2017届高三期中联考数学(理)试题(含答案)word版

合集下载

2017届高三上学期期中考试(理)数学试卷

2017届高三上学期期中考试(理)数学试卷

四川省成都市石室中学2017届高三上学期期中考试数学(理)试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的. 1.若复数z 满足i 12i z =+,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为( ) A .(2,1)--B .(2,1)-C .(2,1)D .(2,1)-2.“2log (23)1x -<”是“48x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知随机变量,E M 服从正态分布(1,1)N ,若(3)0.976P ξ<=,则(13)P ξ-<<=( )A .0.952B .0.942C .0.954?D .0.9604、若数列{}n a 的前n 项和为2n S kn n =+,且1039,a =则100a =( ) A .200B .199C .299D .3995.若π(0,)2α∈,若π4cos()65α+=,则πsin(2)6α+的值为( )ABCD6、在平面直角坐标系xOy 中,已知ABC ∆的顶点(0,4)A 和(0,4)C -,顶点B 在椭圆221925x y+=上,则sin()sin sin A C A C+=+( )A .35B .45C .54D .537.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则43y z x -=-的取值范围是( )A .(,4][3,)-∞-+∞UB .(,2][1,)-∞--+∞UC .[2,1]--D .[4,3]-8.从0,1,2,3,4,5,6这七个数字中选两个奇数和两个偶数,组成没有重复数字的四位数的个数为( ) A .432B .378C .180D .3629.已知函数()sin()(0,0π)f x x ωϕωϕ=+><<的最小正周期是π,将函数()f x 图象向左平移π3个单位长度后所得的函数过点π(,1)6-,则函数()sin()f x x ωϕ=+( )A .在区间ππ[,]63-上单调递减B .在区间ππ[,]63-上单调递增C .在区间ππ[,]36-上单调递减D .在区间ππ[,]36-上单调递增10.在ABC △中,D 是BC 中点,E 是AB 中点,CE 的交AD 于点,F 若EF u u u r,AB AC λμ=+u u u r u u u r 则λμ+=( ) A .16-B .16C .13-D .111.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 在棱1CC 上,且12CF FC =,P 是侧面四边形11BCC B 内一点(含边界),若1A P //平面AEF ,则直线1A P 与面11BCC B 所成角的正弦值的取值范围是( )A.B.C. D. 12.若存在两个正实数,x y ,使得等式2(2e )(ln ln )0x a y x y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围为( )A .11[,]2e-B .2(0,]eC .2(,0)[,)e-∞+∞U D .11(,)[,)2e -∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知()f x 是定义在R 上的奇函数,且当0x <时,()2x f x =,则4(log 9)f 的值为__________. 14.已知61()x ax+展开式的常数项是160,则由曲线2y x =和a y x =围成的封闭图形的面积为________________.15.若点O和点(F 分别是双曲线2221(0)x y a a-=>的对称中心和左焦点,点P 为双曲线右支上任意一点,则221PFOP +的取值范围为________________.16.定义在(0,)+∞上的函数()f x 满足:(1)当1,12x ⎡⎫∈⎪⎢⎣⎭时,13()|2|22f x x =--;(2)(2)2()f x f x =.设关于x 的函数()()F x f x a =-的零点从小到大一次为1x ,2x ,…,n x ,….若1(,1)2a ∈,则F1A C122n x x x +++=…________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知向量22,cos ),(1,2cos ),m x x n x =+=u r r 设函数()f x m n =u r rg .(Ⅰ)求函数()f x 的最小正周期及在ππ(,]62-上的值域;(Ⅱ)在ABC △中,,,a b c 分别是角,,A B C 的对边,若()4,4f A b ==,ABC ∆a 的值. 18.(本小题满分12分)如图,四边形ABCD是矩形,1,AB AD =E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD . (Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求二面角E AG B --所成角的余弦值.19.(本小题满分12分)近年来我国电子商务行业迎来发展的新机遇.2016年双十一期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.7,对服务的好评率为0.8,其中对商品和服务都做出好评的交易为120次.(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.005的前提下,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X :①求对商品和服务全好评的次数X 的分布列; ②求X 的数学期望和方差. 