的顶点均在格点.若△ABC 的面积为,则满足条件的32直角三角形有( )A. 12个B. 16个C. 20个D. 24个10.已知函数y =(k -1)x +2k -1与y =|x -1|,当满足0≤x ≤3时,两个函数的图象存在2个公共点,则k 满足的条件是( )A. B. C. D. 0≤k ≤323≤k ≤65−13<k ≤023<k ≤1二、填空题(本大题共6小题,共18.0分)11.计算:=______.812.已知直角三角形的两直角边分别为5、12,则另一条边是______.13.一组数据2、3、x 、4的众数与平均数相等,则x =______14.如图,在△ABC 中,AB =AC ,BC =2,三角形的中线BE 、CD交于点O ,点F 、G 分别为OB 、OC 的中点.若四边形DFGE是正方形,则△ABC 的面积为______15.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为______.三、计算题(本大题共1小题,共8.0分)17.计算:(1)18−92(2)(43−24)÷12四、解答题(本大题共7小题,共64.0分)18.如图,正方形ABCD中,点P为BC的中点,求证:AP=DP.19.已知一次函数的图象经过(-1,0)和(1,4)两点,求一次函数的解析式20.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,解决下列问题:(1)七年级共有______人参加了兴趣小组;(2)体育兴趣小组对应扇形圆心角的度数为______;(3)以各小组人数组成一组新数据,求这组新数据的中位数.21.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.22.如图,直线l:y=2x+4(1)①直接写出直线l关于y轴对称的直线l1的解析式______②直接写出直线l向右平移2个单位得到的直线l2的解析式______(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l1于点Q、交直线l2于点P.若PM=2PQ,求M点的坐标23.如图,已知正方形ABCD的边长是2,点P沿A→B→C→D运动,到达点D停止(1)连接PD,设点P运动的距离为x,请用x表示△APD的面积y(直接写出结果);(2)作DE⊥AP于点E①如图2,点P在线段BC上,将△APB沿AP翻折得到△APB′,连接DB′,求∠B′DE的度数;②连接EC,若△CDE是等腰三角形,则DE=______(直接写出结果).24.已知直线a:y=(x+1)k+1与x轴交于点P、与y轴交于点Q(1)直线a经过定点A,则点A的坐标为:______(直接写出结果)(2)直线b:y=(k-1)x+k与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM的面积为定值(3)如图,过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC 的中点D.当k的值从3逐步变化到1时,求点D运动的路径长答案和解析1.【答案】C【解析】解:由题意得,1-x≥0,解得x≤1.故选C.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.【答案】B【解析】解:∵22+()2=32,∴该三角形是直角三角形,故选:B.两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.【答案】C【解析】解:因为平行四边形对边相等,对边平行,内角和为360°,对角线不一定相等,故选:C.根据平行四边形的性质即可判断.本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.4.【答案】B【解析】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解析】解:根据题意知=4,解得:x=4,故选:D.运用平均数的计算公式即可求得x的值.本题考查的是样本平均数的求法及运用,即平均数公式:=.6.【答案】A【解析】解:∵A(x1,y1)、B(x2,y2)是一次函数y=-2x+3的图象上的点,∴y1=-2x1+3,y2=-2x2+3,又∵x1>x2,∴-2x1+3<-2x2+3,即y1<y2.故选:A.利用一次函数图象上点的坐标特征可得出y1=-2x1+3、y2=-2x2+3,结合x1>x2即可得出y1<y2,此题得解(利用一次函数的性质解决该题亦可).本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.【答案】A【解析】解:函数y=kx和y=ax+b的图象相交于点A(1,3),由图可知,不等式kx≥ax+b的解集为x≥1.故选:A.以交点为分界,结合图象写出不等式kx≥ax+b的解集即可.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合8.