多边形及其内角和练习题

合集下载

八年级数学多边形及其内角和(含解析答案)

八年级数学多边形及其内角和(含解析答案)

多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。

2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。

解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。

答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。

答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。

解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。

例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。

《多边形及其内角和》典型例题

《多边形及其内角和》典型例题

《多边形及其内角和》典型例题典型例题1.一个n边形的内角和与外角和的比是4:1,则n = ( )A.8 B.9 C.10 D.12答案:C说明:因为多边形的外角和为360º,而这个n边形的内角和与它的外角和之比是4:1,所以这个n边形的内角和为360º×4 = 1440º,又因为n边形的内角和为(n−2)×180º,所以(n−2)×180º = 1440º,可解得n = 10,答案为C.2.某同学在计算一个多边形的内角和时,少算了一个内角的度数,结果得出内角和为600º,那么这个多边形的内角和应该_________ ,少算的那个角的度数为_________.答案:720º;120º说明:因为n边形的内角和为(n−2)×180º,而该多边形少算了一个角时内角和为600º,所以(n−2)×180º>600º,并且(n−2)×180º<600º+180º,可解得n = 6,这时这个多边形的内角和为720º,少算的那个角的度数为120º.3.一个多边形除一个内角外,其余内角和是760º,求此多边形的边数以及未求和的内角大小.解析:设此多边形的边数为n,未求和的一个内角为α,则0º<α<180º,由题设(n−2)•180º = 760º+α,所以n =+2 = 6+因为n为整数,所以40º+α是180º的整数倍,又0º<α<180º,所以α= 140º,n = 7为所求.4.有一个多边形的所有内角都相等,且它的一个外角与一个内角的比是2:3,求它的边数.解析1:设此多边形的边数为n,则360º:(n−2)•180º = 2:3,即=,所以2n−4 = 6,2n = 10,n = 5.即此多边形的边数为5.解析2:设此多边形的边数为n,因为多边形的一个内角和一个外角的和是180º,外角的度数:内角的度数= 2:3,所以一个内角的度数是180º×= 108º,于是(n−2)•180º = n•108º,解得n = 5.即此多边形的边数为5.。

多边形及其内角和试题

多边形及其内角和试题

多边形及其内角和试题1.从n 边形的一个顶点可以引 条对角线,它们把n 边形分成 个三角形;2.n 边形共有 条对角线;3.各个角都 ,各条边都 的多边形叫做正多边形,正三角形的每个内角为 度;4.正五边形的每个内角为 度,正六边形的每个内角为 度,正八边形的每个内角为 度;5.一个多边形的内角和为1800°,则它是 边形;6.一个电冰箱的每一个内角都等于140°,则它的每一个外角等于 °,它是 边形;7.一个多边形的每一个外角的度数等于其相邻内角度数的1/3,则这个多边形是 边形;8.在ABCD 中,若∠A ∶∠B ∶∠C ∶∠D = 3∶1∶2∶3,则∠A= ,∠B= ,∠C= ,∠D= ;9.如果一个角的两边与另一个角的两边互相垂直,则这两个角的关系是: ; 10.一个凸多边形的内角从小到大排列起来,恰好依次增加相同的度数,其中最小角是100°,最大角为140°,则这个多边形的边数是 ; 11.下列可能是n 边形内角和的是 ( ) A 、300° B 、550° C 、720° D 、960°12.下列说法:⑴四边形中四个内角可以都是锐角;⑵ 四边形中四个内角可以都是钝角;⑶ 四边形中四个内角可以都是直角;⑷ 四边形中四个内角最多可以有两个钝角;⑸四边形中最多可以有两个锐角;其中正确的是( ) A 、1个 B 、2个 C 、3个 D 、4个 13.一个多边形的外角不可能都等于( )A 、30°B 、40°C 、50°D 、60° 14.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为( )A 、1620°B 、1800°C 、1980°D 、2160° 15.多边形每一个内角都等于150°,则此多边形一个顶点发出的对角线有 ( ) A 、7条 B 、8条 C 、9条 D 、10条16.一个多边形的每一个外角都等于且小于45°,那么这个多边形的边数最少是 ( ) A 、7条 B 、8条 C 、9条 D 、10条17.一个多边形的内角和是外角和的3倍,则这个多边形的对角线有 ( )A 、20条B 、24条C 、27条D 、30条 18.一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°,则原来多边形的边数不可能是( ) A 、15条 B 、16条 C 、17条 D 、18条 19.一个多边形的每一个内角都比相邻的外角的3倍还多20°,求这个多边形的内角和。