附临界值表:2K 的观测值:2()()()()()n ad bc k a b c d a c b d -=++++(其中n a b c d =+++)关于商品和服务评价的2×2列联表:GFEDCBA20.(本小题满分12分)已知椭圆Γ:221x y a b+=(0a b >>)的左顶点为A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于,M N 两点,直线AM 的斜率为12.(Ⅰ)求椭圆Γ的离心率;(Ⅱ)若AMN △的外接圆在点M 处的切线与椭圆交于另一点D ,2F MD △的面积为67,求椭圆Γ的标准方程.21.(本小题满分12分)已知函数2e )))(((1x f x x ax a =-∈-R (Ⅰ)当1a ≤时,求()f x 的单调区间;(Ⅱ)当(0,)x ∈+∞时,()y f x '=的图象恒在32(1)y ax x a x -=+-的图象上方,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 过点(1,0)且倾斜角为α,在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线M 的方程为2sin 4cos 0.ρθθ+=(1)写出曲线M 的直角坐标方程及直线l 的参数方程; (2)若直线l 与曲线M 只有一个公共点,求倾斜角α的值.。

河北省衡水中学2017届高三下学期期中考试数学(理)试题 Word版含答案

河北省衡水中学2017届高三下学期期中考试数学(理)试题 Word版含答案

2016—2017学年度高三下学期数学期中考试(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合{|2,},{|(1)(1)0}xA y y x RB x x x ==∈=-+<,则A B 等于A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞ 2、若复数z 满足112i z i-=+,则2z 等于 A .25B .35C .105D .153、椅子双曲线2222:1(0)x y C a b a b+=>>的一条渐近线过点(1,2)-,则C 的离心率为A .22B .2C .52D .5 4、已知向量(,)(,),(1,2)a x y x y R b =∈=,若221x y +=,则a b -的最小值为 A .3 B .51- C .31+ D .52+5、某几何体的三视图如图是,其中俯视图为扇形,则该几何体的体积为A .163π B .83π C .89π D .169π6、已知等比数列{}n a 中,12,n a S =是数列{}n a 前n 项的和,若9S 是3S 和6S 的等差中项, 则10a 的值是 A .12 B .12- C .14 D .14- 7、《孙子算经》是中国公元四世纪的数学著作,其中接受了求解依次同余式的方法,他是数论中一个重要的定理,又称《中国剩余定理》,如图所示的程序框图的算法就是源于《中国剩余定理》,执行该程序框图,若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m ≡,例如113(mod 4)≡,则输出的等于A .8B .16C .32D .648、有5人随机排在一起照相,其中男医生、女以上各1名,男教师、 女教师各1名,男运动员1名,则同职业的人互不相邻,且女的相邻 的概率为 A .215 B .15 C .815 D .7309、已知函数()sin()f x A wx ϕ=+(其中0,2A πϕ><)的部分图象如图所示,将函数的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为 A .()2sin(2)3g x x π=- B .()2sin(2)6g x x π=-+C .()2sin(2)3g x x π=--D .()2sin(2)6g x x π=-+10、已知抛物线2:4C y x =的焦点为F ,点在C 的准线l 上,且线段EF 的垂直平分线与抛物线C 及直线l 分别交于P 、Q 两点,若点Q 的纵坐标为3,2O 为原点,则以OP 为直径的圆的方程为 A .22(1)(2)8x y -+-= B .22(2)(1)8x y -+-=C .22(4)(22)96x y -+-=D .22(2)(2)8x y -+-=11、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,底面ABC ∆是边长为1的正三角形,棱SC 是球O 的直径且2SC =,则异面直线SA 与BC 所成角的余弦值为 A .34 B .33 C .36 D .1212、若关于x 的不等式1()x x a m a R -<+∈在(0,1]上恒成立,则实数m 的取值范围为 A .(222,222)-+ B .(1,)-+∞ C .(222,)-+∞ D .(1,222)-+第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、已知2sin()3sin 4παα+=,则2sin 1cos 2αα+= 14、如图,在平面直角坐标系xOy 中,将直线2y x =与直线2x =及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积223200432(2)|33V x dx x πππ===⎰, 据此类比:将曲线2(0)y x x =≥与直线1y =及y 轴围成的图形绕 轴旋转一周得到一个旋转体,该旋转体的体积V 等于15、直线20x y a -+=与330x y +-=交于第一象限,当点(,)P x y 在不等式组20330x y a x y -+≥⎧⎨+-≤⎩表示的区域上运动时,43m x y =+的最大值为8,此时3yn x =+的最大值是 16、已知数列{}n a 与{}n b 满足112()n n n n a b b a n N ++++=+∈,若19,3()n n a b n N +==∈且3nn a λ+36(3)3n λ+-+对一切n N +∈恒成立,则实数λ的取值范围是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分).