【答案】B【解析】解:设直线AB的解析式为y=kx+b,将(2,20)、(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=5时,y=44.∵x=1时,y=10,则一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故选:B.求出直线AB的解析式即可解决问题;本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.【答案】D【解析】解:设直角三角形的两直角边是a和b∵△ABC的面积为∴ab=∴ab=3又:直角△ABC的顶点均在格点上,小正方形的边长为1.∴它的两直角边的长度为1和3满足条件.如图所示,取线段AB,可构造两个符合要求的三角形.类似图中线段AB的线段共有12条,每条线段可以构造两个三角形所以,总共可以找到的三角形个数是:12×2=24(个)故选:D.通过直角三角形的面积可以得到两直角边的乘积是3,结合各顶点在格点的要求,可以知道直角边为1和3满足要求,通过作图探索,可以发现这样的三角形共有24个.这是典型的探索格点三角形个数的题目,重在考察学生对直角三角形的认识、面积的计算方法、直观想象能力.作答此类题目,要做到数三角形的个数时“不重不漏”.10.【答案】D【解析】解:由已知,当x=-2时,y=2(k-1)+2k-1=2∴函数y=(k-1)x+2k-1的图象过定点A(-2,1)如图:y=|x-1|的图象如图为折线BCD,其中点B(0,1),C(1,0),D(3,2)当函数y=(k-1)x+2k-1的图象过点C(1,0)时,与折线BCD恰一个交点k=当过直线过点A、B时,AB∥x轴,直线AB与折线BCD有两个交点此时,k-1=0∴k=1故选:D.观察函数y=(k-1)x+2k-1图象,其过定点A(-2,1)则其图象绕点A旋转,且画出y=|x-1|的图象,将y=(k-1)x+2k-1的图象旋转找到临界点.本题考查了一次函数图象性质和临界点问题.本题解题关键在于发现带有参数的函数解析式过定点.11.【答案】22【解析】解:==2.故答案为2.根据算术平方根的性质进行化简,即=|a|.此题考查了算术平方根的性质,能够能够算术平方根的性质进行化简,是一道基础题.12.【答案】13【解析】解:在直角三角形中,已知两直角边为5、12,则另一条边为斜边,边长为=13,∴第三条边为13,故答案为13.在直角三角形中,三边边长符合勾股定理,已知两直角边为5、12,则另一条边即斜边可以根据勾股定理求解.本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理求第三边是解题的关键.13.【答案】3【解析】解:当这组数的众数是2时,则平均数是:(2+x+3+4)=2,解得:x=-1,当这组数的众数是3时,则平均数是:(2+x+3+4)=3,解得:x=3,当这组数的众数是4时,则平均数是:(2+x+3+4)=4,解得:x=7,则x=3时,数据2、3、x、4的众数与平均数相等;故答案为:3.根据众数和平均数的定义以及众数与平均数相等,分别进行解答即可.此题考查了众数和平均数,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.14.【答案】3【解析】解:∵四边形DFGE是正方形,∴DG⊥EF,OE=OF,OD=OG,∠EGF=90°,∵CD是△ABC的中线,∴S△BDC=S△ADC,∵点F、G分别为OB、OC的中点,∴FG是△OBC的中位线,∴FG=BC=1,由勾股定瑆得:DG=EF=,∴OD=OG=CG=,∴CD=,OB=,∴S△ABC=2S△BDC=2××CD×OB=×=3,故答案为:3.先根据三角形中线平分三角形面积得:S△BDC=S△ADC,再根据三角形中位线定理计算GF=1,即正方形DFGE为1,可得对角线的长为,根据三角形面积公式可得结论.本题考查了三角形的面积、中线和中位线定理,正方形的性质,熟练掌握这些定理是本题的关键.15.【答案】175【解析】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m-2.5)×(180-30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).故答案为:175.根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.16.【答案】2或4-222【解析】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE-EM=2-2,∴DF=DM=4-2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4-2.故答案为2或4-2.当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF 1=∠BEF 1=∠DF 1E ,得到DF 1=DE ,由此即可解决问题.本题考查翻折变换、矩形的性质、等腰直角三角形的性质和判定,解题的关键是正确画出图形,注意有两种情形,属于中考常考题型.17.