(完整版)初中数学专项训练:多边形及其内角和

(完整版)初中数学专项训练:多边形及其内角和

初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。

11.3 多边形及多边形内角和 (练习)(原卷版)

11.3 多边形及多边形内角和 (练习)(原卷版)

11.3 多边形及多边形内角和精选练习一、单选题(共10小题)1.(2020·湖州市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为()A.360︒B.540︒C.720︒D.900︒2.(2018·虹桥区期中)已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.(2019·枣庄市期末)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米4.(2019·唐山市期中)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形5.(2020·阳泉市期末)已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.66.(2019·哈尔滨市期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.187.(2019·长春市期末)马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7B.8C.7或8D.无法确定8.(2020·曲靖市期末)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或99.(2018·焦作市期末)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.7010.(2019·武清区期中)如果n边形的内角和是它外角和的4倍,则n等于()A.7 B.8 C.10 D.9二、填空题(共5小题)11.(2020·临沧市期末)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.12.(2018·平凉市期末)一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.13.(2019·朝阳区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.14.(2019鄂州市期中)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.(2019·泰州市期末)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.三、解答题(共2小题)16.(2018·遵义市期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.∠+∠+∠+∠+∠+∠的度数.17.(2019·黄冈市期中)如图所示,求A B C D E F。

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。

BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。

按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。

12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春黄浦区期中)如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【名师点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.2.(2017春东源县期中)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.3.(2018春正定县期末)如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则为A.B.C.D.【答案】D【解析】试题解析:正方形的内角为,正五边形的内角为,正六边形的内角为,,故选D.4.(2018春二道区期末)如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选:D.【名师点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.5.(2018春呼兰区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】分析: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数==5.故选:A.6.(2018春官渡区期末)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120°B.110°C.115°D.100°【答案】A【解析】详解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.7.(2017春南山区期末)过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【详解】解:由规律可知,如此操作后得到的三角形数量比该多边形的边数少2,则该多边形的边数为5+2=7,为七边形,故选择C.【名师点睛】本题考查了几何图形中的找规律.8.(2018春金安区期末)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°【答案】C【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选:C【名师点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9.(2018春雨花台区期末)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C【详解】180°-144°=36°,360°÷36°=10,则这个多边形的边数是10.【名师点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.10.(2018春武清区期末)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条【答案】C【详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【名师点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.11.(2018春白云区期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选:C.