已知,,a b c 是ABC ∆的三个内角,,A B C 的对边,22224sin 3a bc Abc +=+. (1)求角A ;(2)若13,a ABC =∆的面积是33,求ABC ∆的最大角的余弦值.18、(本小题满分12分)500名学生的语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下: (1)如果成绩大于135的为特别优秀,这500名学生中本次 考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频 率分布直方图中各段是均匀分布的)(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(附参考公式:若2(,)X N μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=)19、(本小题满分12分)如图所示,正方形11AA D D 与矩形ABCD 所在的平面互相垂直,22AB AD ==. (1)若点E ,H 分布为AB ,CD 的中点,求证:平面1//BD H 平面1A DE ; (2)在线段AB 上是否存在点G ,使二面角1D GC D --的大小为3π? 若存在,求出AC 的长;若不存在,请说明理由.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,椭圆的中心点O 到直线0x y b +-=的距离为522. (1)求椭圆C 的方程;(2)设过椭圆C 的右焦点F ,且倾斜角为045的直线l 和椭圆交于,A B 两点,对于椭圆C 上任一点,若OM OA OB λμ=+,求λμ的最大值.21、(本小题满分12分) 已知函数()21(1)ln ()2f x ax a x x a R =-++-∈. (1)当0a >时,求函数()f x 的单调递减区间;(2)当0a =时,设函数()()g x xf x =,若存在区间1[,][,)2m n ⊆+∞,使得函数()g x 在[,]m n 的值域为[(2),(2])2k m k n ++-,求实数k 的取值范围.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22、(本小题满分10分) 选修4-4 坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()1)4m πρθ=+=+,而曲线C的参数方程为x y ϕϕ⎧=⎪⎨=⎪⎩(其中ϕ为参数). (1)若直线l 与曲线C 恰好有一个公共点,求实数的值; (2)当34m =-时,求直线l 被曲线C 截得的弦长.23、(本小题满分10分))选修4-5 不等式选讲 设函数()2f x x a x =-+-. (1)若1a =,解不等式()2f x ≤;(2)若存在x R ∈,使得不等式()24t f x t+≤对任意0t >恒成立,求实数a 的取值范围.。

山东省烟台市2017届高三(上)期中数学试卷(理科)(解析版).doc

山东省烟台市2017届高三(上)期中数学试卷(理科)(解析版).doc

2016-2017学年山东省烟台市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.每小题给出的四个选项中只有一项是符合题目要求的,把正确选项的代号涂在答题卡上.1.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},则集合(∁U N)∩M=()A.{2} B.{1,3} C.{2,5} D.{4,5}【考点】交、并、补集的混合运算.【分析】求出N的补集,然后求解交集即可.【解答】解:全集U={1,2,3,4,5},N={2,3},则集合∁U N={1,4,5},M={3,4,5},集合(∁U N)∩M={4,5}.故选:D.2.已知向量与不平行,且||=||≠0,则下列结论中正确的是()A.向量与垂直B.向量与垂直C.向量与垂直D.向量与平行【考点】数量积判断两个平面向量的垂直关系;平行向量与共线向量.【分析】求出()•()=0,从而得到与垂直.【解答】解:∵向量与不平行,且||=||≠0,∴()•()==||2﹣||2=0,∴与垂直.故选:A.3.已知函数f(x)=1g(1﹣x)的值域为(﹣∞,0),则函数f(x)的定义域为()A.[0,+∞] B.(0,1)C.[﹣9,+∞)D.[﹣9,1)【考点】函数的定义域及其求法.【分析】由函数f(x)=1g(1﹣x)的值域为(﹣∞,0),则lg(1﹣x)<0,即有0<1﹣x <1,解得即可得到函数的定义域.【解答】解:由函数f(x)=1g(1﹣x)的值域为(﹣∞,0),则lg(1﹣x)<0,∴0<1﹣x<1,解得,0<x<1.则函数f(x)的定义域为:(0,1).故选:B.4.如果a>b,那么下列不等式中正确的是()A.B.a2>b2C.lg(|a|+1)>lg(|b|+1)D.2a>2b【考点】不等式的基本性质.【分析】通过取特殊值判断A、B、C,根据指数的性质判断D.【解答】解:若a>b,对于A:a=0,b=﹣1,时,无意义,错误;对于B,C:若a=1,b=﹣2,不成立,错误;对于D:2a>2b,正确;故选:D.5.曲线y=x3与直线y=x所围成图形的面积为()A.B.C.1 D.2【考点】定积分在求面积中的应用.【分析】先求出曲线y=x3与y=x的交点坐标,得到积分的上下限,然后利用定积分求出第一象限所围成的图形的面积,根据图象的对称性可求出第三象限的面积,从而求出所求.【解答】解:曲线y=x3与y=x的交点坐标为(0,0),(1,1),(﹣1,﹣1)曲线y=x3与直线y=x在第一象限所围成的图形的面积是==根据y=x3与y=x都是奇函数,关于原点对称,在第三象限的面积与第一象限的面积相等∴曲线y=x3与y=x所围成的图形的面积为故选B6.若x,y满足且z=2x+y的最大值为4,则k的值为()A.B.C.D.【考点】简单线性规划.