【答案】解:(1)原式=3-=;23232(2)原式=2-.2【解析】(1)原式化简后,合并即可得到结果;(2)原式利用多项式除以单项式法则即可求出值.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】证明:∵四边形ABCD 是正方形,∴AB =DC ,∠B =∠C ,∵P 是BC 中点,∴BP =CP ,∴△ABP ≌△DCP .∴AP =DP .【解析】正方形的四边相等,四个角是直角,即AB=DC ,∠B=∠C ,且BP=PC ,很容易证得△ABP ≌△DCP ,从而可得到结论.本题考查正方形的性质,四边相等,四个角相等,以及全等三角形的判定和性质.19.【答案】解:设一次函数解析式为y =kx +b (k ≠0),由题意,得,{−k +b =0k +b =4解得.{k =2b =2则该函数的解析式为y =2x +2.【解析】设函数解析式为y=kx+b (k≠0),将(-1,0)和(1,4)分别代入解析式,组成关于k 、b 的方程组,解方程组即可.本题考查的是用待定系数法求一次函数的解析式,根据题意设出函数解析式,把已知点的坐标代入得出关于k 、b 的方程组是解答此题的关键.20.【答案】320;108°【解析】解:(1)七年级参加了兴趣小组的人数为:32÷10%=320人.故答案为:320.(2)体育兴趣小组对应扇形圆心角的度数为360×=108°.故答案为:108°.(3)将各小组人数组成的数据按从小到大的顺序排列为:16,32,48,64,64,96,中间两个分别是48,64,所以中位数是(48+64)÷2=56.(1)根据总人数=参加某项的人数÷所占比例求解即可;(2)根据体育兴趣小组对应扇形圆心角的度数=360°×对应的百分比计算.(3)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数(或中间两个数据的平均数)就是这组数据的中位数求解.本题主要考查了条形统计图,扇形统计图及中位数;解题的关键是读懂统计图,从中获得准确的信息.21.【答案】解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:,{x +3y =263x +2y =29解得:,{x =5y =7答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元;(2)设购进A 型节能灯m 只,总费用为W 元,根据题意,得:W =5m +7(50-m )=-2m +350,∵-2<0,∴W 随m 的增大而减小,又∵m ≤3(50-m ),解得:m ≤37.5,而m 为正整数,∴当m =37时,W 最小=-2×37+350=276,此时50-37=13,答:当购买A 型灯37只,B 型灯13只时,最省钱.【解析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据:“1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元”列方程组求解即可;(2)首先根据“A 型节能灯的数量不多于B 型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A 型灯的只数之间的关系得到函数解析式,确定函数的最值即可.此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.22.【答案】y =-2x +4;y =2x【解析】解:①如图,记直线y=2x+4与y轴的交点为A,与x轴的交点为B,∴A(-2,0),B(0,4),∴点B关于y轴的对称点C的坐标为(2,0),设直线l1的解析式的解析式为y=kx+4,∴2k+4=0,∴k=-2,∴直线l1的解析式y=-2x+4;②直线l:y=2x+4向右平移2个单位得到的直线l2的解析式y=2(x-2)+4=2x,故答案为y=-2x+4,y=2x;(2)如图,设点M(m,0),∵点P在直线l2:y=-2x+4上,∴P(m,-2m+4),∵点Q在直线l1:y=2x+4上,∴Q(m,2m+4),∴PM=|-2m+4|,PQ=|-2m+4-(2m+4)|=4|m|,∵PM=2PQ,∴|-2m+4|=2×4|m|,∴m=-或m=,∴M(-,0)或(,0).(1)①先求出点A,B坐标,再利用对称性求出点C坐标,最后利用待定系数法即可得出结论;②利用平移的性质即可得出结论;(3)设出点M坐标,进而表示出点P,Q坐标,即可表示出PM,PQ,最后建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,平移的性质,对称的性质,用方程的思想解决问题是解本题的关键.23.