【名师点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.12.(2018春泰兴市期中)若一个边形的每一个外角都是36°,则这个边形对角线的条数是()A.30 B.32 C.35 D.38【答案】C【解析】分析:多边形的外角和是固定的360°,依此可以求出多边形的边数,进而求得对角线的条数.详解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.∴对角线的条数是×10×(10-3)=35(条).故选C.【名师点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,正确理解n边形的对角线条数是n(n-3)是关键.二、填空题(共5小题,每小题4分,共计20分)13.(2018春新华区期末)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.【答案】150, 60【解析】分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.详解:由题意可知小亮的路径是一个正多边形,∵每个外角等于30°,∴每个内角等于150°.∵正多边形的外角和为360°,∴正多边形的边数为360°÷30°=12(边).∴小亮走的周长为5×12=60.14.(2019春南明区期末)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.÷=,【详解】连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【名师点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(2018春三元区期末)小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,结果得到的总和是2018°,则少算了这个内角的度数为________.【答案】142°【解析】分析:n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2018°,则内角和是(n−2)•180°与2018°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2018°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.详解:设多边形的边数是n,依题意有(n−2)•180°≥2018°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2018°=142°.故答案为:142°16.(2018春莲都区期末)定义:有三个内角相等的四边形叫三等角四边形三等角四边形ABCD中,,则的取值范围______.【答案】【详解】解:四边形的内角和是,,,又,.故答案是:.【名师点睛】本题考查了多边形的内角和,注意到∠D的范围是解题的关键.17.(2018春长春市期中)如图,一束平行太阳光线照射到正五边形上,则∠1= ______.【答案】30°【解析】∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°.三、解答题(共4小题,每小题8分,共计32分)18.(2018春武义县期中)如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.【答案】∠F=134°.【详解】如图,连接AC,∵CD∥AF,∴∠DCA+∠CAF=180°,∵AB⊥BC,∴∠BCA+∠BAC=90°,∴∠BCD+∠BAF=∠BCA+∠DCA+∠BAC+∠CAF=270°,∴∠BAF=270°-∠BCD=270°-124°=146°,∵六边形的内角和=(6-2)×180°=720°.∴∠F=720°-2×146°-90°-124°-80°=134°.【名师点睛】本题是考查多边形的内角和、平行线的性质、直角三角形两锐角互余的性质的综合题,运用整体思想把∠BCD与∠BAF,∠CAF与∠DCA,∠BCA与∠BAC分别看成一个整体是解题的关键. 19.(2018春吴兴区期中)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180.()2将多边形只截去一个角,截后形成的多边形的内角和为2520,求原多边形的边数.【答案】(1)作图见解析;(2)15,16或17.【详解】()1如图所示:()2设新多边形的边数为n,n-⋅=,则()21802520n=,解得16①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.【名师点睛】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.20.(2018春桃城区期中)(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【答案】(1)150°、120°、90°.(2)12.【详解】(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【名师点睛】本题考查的知识点是多边形内角和,解题的关键是熟练的掌握多边形内角和.21.(2019春盘龙区期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【答案】x=85°解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【名师点睛】本题主要考查了平行线的性质和多边形的内角和知识点,属于基础题.。

初二多边形及其内角和的练习题

初二多边形及其内角和的练习题

初二多边形及其内角和的练习题多边形是初中数学中的重要概念,它是指由三条或者更多条线段组成的图形。

而多边形的内角和是指该多边形内所有角的度数之和。

在初二数学学习中,学生需要掌握多边形及其内角和的相关概念和计算方法。

下面就是一些关于初二多边形及其内角和的练习题,供同学们参考和练习。

练习题一:1.一个四边形的两个内角分别为90°和75°,其余两个内角的度数之和是多少?2.一个五边形的两个内角分别为120°和130°,其余三个内角的度数之和是多少?3.一个七边形的一个内角为135°,其余六个内角的度数之和是多少?练习题二:1.一个六边形的每个内角的度数分别是110°、120°、135°、100°、90°,求其内角和。

2.一个八边形的每个内角的度数都相等,求每个内角度数以及内角和。

3.一个五边形的内角和与一个四边形的内角和之比是2:3,求该五边形的最大内角的度数。

练习题三:1.一个六边形的内角和是新课标中一次函数中函数关系图形翻转180°的内角和,求这个内角和。

2.一个n边形的内角和是(n-2)×180°,n是一个整数且大于3,当n=15时,这个多边形的内角和是多少?3.一个六边形的两个顶角的度数之差为30°,这两个顶角的度数分别是多少?练习题四:1.一个五边形的一个内角与一个六边形的一个内角是对顶角,这两个内角的度数之比是2:3,求这个五边形内所有角的度数之和。