【分析】根据已知的约束条件画出满足约束条件的可行域,再用目标函数的几何意义,求出求出直线2x+y=4与y=0相交于B(2,0),即可求解k值.【解答】解:先作出不等式组对应的平面区域,直线kx﹣y+3=0过定点(0,3),∵z=2x+y的最大值为4,∴作出直线2x+y=4,由图象知直线2x+y=4与y=0相交于B(2,0),同时B也在直线kx﹣y+3=0上,代入直线得2k+3=0,即k=,故选:A.7.设函数f(x)=xsinx+cosx的图象在点(t,f(t))处切线的斜率为k,则函数k=g(t)的图象大致为()A.B. C.D.【考点】函数的图象.【分析】由已知可得k=g(t)=f′(x)=xcosx,分析函数的奇偶性及x∈(0,)时,函数图象的位置,利用排除法,可得答案.【解答】解:∵函数f(x)=xsinx+cosx的图象在点(t,f(t))处切线的斜率为k,∴k=g(t)=f′(x)=sinx+xcosx﹣sinx=xcosx,函数为奇函数,图象关于原点对称,排除B,C,当x∈(0,)时,函数值为正,图象位于第一象限,排除D,故选:A.8.将函数y=sin(ωx+φ)(ω>0,|φ|<π的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y=sinx,则y=sin(ωx+φ)图象上离y轴距离最近的对称中心为()A.(,0)B.(π,0)C.(﹣,0)D.(﹣,0)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数y=sin(ωx+φ)(ω>0,|φ|<π的图象向左平移个单位,得到函数y=sin[ω(x+)+φ]的图象;再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(ωx+ω+φ)的图象;由解析式相同求出ω、φ的值,然后根据正弦函数的对称中心求出函数y=sin(ωx+φ)的对称中心,进而求出离y轴距离最近的对称中心.【解答】解:将函数y=sin(ωx+φ)(ω>0,|φ|<π的图象向左平移个单位,得到函数y=sin[ω(x+)+φ]的图象;再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(ωx+ω+φ)的图象;∴函数y=sin(ωx+ω+φ)的图象与函数y=sinx的图象相同∴,φ=0解得:ω=2,φ=∴y=sin(ωx+φ)=sin(2x)由2x=kπ得2x=k(k∈Z)当k=﹣1时,x=﹣∴离y轴距离最近的对称中心为(﹣,0).故选C.9.已知△ABC外接圆的半径为2,圆心为O,且,则=()A.12 B.13 C.14 D.15【考点】平面向量数量积的运算.【分析】由条件便可得出AB⊥AC,O为斜边的中点,再根据,即可得出,进而得出的值,从而求出的值.【解答】解:根据条件,AB⊥AC,O为BC中点,如图所示:;∴△ABO为等边三角形,,,,;∴.故选A.10.在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a、b∈R,a*b=b*a;(2)对任意a、b∈R,a*0=a;(3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=x*的性质,有如下说法:①在(0,+∞)上函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).其中所有正确说法的个数为()A.0 B.1 C.2 D.3【考点】抽象函数及其应用.【分析】根据条件在③中令c=0得到a*b=ab+a+b从而得到f(x)的表达式,结合函数的奇偶性,单调性和最值的性质分别进行判断即可.【解答】解:①由新运算“*”的定义③令c=0,则(a*b)*0=0*(ab)+(a*0)+(0*b)=ab+a+b,即a*b=ab+a+b∴f(x)=x*=1+x+,当x>0时,f(x)=x*=1+x+≥1+2=1+2=3,当且仅当x=,即x=1时取等号,∴在(0,+∞)上函数f(x)的最小值为3;故①正确,②函数的定义域为(﹣∞,0)∪(0,+∞),∵f(1)=1+1+1=3,f(﹣1)=1﹣1﹣1=﹣1,∴f(﹣1)≠﹣f(1)且f(﹣1)≠f(1),则函数f(x)为非奇非偶函数,故②错误,③函数的f′(x)=1﹣,令f′(x)=0则x=±1,∵当x∈(﹣∞,﹣1)或(1,+∞)时,f′(x)>0∴函数f(x)的单调递增区间为(﹣∞,﹣1)、(1,+∞).故③正确;故正确的是①③,故选:C二、填空题,本大题共5个小题,每小题5分,共25分.11.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为a<﹣3或a >6.【考点】函数在某点取得极值的条件.【分析】先求出函数的导数,根据函数有极大值和极小值,可知导数为0的方程有两个不相等的实数根,通过△>0,即可求出a的范围.【解答】解:函数f(x)=x3+ax2+(a+6)x+1,所以函数f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,所以方程f′(x)=0有两个不相等的实数根,即3x2+2ax+(a+6)=0有两个不相等的实数根,∴△>0,∴(2a)2﹣4×3×(a+6)>0,解得:a<﹣3或a>6故答案为:a<﹣3或a>612.平面向量与的夹角为60°,||=1,=(3,0),|2+|=.【考点】平面向量数量积的运算.【分析】由条件可以得到,从而进行数量积的运算便可求出的值,从而便可得出的值.【解答】解:根据条件,,;∴;∴.故答案为:.13.设函数f(x)=若f(a)>a,则实数a的取值范围是(﹣∞,﹣1).【考点】其他不等式的解法.【分析】先根据分段函数的定义域选择好解析式,分a≥0时,和a<0时两种情况求解,最后取并集.【解答】解:当a≥0时,,解得a<﹣2,矛盾,无解当a<0时,,a<﹣1.综上:a<﹣1∴实数a的取值范围是(﹣∞,﹣1).故答案为:(﹣∞,﹣1)14.若cos(75°﹣a)=,则cos(30°+2a)=.【考点】两角和与差的余弦函数;三角函数的化简求值.【分析】由条件利用诱导公式,求出sin(15°﹣α)的值,再利用二倍角的余弦公式求得cos (30°﹣2α)的值.