【答案】2或或2455【解析】解:(1)分三种情况:①当点P在边AB上时,如图1,0≤x≤2,y=S△APD=AP•AD=x•2=x;②当点P在边BC上时,如图2,2<x≤4,y=S△APD=AP•AD=×2×2=2,③当点P在边CD上时,如图3,4<x≤6,∴S△APD=PD•AD=(6-x)×2=6-x;(2)①如图4,过A作AF⊥B'D于F,交DE于G,由折叠得:AB=AB',∠BAP=∠B'AP,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠B'AF=∠DAF,∴∠B'AP+∠B;AF=∠BAP+∠DAF=∠BAD=45°,即∠EAG=45°,∴∠AGE=∠FGD=45°,∴∠B'DE=45°;②当P在边AB上时,如图1,此时E与A重合,∴ED=DC=2,当P在边BC上时,如图5,当DE=EC时,过E作GF⊥CD于F,交AB于G,则FG⊥AB,DF=FC=1,∵AE⊥DE,∴∠AED=90°,易得△AGE∽△EFD,∴,∴,∴EF=1,∴DE=,此时P与C重合;当点P在边BC上,如图6,CE=CD时,过C作CQ⊥ED于Q,则DQ=EQ,设DQ=x,则DE=2x,∵AD=CD,∠ADE=∠DCQ,∠AED=∠DQC=90°,∴△AED≌△DQC,∴AE=DQ=x,由勾股定理得:AE2+DE2=AD2,∴x2+(2x)2=22,∴x=,ED=;综上所述,ED的长是2或或.(1)分三种情况:点P分别在边AB、BC、CD上,根据三角形面积公式可得:y 与x的关系式子;(2)①如图4,过A作AF⊥B'D于F,交DE于G,根据∠BAP=∠B'AP,∠B'AF=∠DAF,得∠EAG=45°,可得∠B'DE=45°;②分三种情况:E与A重合时,ED=2;P与C重合时,ED为对角线的一半,ED=;当CE=CD时,如图6,根据等腰三角形的性质和三角形全等可得AE的长,从而得DE的长.此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、三角形的面积及动点问题.注意掌握分类讨论思想的应用是解此题的关键.24.【答案】(-1,1)【解析】解:(1)y=(x+1)k+1中,当x=-1时,y=1,∴直线a经过定点A(-1,1),故答案为:(-1,1);(2)由,解得,即B(-1,1),将x=0代入y=(k-1)x+k,可得y=k,即M(0,k).将x=0代入y=(x+1)k+1,可得y=k+1,即Q(0,k+1),∵S△BQM=QM•|x B|=×1×1=,∴无论k取何值,△BQM的面积为定值;(3)如图,过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,∵三角形ADQ是等腰直角三角形,∴AD=DQ,又∵∠ADN+∠ADM=∠QDM+∠ADM=90°,∴∠ADN=∠QDM,∴△ADN≌△QDM(ASA),∴AN=QM=k+1-1=k,NM=AN+AM=k+1,∠QMD=∠AND=45°,∴点D的运动轨迹为直线DM,∵△MDN为等腰直角三角形,MN∥x轴,∴D(,),设,当k=3时,D1(-2,3),当k=1时,D2(-1,2),∴D1D2==.(1)根据y=(x+1)k+1中,当x=-1时,y=1,即可得到直线a经过定点A(-1,1);(2)通过解方程组即可得到两直线交点B(-1,1),将x=0代入y=(k-1)x+k,可得M(0,k).将x=0代入y=(x+1)k+1,可得Q(0,k+1),依据S△BQM= QM•|x B|=×1×1=,可得无论k取何值,△BQM的面积为定值;(3)过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,判定△ADN≌△QDM,可得AN=QM=k+1-1=k,NM=AN+AM=k+1,依据D(,),设,根据k=3时,D1(-2,3),k=1时,D2(-1,2),即可得到点D运动的路径长.本题属于一次函数综合题,主要考查了一次函数的图象与性质,等腰直角三角形的性质,全等三角形的判定与性质以及两点间距离公式的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉重点中学八年级数学下册期末试题(一)班级:____________ 姓名:____________ 分数:____________ 一.选择题(共10小题,每小题3分,满分30分)1m 的取值范围是( ) A. m ≥0 B. m ≥-2 C. m ≥2 D. m <2 2、下列计算正确的是( )A 、1=B 1=C 2=D =± 3、数据2,4,3,4,5,3,4的众数是( )A 、5B 、4C 、3D 、2 4、一次函数y =3x -2的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 5、某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以40元/件卖出5件,则这种商品的平均售价为每件( ) A 、42元 B 、44元 C 、45元 D 、46元 6、在下列长度的各组线段中,能构成直角三角形的是( )A 、3,5,9B 、4,6,8C 、1 2D 7、在Rt △ABC 中,∠C=90°,AC=6,AB=10,则BC 的值为( )A 、6B 、8C 、10D 、8、在菱形ABCD 中,两条对角线AC=6,BD=8,则此菱形的周长为( ) A 、5 B 、10 C 、20 D 、409、已知点(-4,1y ),(2,2y )都在直线122y x =-+上,则1y ,2y 大小关系是( )A 、1y >2yB 、1y =2yC 、1y <2yD 、不能比较 10、对角线相等且互相垂直平分的四边形是( )A 、平行四边形B 、正方形C 、菱形D 、矩 二.填空题(本大题6小题,每小题4分,共24分)11= ;12、在□ABCD 中,如果∠A=55°,那么∠C 的度数是 ;13、将直线y =2x 向上平移1个单位后所得的图象对应的函数解析式为 ; 14、根据图1中的数据及规律,可以求出8AB = ;15、如图,直线y=kx+b (k >0)与x 轴的交点为(-2,0),则关于x 的不等式kx+b <0的解集是 。