2.一个五边形内角和与一个六边形内角和之比是1:4,这个五边形的最小内角为60°,求这个五边形内所有角的度数之和。

3.一个六边形的内角和是一个七边形的一半,这个六边形的最大内角为120°,求这个六边形的所有内角的度数之和。

以上是关于初二多边形及其内角和的一些练习题。

通过做题可以帮助同学们巩固对多边形及其内角和的理解,并提高解决相关问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
E
C
D
27.在正五边形ABCDE中, (1)求∠ACD的度数. (2)判断AC与DE的关系.并证明.
A
B
E
C
D
28.一个多边形木板,锯去一个角(不过顶点)后,形成的多边形 的内角和为2520°,那么原来的多边形木板是几边形.
29.一个各角都相等的多边形每个内角都是与它相邻的外角的n倍, 则此多边形是几边形?
多边形及其内角和 练习题
1.一个多边形的内角和是1080°,则这个多边形的边数是_______.
2.一个多边形的内角和与外角和的比是8:1,则这个多边形共有___条对角线.
3.(n+2)边形(n≥1)内角和是_________.
4.若一个多边形的内角和与外角和相等,则它是___边形.
5.过多边形一个顶点的对角线把多边形分成8个三角形,则这个多边形是__边形.
A 15
B 16
C 13或15
D 15或16或17
10.四边形的对角线有__条,n边形的对角线有___条.
11.多边形的边数由3增加到8,内角和_____,外角和____.
12.如果一个多边形的每个内角都为144°,那么它的内角和是_____.
13.在一个多边形中它的外角最多有____个钝角.
14.过m边形的一个顶点有9条对角线,n边形没有对角线,k边形有k条对角线.则m+n+k=___.
1.若一个多边形的每一个外角都是30°,则这个正多边形的内角 和等于____度.
2.如图,将一个正三角形剪去
一个角后, ∠1+∠2=____.
12
3.正多边形的一个外角等于20°,则这个多边形的边数是_____.
4.如果正多边形的一个内角等于一个外角的2倍,那么边数是 ___.
15.是否存在一个多边形,它的每个外角都比与它相邻A点出发,向前走20米,向左转36°,继续走20米,再左 转36°,一直这样走下去他能回到A点吗?如果能,他回到A点共 走了多少米?
A
D 36°
C 36° B
26.如图,四边形ABCD中, ∠A=∠C,∠B=∠D,AB与CD
有什么关系?为什么?BC与AD呢?
D
C
A
B
27.在正五边形ABCDE中,求∠BAC的度数. A
22.一个多边形的每个外角都相等,且比它的内角小140°,求这个多边形的边数.
23.是否存在一个多边形,它每个内角都等于相邻外角的 什么?
1 4
?为
24.已知一个多边形的边数与第二个多边形边数的比是2:1,其内
角和为第二个多边形内角和的 8 倍,求这两个多边形的边数. 3
25.小华在进行多边形内角和计算时,求得内角和为1680°,当发 现错误后重新检查,发现少加了一个内角,问这个内角是多少度? 他求的是几边形的内角和?
16.已知多边形的内角和与外角和之比为9:2,求这个多边形的边数和对角线的条 数. 17.如果一个多边形的内角和与一个90°的外角的度数总和是1350°,求边数. 17.已知多边形的内角和与某个外角的度数总和为1350°,求此多边形的边数.
18一个五边形的一个内角是60°,其余四个内角的比是2:3:3:4,求其余四个角的 度数. 19.已知一个多边形的每个内角都相等,且有一个内角等于它相邻的外角的9倍. 求这个多边形的边数. 20.已知一个多边形的每个内角都等于108°,求这个多边形的边数. 21.已知一个多边形的内角和比它的外角和多180°,求这个多边形的边数.
6.四边形ABCD中, ∠A:∠B:∠C:∠D=1:2:4:5,则∠A与∠D的度数分别为______.
7.下列角度不能成为多边形内角和的是( )
A 540° B 280° C 1800° D 900°
8.各内角都相等的多边形,它的一个内角与一个外角的比为3:2,它是__边形.
9.一个多边形截去一个内角后,形成新的多边形的内角和是2520°,则原多边形的边数为 ()
相关文档
最新文档