【解答】解:∵cos(75°﹣α)=sin(15°+α)=,则cos(30°+2α)=1﹣2sin2(15°+α)=1﹣2×=.故答案为:.15.若定义在R上的偶函数f(x)满足f(x﹣1)=f(x+1).且当x∈[﹣1,0]时,f(x)=﹣x2+1,如果函数g(x)=f(x)﹣a|x|恰有8个零点,则实数a的值为8﹣2.【考点】根的存在性及根的个数判断.【分析】由函数f(x)满足f(x+1)=﹣f(x),变形得到函数的周期,由周期性即可求得函数在某一段上的解析式,代入进行计算即可得出答案.【解答】解:由f(x+1)=f(x﹣1),则f(x)=f(x﹣2),故函数f(x)为周期为2的周期函数.∵函数g(x)=f(x)﹣a|x|恰有8个零点,∴f(x)﹣a|x|=0在(﹣∞,0)上有四个解,即f(x)的图象(图中黑色部分)与直线y=a|x|(图中红色直线)在(﹣∞,0)上有4个交点,如图所示:又当x∈[﹣1,0]时,f(x)=﹣x2+1,∴当直线y=﹣ax与y=﹣(x+4)2+1相切时,即可在(﹣∞,0)上有4个交点,∴x2+(8﹣a)x+15=0,∴△=(8﹣a)2﹣60=0.∵a>0,∴a=8﹣2.故答案为:8﹣2.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.已知函数f(x)=cos2x,g(x)=sinxcosx.(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;(2)若0≤x≤,求h(x)=f(x)+g(x)的值域.【考点】三角函数的最值.【分析】(1)利用二倍角公式化简函数的表达式,通过直线x=a是函数y=f(x)的图象的一条对称轴,求出a,然后求g(2a)的值;(2)化简h(x)=f(x)+g(x)为正弦函数类型,利用角的范围求出相位的范围,然后去函数值域.【解答】解:(1),其对称轴为,因为直线线x=a是函数y=f(x)的图象的一条对称轴,所以,又因为,所以即.(2)由(1)得=∵,∴,∴.所以h(x)的值域为.17.设△ABC的内角A、B、C的对应边分别为a、b、c,若向量=(a﹣b,1)与向量=(a﹣c,2)共线,且∠A=120°.(1)a:b:c;(2)若△ABC外接圆的半径为14,求△ABC的面积.【考点】正弦定理.【分析】(1)利用向量共线的性质可得2b=a+c,设a=b﹣d,c=b+d,由余弦定理解得d=﹣,进而可得a=,c=,从而可求a:b:c.(2)由正弦定理可求a,由(1)可求b,c的值,利用三角形面积公式即可计算得解.【解答】解:(1)∵向量与向量共线,可得:,∴2b=a+c,设a=b﹣d,c=b+d,由已知,cosA=﹣,即=﹣,d=﹣,从而a=,c=,∴a:b:c=7:5:3.(2)由正弦定理=2R,得a=2RsinA=2×14×=14,由(1)设a=7k,即k=2,所以b=5k=10,c=2k=6,所以S△ABC=bcsinA=×10×6×=45,所以△ABC的面积为45.18.如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米.(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;(2)当x,y为何值时?线段|PQ|最小,并求最小值.【考点】余弦定理;正弦定理.【分析】(1)由已知利用三角形面积公式,基本不等式可得,即可得解.(2)利用已知及余弦定理可得PQ2=x2+y2﹣2xycos120°=(x﹣100)2+30000,根据二次函数的图象和性质即可解得线段|PQ|最小值.【解答】(本题满分为14分)解:(1)因为:AP=x,AQ=y且x+y=200,…2分所以:.…4分当且仅当x=y=100时,等号成立.所以:当x=y=100米时,平方米.…6分(2)因为:PQ2=x2+y2﹣2xycos120°=x2+y2+xy…8分=x2+2+x=x2﹣200x+40000=(x﹣100)2+30000.…10分所以:当x=100米,线段米,此时,y=100米.…12分答:(1)当AP=AQ=100米时,游客体验活动区APQ的面积最大为平方米.(2)当AP=AQ=100米时,线段|PQ|最小为.…14分.19.已知函数f(x)=log()满足f(﹣2)=1,其中a为实常数.(1)求a的值,并判定函数f(x)的奇偶性;(2)若不等式f(x)>()x+t在x∈[2,3]上恒成立,求实数t的取值范围.【考点】函数恒成立问题.【分析】(1)根据f(﹣2)=1,构造方程,可得a的值,结合奇偶性的宝义,可判定函数f (x)的奇偶性;(2)若不等式f(x)>()x+t在x∈[2,3]上恒成立,则t<log()﹣()x 在x∈[2,3]上恒成立,构造函数求出最值,可得答案.【解答】解:(1)∵函数f(x)=log()满足f(﹣2)=1,∴log()=1,∴=,解得:a=﹣1,∴f(x)=log()的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称;又∵f(﹣x)=log()=log()=﹣log()=﹣f(x),故函数f(x)为奇函数;(2)若不等式f(x)>()x+t在x∈[2,3]上恒成立,则t<log()﹣()x在x∈[2,3]上恒成立,设g(x)=log()﹣()x,则g(x)在[2,3]上是增函数.∴g(x)>t对x∈[2,3]恒成立,∴t<g(2)=﹣.20.设函数f(x)=xe x﹣ae2x(a∈R)(I)当a≥时,求证:f(x)≤0.(II)若函数f(x)有两个极值点,求实数a的取值范围.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(Ⅰ)利用分析法,构造函数g(x)=x﹣ae x,利用导数和函数的最值的关系即可求出,(Ⅱ)函数f(x)有两个极值点,等价于y=f'(x)有两个变号零点,即方程有两个不相同的根,构造函数,利用导数求出函数的最值,问题得以解决.