16. 如图,△ABC 为等边三角形,DC ∥AB ,AD ⊥CD 于D .若△ABC 的周长为,则CD =_____cm .三.解答题(一)(本大题3小题,每小题6分,共18分) 17(2)小明说,他所在年龄的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?说明理由。

19、若正比例函数y=-x 的图象与一次函数y=x+m 的图象交于点A ,且点A 的横坐标为-1。

(1)求该一次函数的解析式;(2)直接写出方程组y xy x m =-⎧⎨=+⎩的解。

四.解答题(二)(本大题3小题,每小题7分,共21分)20、如图,△ABC 中,∠ACB=90°,∠A=45°,AC=6,求AB 边上的高CD 。

B DC A21、如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,且DF=BE 。

求证:四边形AECF 是平行四边形。

22、已知1a =,1b =,分别求下列各式的值。

(1)22a b + (2)b aa b+23、甲、乙两支队员的身高(单位:厘米)如下:(1)分别计算两组数据的平均数;(2)若乙队的方差2 1.8S =乙,请计算甲队的方差,并指出哪支仪仗队的身高更为整齐?五.解答题(三)(本大题3小题,每小题9分,共27分)24、如图,已知直线l :334y x =+,它与x 轴、y (1)求点A 、点B 的坐标;(2)若直线y=mx 经过线段AB 的中点P ,求m 的值。

24、如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2。

(1)求证:四边形ABCD 是矩形;(2)若∠AOB=60°,AB=8,求BC 的长。

B25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H。

(1)求证:△EAB≌△GAD;(2)若AG=3,求EB的长。

八年级数学下册期末试题(一)答案1-10、CABBB CBCAD11、12、55°13、y=2x+1 14、215、x<-2 16、117、解:(1)众数是:14岁;中位数是:15岁.(2)解法一:∵全体参赛选手的人数为:5+19+12+14=50名又∵50×28%=14(名)∴小明是16岁年龄组的选手.解法二:∵全体参赛选手的人数为:5+19+12+14=50名又∵16岁年龄组的选手有14名,而14÷50=28%∴小明是16岁年龄组的选手.18、解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为.19、解:∵∠ACB=90°,∠A=45°,CD⊥AB,∴sinA=,又∵AC=6,∴CD=.20、证明:在□ABCD中,AD=BC且AD∥BC∵BE=FD,∴AF=CE∴四边形AECF是平行四边形21、(1)、8 (2)、422、解:(1)甲队的平均数是:(178×4+177×3+179×3)÷10=178(厘米),乙队的平均数是:(178×4+177+176×2+179+180×2)÷10=177.9(厘米);(3)甲的方差是:S甲2=[4×(178﹣178)2+3×(177﹣178)2+3×(179﹣178)2]=1.2,∵S甲2=1.2,S2乙=1.8,∴S甲2<S2乙,∴甲支仪仗队的身高更为整齐.23、解:(1)令x=0,则y=3,令y=0,则x=﹣4,所以点A的坐标为(﹣4,0);点B的坐标为(0,3);(2)点P的坐标为(﹣2,),代入y=mx得=﹣2m,解得m=﹣.24、(1)证明:如图,∵四边形ABCD是平行四边形,∴OC=AC,OB=BD.又∵∠1=∠2,∴OB=OC,∴BD=AC,∴▱ABCD是矩形;(2)∵由(1)知,▱ABCD是矩形,∴∠ABC=90°,又∵∠AOB=60°,∴∠1=30°,∴∠2=30°,∴BC=AB•cot30°=8.即BC的长度是8.25、(1)证明:∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS);(2)∵△EAB≌△GAD,∴EB=GD,∵四边形ABCD是正方形,AB=3,∴BD⊥AC,AC=BD=AB=6,∴∠DOG=90°,OA=OD=BD=3,∵AG=3,∴OG=OA+AG=6,∴GD==3,∴EB=3.武汉重点中学八年级数学下册期末试题(二)班级:____________姓名:____________分数:____________一.选择题(共10小题,每小题3分,满分30分)1.数据1、2、5、3、5、3、3的中位数是()A.1 B.2 C.3 D.52.下列式子中,是最简二次根式的是()A D3)A...24.已知三组数据①2,3,4;② 3,4,5分别以每组数据中三个数为三角形的三边长,构成直角三角形的有() A.② B.①② C. ①③ D. ②③5.3个旅游团游客年龄的方差分别是:2S甲=1.4,2S乙=18.8,2S丙=2.5,导游小方喜带游客年龄相近的团队,则他应该选择() A.甲团 B.乙团 C.丙团 D.哪一个都可以6.下列命题的逆命题不正确的是()A.对顶角相等 B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.平行四边形的对角线互相平分7.下面四条直线中,直线上每个点的坐标都是方程x-2y = 2的解的是()A. B. C. D.8.对于函数y =-3x+1,下列结论正确的是()A.它的图像必经过点(-1,3) B.它的图象经过第一、二、三象限C.当x>13时,y<0 D.y的值随x值的增大而增大9.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD 周长是() A.24 B.16 C..二.填空题(本大题6小题,每小题4分,共24分)11x的取值范围是_______________.12.已知一组数据3,5,9,10,x,12的众数是9,则这组数据的平均数是___________.13.直线y = 2x-1沿y轴向上平移3个单位,则平移后直线与x轴的交点坐为________.14,则正方形边长为_____ ________.15.如图,以△ABC的顶点A为圆心,以BC长为半径画弧;再以顶点C为圆心,以AB长为半径画弧,两弧交于点D;连接AD、CD. 若∠B=65°,则∠ADC的大小为_______度.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=5cm,BC=12cm,则△AEF的周长为_______________.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6618.(6第9题图第10题图第15题图第16题图(1)写出自变量x 的取值范围:________, 函数值y 的取值范围: _____ (2)自变量x =1.5时,求函数值.四.解答题(二)(本大题3小题,每小题7分,共21分) 20.(7分)三角形三条边长分别为1、2.21.(7分)如图,点E 、F 、G 、H 分别为矩形ABCD 四条边的中点,证明:四边形EFGH 是菱形.22.(7分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间,近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米,在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1400米,请你求出该山山顶处的空气含氧量约为多少?五.解答题(三)(本大题3小题,每小题9分,共27分) 23.(9分)下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少? (2)计算这些车辆的平均数度; (3)车速的中位数是多少?ABCD EGFH24.(9分)在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F .(1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDEBC 的长.25.(9分)如图,一次函数22y x =-+的图象分别与x 轴、y 轴交于点A 、B ,以FD八年级数学下册期末试题(二)答案一、选择题: C B B D A A C C B D二、填空题11.x≥2.12.8 13.(﹣1,0).14..15.65.16..三、解答题17.解:(+)﹣(+6)÷= 2+3﹣3﹣= .18.解:(1)由图象可得:自变量x的取值范围:0≤x≤12;函数值y的取值范围:0≤y≤15.故答案为:0≤x≤12;0≤y≤15.(2)设直线AO的解析式为:y=kx,则15=3k,解得:k=5,故直线AO的解析式为:y=5x,当x=1.5时,y=7.5.19.解:根据题意得:(81+79+m+80+82)÷5=80,解得:m=78,则n= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]/5 = 2.四、解答题20.解:如图,△ABC中,AC=1,BC=,AB=2,∵12+()2=22,∴△ABC为直角三角形,∠ACB=90°,∴斜边长AB为2,∵直角三角形中斜边上的中线等于斜边的一半,∴CF=AB=1.在Rt△ACD中,∵∠ACD=90°,∴AD===.Rt△BCE中,∵∠BCE=90°,∴BE===.21.