【解答】解:(I)证明:f(x)=xe x﹣ae2x=e x(x﹣ae x)∵e x>0,只需证:当即可﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣,g(x)=x﹣ae x,g'(x)=1﹣ae x=0∴,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣,﹣﹣﹣﹣﹣﹣,∴当从而当时,f(x)≤0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)f'(x)=(x+1)e x﹣2ae2x=e x(x+1﹣2ae x)函数f(x)有两个极值点,等价于y=f'(x)有两个变号零点即方程有两个不相同的根﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣设,,x∈(﹣∞,0),h'(x)>0,h(x)递增;x∈(0,+∞),h'(x)<0,h(x)递减﹣﹣﹣﹣﹣﹣﹣﹣,h(x)max=h(0)=1,h(﹣1)=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣,x>﹣1,h(x)>0,x→+∞,h(x)→0,x→﹣∞,h(x)→﹣∞当有两个交点方程有两个不相同的根,函数f(x)有两个极值点﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.已知函数f(x)=(2﹣a)lnx++2ax(a∈R).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a<0时,求f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1,x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f (x2)|成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1,x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f (x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.【解答】解:(Ⅰ)依题意知f(x)的定义域为(0,+∞),当a=0时,f(x)=2lnx+,f′(x)=﹣=,令f′(x)=0,解得x=,当0<x<时,f′(x)<0;当x≥时,f′(x)>0又∵f()=2﹣ln2∴f(x)的极小值为2﹣2ln2,无极大值.(Ⅱ)f′(x)=﹣+2a=当a<﹣2时,﹣<,令f′(x)<0 得0<x<﹣或x>,令f′(x)>0 得﹣<x<;当﹣2<a<0时,得﹣>,令f′(x)<0 得0<x<或x>﹣,令f′(x)>0 得<x<﹣;当a=﹣2时,f′(x)=﹣≤0,综上所述,当a<﹣2时f(x),的递减区间为(0,﹣)和(,+∞),递增区间为(﹣,);当a=﹣2时,f(x)在(0,+∞)单调递减;当﹣2<a<0时,f(x)的递减区间为(0,)和(﹣,+∞),递增区间为(,﹣).(Ⅲ)由(Ⅱ)可知,当a∈(﹣3,﹣2)时,f(x)在区间[1,3]上单调递减,当x=1时,f(x)取最大值;当x=3时,f(x)取最小值;|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3++6a]=﹣4a+(a﹣2)ln3,∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,∴(m+ln3)a﹣2ln3>﹣4a+(a﹣2)ln3整理得ma>﹣4a,∵a<0,∴m<﹣4恒成立,∵﹣3<a<﹣2,∴﹣<﹣4<﹣,∴m≤﹣2016年12月20日。

河北省唐山一中2017届高三上学期期中数学试卷(理科)Word版含解析

河北省唐山一中2017届高三上学期期中数学试卷(理科)Word版含解析

2016-2017 学年河北省唐山一中高三 (上)期中数学试卷 (理科)一、选择题(共12 小题,每题 5 分,满分 60 分)1.若全集 U=R24 , N= x | 0 M ∩),会合 M= { x| x > } { > },则 ( ?U N )等于( A . { x x <﹣ 2 B x | x <﹣ 2 } 或 x 3 } C . { x x 32 } D . { x 2 x3| } . { ≥| ≥ | ﹣ ≤ < }2.若复数 z 知足 zi=1 ﹣ i ,则 z 的共轭复数是( ) A 1 i B 1 ﹣ i C 1 i D 1 i.﹣ ﹣ . .﹣ + . +3 x ay 6=0 a 2 x 3y 2a=0 平行,则 a= ( ).若直线 + + 与直线( ﹣ ) + +A . a=﹣ 1B .a=3C . a=3 或 a=﹣ 1D .a=3 且 a=﹣14.已知 “命题 p :(x ﹣ m ) 2> 3(x ﹣ m ) ”是“命题 q : x 2+3x ﹣ 4< 0”成立的必需不充足条件,则实数 m 的取值范围为( )A . m > 1 或 m <﹣ 7B . m ≥1 或 m ≤﹣ 7C .﹣ 7<m <1D .﹣ 7≤ m ≤ 15.如图是函数 f ( x ) =x 2+ax+b 的部分图象,则函数 g ( x ) =lnx +f ′( x )的零点所在的区间 是( )A .()B .( 1, 2)C .( , 1)D .( 2,3)2 2)6.设点 A ( 1,0),B ( 2,1),假如直线 ax+by=1 与线段 AB 有一个公共点, 那么 a +b ( A .最小值为B .最小值为C .最大值为D .最大值为7.设 , 为单位向量,若向量 知足| ﹣( +)|=| ﹣ |,则|| 的最大值是()A . 1B .C .2D .28.已知函数 f ( x ) =| lnx | ﹣ 1, g ( x ) =﹣ x 2+2x+3,用 min{ m , n} 表示 m , n 中的最小值,设函数 h (x ) =min { f ( x ), g ( x ) } ,则函数 h ( x )的零点个数为( )A .1B .2C . 3D . 49.