证明:如图,连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=1/2AC,EF∥AC,GH=1/2AC,GH∥AC 同理,FG=BD,FG∥BD,EH=BD,EH∥BD,∴EF=FG=GH=EH,∴四边形EFGH是菱形.22.解:(1)设y与x的函数表达式为y=kx+b(k≠0),∵x=0时,y=299,x=2000时,y=235,∴,解得,∴y=﹣0.032x+299;(2)当x=1400时, y=﹣0.032x+299=﹣0.032×1400+299=254.2克/立方米.答:该山山顶处的空气含氧量约为254.2克/立方米.五、解答题 23.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.24. (1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∵在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,∴∠ABE=∠EBD=12∠ABD ,∠CDF=12∠CDB , ∴∠ABE=∠CDF ,在△ABE 和△CDF 中,∴△ABE ≌△CDF (ASA ), ∴AE=CF ,∵四边形ABCD 是矩形, ∴AD=BC ,AD ∥BC , ∴DE=BF ,DE ∥BF ,∴四边形BFDE 为平行四边形;解法二:证明:∵四边形ABCD 是矩形, ∴∠A=∠C=90°,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB , ∴∠EBD=∠FDB , ∴EB ∥DF , ∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)解:∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE , ∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°, ∵∠A=90°,AB=2, ∴AE==,第24题图D∴BC=AD=AE+ED=AE+BE=+=2.25.(9分)如图,一次函数223y x=-+的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)求点C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.解:(1)在一次函数223y x=-+中,令x=0得:y=2;令y=0,解得x=3,则B的坐标是(0,2),A的坐标是(3,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=2,OA=CD=3,OD=OA+AD=5.则C的坐标是(5,3).(2)B关于x轴的对称点的坐标是B′(0,﹣2),设直线B′C的解析式是y=kx+b,根据题意得:,解得:,∴直线B′C的解析式是y=x﹣2.令y=0,解得:x=2,则P的坐标是:(2,0)武汉重点中学八年级数学下册期末试题(三)考试时间:100分 总分:120分班级:____________ 姓名:____________ 分数:____________ 一.选择题(共10小题,每小题3分,满分30分) 1.已知□ABCD 中,∠A+∠C=240°,则∠B 的度数是( )A.100°B.60°C.80°D.160°A. 20°B. 40°C. 60°D. 70°5. 下列平面直角坐标系中的曲线,不能表示y 是x 的函数的是( )A B CD6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7. 一次函数4)2(2-+-=k x k y 的图象经过原点,则k 的值为( )A .2B .-2 C.2或-2 D.3 8.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么C .S 1<S2第8题 第9题9.如图,△ABC 为等腰三角形,如果把它沿底边BC 翻折后,得到△DBC ,那么四边形ABDC 为( ) A .菱形 B .正方形 C .矩形 D . 一ABCD般平行四边形10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()二.填空题(本大题6小题,每小题4分,共24分)11.若+(y﹣2)2=0,那么(x+y)2015=________.12.若直角三角形的两边长为6和8,则第三边长为_______.13.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,6则这名学生射击环数的中位数是_______.14.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_______.15.如图□ABCD对角线相交于点O,E是DC的中点,若AC=8,△OCE的周长为10,那么□ABCD的周长是_______.第14题第15题第16题16.如图,矩形ABCD中,AB=2,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=_______.三.解答题(一)(本大题3小题,每小题6分,共18分)17、(1)﹣2+3﹣(2﹣2)(2)18、已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.19、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四.解答题(二)(本大题3小题,每小题7分,共21分)20、已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.21、如图,E、F分别为△ABC的边BC、BA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.22、某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,那么你认为该公司应该录取谁?五.解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE AB⊥.(1)求ABC∠的度数;(2)如果AC=求DE的长.24.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?25.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?A BCDEO)八年级数学下册期末试题(三)答案一、选择题: C D B D D B B A A B二、填空题11.﹣1 12.10或213.714.x<215.24 16.2三、解答题17.(1)解:﹣2+3﹣(2﹣2)=﹣2+3﹣2+2=﹣2+2+3﹣2=.(2) 解:原式=﹣+2=4﹣+2=4+.18. 解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.19.证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.四、解答题20.解:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=1/2,即与x轴、y轴分别相交于A、B两点的坐标是A(1/2,0),B(0,1),所以△ABO的面积是S△ABO=1/2×1×1/2=1/4.21.证明:(1)∵E、F分别为△ABC的边BC、BA的中点,∴EF∥AC,EF=1/2AC,∵DF=EF,∴EF=1/2DE,∴AC=DE,∴四边形ABED是平行四边形;(2)∵DF=EF,AF=BF,∴四边形AEBD是平行四边形,∵AB=AC,AB=DE,∴AC=DE,∴四边形AEBD是矩形.或∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,BE=EC,∴∠AEC=90°,∴四边形AECD是矩形.22.解:(1)形体、口才、专业水平、创新能力按照5:5:4:6的比确定,则甲的平均成绩为=90.8.乙的平均成绩为=91.9.显然乙的成绩比甲的高,所以应该录取乙.(2)面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,则甲的平均成绩为86×5%+90×30%+96×35%+92×30%=92.5.乙的平均成绩为92×5%+88×30%+95×35%+93×30%=92.15.显然甲的成绩比乙的高,所以应该录取甲.五、解答题23. 解:(1)∵四边形ABCD是菱形,AB AD∴=,AD∥.BC∴180DAB ABC∠+∠=︒.∵E为AB的中点,DE AB⊥,∴AD DB=.∴AD DB AB==.∴△ABD为等边三角形. A BCDEO∴ 60DAB ∠=︒. ∴ 120ABC ∠=︒. (2)∵四边形ABCD 是菱形, ∴B D A C ⊥于O,1.2A O A C == ∵DE AB ⊥于E , ∴90AOB DEB ∠=∠=︒.∵,,DB AB ABO DBE =∠=∠∴AAS ABO DBE △≌△().∴=DE AO 24. 解:(1)设甲登山的路程y 与登山时间x 之间的函数解析式为y kx =.∵ 点(30600)C ,在函数y kx =的图象上, ∴ 60030k =. 解得20k =.∴ 20y x =(030)x ≤≤.(2)设乙在AB 段登山的路程y 与登山时间x之间的函数解析式为y ax b =+(820x ≤≤)依题意,得120860020.a b a b =+=+⎧⎨⎩,解得40200.a b ==-⎧⎨⎩, ∴ 40200y x =-.设点D 为OC 与AB 的交点,∴ 2040200.y x y x ==-⎧⎨⎩,解得 10200.x y ==⎧⎨⎩,∴ 乙出发后10分钟追上甲,此时乙所走的路程是200米.)25.解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000(0≤x≤30);(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.。

相关文档
最新文档