《九章算术》是我国古代的数学巨著,其卷第五“商功 ”有以下的问题: “今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何? ” “意思为: 今有底面为矩形的屋脊形 状的多面体 (如图) ”,下底面宽 AD=3 丈,长 AB=4 丈,上棱 EF=2 丈,EF ∥平面 ABCD .EF与平面 ABCD 的距离为 1 丈,问它的体积是( )A .4 立住持B .5 立住持C .6 立住持D .8 立住持10.已知函数f( x) =知足条件,对于 ? x1∈ R,存在独一的 x2∈ R,使得f ( x1)=f x2).当f(2a =f(3b)成即刻,则实数a b=()()+A.B.﹣C.+3D.﹣3+11.以下图是三棱锥 D ﹣ ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线 DO 和 AB 所成角的余弦值等于()A .B.C.D.12.已知函数 f ( x) =( a> 0,且 a≠ 1)在 R 上单一递减,且对于x的方程 |f(x=2x恰巧有两个不相等的实数解,则a的取值范围是()) | ﹣A0]B.[, ]C. [, ]∪{}D.[,)∪{}.(,二、填空题(共 4 小题,每题 5 分,满分20 分)13.若﹣ 1< x< 1,则 y=+x 的最大值为.14.数列 { a n} 的通项,其前 n 项和为 S n,则 S30=.15.等腰三角形 ABC 中, AB=4 , AC=BC=3 ,点 E,F 分别位于两腰上,E,F 将△ ABC 分成周长相等的三角形与四边形,面积分别为S1, S2,则的最大值为.16.德国有名数学家狄利克雷在数学领域成就明显,以其名命名的函数 f ( x)=称为狄利克雷函数,对于函数f(x)有以下四个命题:①f( f ( x)) =1;②函数 f ( x)是偶函数;③随意一个非零有理数T , f ( x+T ) =f ( x)对随意 x∈ R 恒成立;④存在三个点 A (x1, f( x1)),B ( x2, f(x2)), C( x3, f( x3)),使得△ ABC 为等边三角形.此中真命题的序号为.(写出全部正确命题的序号)三、解答 (共 6 小 , 分 70 分)17a n } 是公比大于 1 的等比数列, S n 数列 { a n } 的前 n 和,已知 S 3=7 ,且a 1,a 2, a 3. {1 成等差数列.(1)求数列 { a n } 的通 公式;(2)若 b n =log 4a 2n +1, n=1, 2, 3⋯,乞降:.18.如 ,已知平面上直 l 1∥ l 2, A 、 B 分 是 l 1、 l 2 上的 点, C 是 l 1,l 2 之 必定点,C 到 l 1 的距离 CM=1 ,C 到 l 2 的距离 CN=,△ ABC 内角 A 、 B 、C 所分a 、b 、c ,a > b ,且 bcosB=acosA (1)判断三角形△ABC 的形状;(2) ∠ ACM= θ, f (θ) =,求 f ( θ)的最大 .19.已知函数 f ( x ) =2;( 1)求函数 f ( x )的最小正周期及 增区 ;( 2)在△ ABC 中,三内角 A , B , C 的 分 a , b ,c ,已知函数 f ( x )的 象点,若=4,求 a 的最小 .20.如 ,在四棱 P ABCD 中,底面 ABCD 直角梯形,∠ ADC= ∠BCD=90 °,BC=2 ,, PD=4 ,∠ PDA=60 °,且平面 PAD ⊥平面 ABCD .(Ⅰ)求 : AD ⊥ PB ;(Ⅱ)在 段 PA 上能否存在一点M ,使二面角 M BC D 的大小 ,若存在, 求 的;若不存在, 明原因.21.已知 C : x 2+y 2=2,点 P ( 2, 0), M ( 0, 2), Q C 上一个 点.(1)求△ QPM 面 的最大 ,并求出最大 点Q 的坐 ;(2)在( 1)的结论下,过点 Q 作两条相异直线分别与圆 C 订交于 A,B 两点,若直线 QA 、QB 的倾斜角互补,问直线AB 与直线 PM 能否垂直?请说明原因.22.已知函数 f ( x) =lnx(Ⅰ)若函数F(x) =tf (x)与函数g( x) =x 2﹣ 1 在点 x=1 处有共同的切线l ,求 t 的值;(Ⅱ)证明:;(Ⅲ)若不等式mf( x)≥ a+x 对全部的都成立,务实数 a 的取值范围.2016-2017 学年河北省唐山一中高三(上)期中数学试卷(理科)参照答案与试题分析一、选择题(共 12 小题,每题5 分,满分 60 分)1.若全集 U=R ,会合 M={ x| x 2> 4} , N={ x|> 0} ,则 M ∩( ?U N )等于( )A . { x| x <﹣ 2}B . { x| x <﹣ 2} 或 x ≥ 3}C . { x| x ≥ 32}D . { x| ﹣ 2≤ x < 3}【考点】 交、并、补集的混淆运算.【剖析】 分别求出 M 与 N 中不等式的解集,依据全集 U=R 求出 N 的补集,找出 M 与 N 补集的交集即可.【解答】 解:由 M 中的不等式解得: x >2 或 x <﹣ 2,即 M= { x| x <﹣ 2 或 x > 2} ,由 N 中的不等式变形得: ( x ﹣ 3)( x+1)< 0,解得:﹣ 1< x < 3,即 N= { x| ﹣ 1< x < 3} ,∵全集 U=R ,∴ ?U N={ x| x ≤﹣ 1 或 x ≥3}则 M ∩( ?U N ) ={ x| x <﹣ 2 或 x ≥ 3} . 应选: B .2.若复数 z 知足 zi=1 ﹣ i ,则 z 的共轭复数是( )A .﹣ 1﹣ iB .1﹣ iC .﹣ 1+iD .1+i【考点】 复数代数形式的乘除运算.【剖析】 由复数 z 知足 zi=1 ﹣ i ,可得 z ,进而求出 即可.【解答】 解:∵复数 z 知足 zi=1 ﹣ i ,∴z===﹣1﹣ i ,故 =﹣ 1+i , 应选: C .3x ay 6=0 a 2 x 3y 2a=0平行,则 a=( ) .若直线 + + 与直线(﹣)++ A . a=﹣ 1 B .a=3 C . a=3 或 a=﹣ 1 D .a=3 且 a=﹣1 【考点】 直线的一般式方程与直线的平行关系.【剖析】 由直线平行可得 1×3﹣ a ( a ﹣ 2) =0,解方程清除重合即可.【解答】 解:∵直线 x+ay+6=0 与直线( a ﹣ 2) x+3y+2a=0 平行,∴ 1× 3﹣ a ( a ﹣ 2) =0,解得 a=3 或 a=﹣ 1,经考证当 a=3 时,两直线重合,应舍去应选: A .2 3 x ﹣ m ” “q : x2+ 3x 4 0”4.已知 “命题 p :(x ﹣ m )> ( )是命题﹣ < 成立的必需不充足条件,则实数 m 的取值范围为()A . m > 1 或 m <﹣ 7B . m ≥1 或 m ≤﹣ 7C .﹣ 7<m <1D .﹣ 7≤ m ≤ 1 【考点】 一元二次不等式的解法.【剖析】 分别求出两命题中不等式的解集,由 p 是 q 的必需不充足条件获得q 能推出 p , p推不出 q ,即 q 是 p 的真子集, 依据两解集列出对于m 的不等式, 求出不等式的解集即可求出 m 的范围.【解答】 解:由命题 p 中的不等式( x ﹣ m )2> 3( x ﹣m ),因式分解得:( x ﹣ m )( x ﹣ m ﹣ 3)> 0,解得: x > m+3 或 x < m ;由命题 q 中的不等式 x 2 3x 4 0,+ ﹣ <x 1 x 4 0因式分解得:(﹣)(+)< ,解得:﹣ 4< x < 1,因为命题 p 是命题 q 的必需不充足条件,所以 q?p ,即 m+3≤﹣ 4 或 m ≥ 1,解得: m ≤﹣ 7 或 m ≥ 1.所以 m 的取值范围为: m ≥1 或 m ≤﹣ 7应选 B5.如图是函数 f ( x ) =x 2+ax+b 的部分图象,则函数 g ( x ) =lnx +f ′( x )的零点所在的区间是( )A .( )B .( 1, 2)C .( , 1)D .( 2,3)【考点】 函数零点的判断定理.【剖析】 由二次函数图象的对称轴确立a 的范围,据 g ( x )的表达式计算g ()和 g ( 1)的值的符号,进而确立零点所在的区间.【解答】 解:由函数 f x ) =x 2ax b 的部分图象得 0 b 1 f1 =0 ,即有 a= 1 b ( + + < < , ( ) ﹣ ﹣ ,进而﹣ 2< a <﹣ 1,而 g ( x )=lnx +2x+a 在定义域内单一递加,g ( ) =ln +1+a < 0,由函数 f ( x )=x 2+ax+b 的部分图象,联合抛物线的对称轴获得:0<﹣< 1,解得﹣ 2< a <0,∴ g ( 1) =ln1 +2+a=2+a > 0,∴函数 g x )=lnx f ′ x1 ( + ( )的零点所在的区间是( , );应选 C .6.设点 A ( 1,0),B ( 2,1),假如直线 22)ax+by=1 与线段 AB 有一个公共点, 那么 a +b (A .最小值为B .最小值为C .最大值为D .最大值为【考点】 简单线性规划的应用;函数的最值及其几何意义.【剖析】 由题意得:点 A ( 1 0 B 2 1 ax by=1的双侧,那么把这两个点代 , ), ( , )在直线 +入 ax by 1 0 a b 的不等关系,画出此 + ﹣ ,它们的符号相反,乘积小于等于,即可得出对于 ,不等关系表示的平面地区,联合线性规划思想求出 a 2 b 2 的取值范围.+ 【解答】 解:∵直线 ax+by=1 与线段 AB 有一个公共点,∴点 A (1, 0),B ( 2, 1)在直线 ax+by=1 的双侧,a 1 2ab 1 )≤ 0 ∴( ﹣ )( + ﹣ ,即或;画出它们表示的平面地区,以下图.22a +b 表示原点到地区内的点的距离的平方,由图可知,当原点 O 到直线 2x y﹣ 1=0 的距离为原点到地区内的点的距离的最小值, + ∵d=,那么 a 2+b 2 的最小值为: d 2=.应选 A .7.设 , 为单位向量,若向量 知足 | ﹣( + ) | =| ﹣ | ,则 | | 的最大值是( )A .1B .C .2D .2【考点】 平面向量数目积的坐标表示、模、夹角.【剖析】由向量 知足|﹣( + )|=| ﹣ |,可得|﹣( + )|=| ﹣ |≥,即.当且仅当 ||=|﹣ |即时,.即可得出.【解答】解:∵向量知足 | ﹣( + )|=| ﹣ | ,∴| ﹣( +)|=|﹣ |≥,∴≤==2.当且仅当 ||=| ﹣ |即 时,=2.∴.应选: D .8.已知函数 f ( x ) =| lnx | ﹣ 1, g ( x ) =﹣ x 2+2x+3,用 min{ m , n} 表示 m , n 中的最小值,设函数 h (x ) =min { f ( x ), g ( x ) } ,则函数 h ( x )的零点个数为()A .1B .2C .3D .4【考点】 根的存在性及根的个数判断.【剖析】 依据 min{ m , n} 的定义,作出两个函数的图象,利用数形联合进行求解即可. 【解答】 解:作出函数 f ( x )和 g ( x )的图象如图,两个图象的下边部分图象,由 g ( x )=﹣ x 2+2x+3=0,得 x=﹣ 1,或 x=3 ,由 f (x ) =| lnx | ﹣1=0 ,得 x=e 或 x=,∵g ( e )> 0,∴当 x > 0 时,函数 h ( x )的零点个数为 3 个, 应选: C .9.《九章算术》是我国古代的数学巨著,其卷第五“商功 ”有以下的问题: “今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何? ” “意思为: 今有底面为矩形的屋脊形 状的多面体 (如图) ”,下底面宽 AD=3 丈,长 AB=4 丈,上棱 EF=2 丈,EF ∥平面 ABCD .EF 与平面 ABCD 的距离为 1 丈,问它的体积是()A.4 立住持B.5 立住持C.6 立住持D.8 立住持【考点】棱柱、棱锥、棱台的体积.【剖析】过 E 作 EG⊥平面 ABCD ,垂足为G,过 F 作 FH⊥平面 ABCD ,垂足为H,过 G 作 PQ∥AD ,交 AB 于 Q,交 CD 于 P,过 H 信 MN ∥BC,交 AB 于 N,交 CD 于 M,则它的体积 V=V E﹣AQPD+V EPQ﹣FMN+V F﹣NBCM,由此能求出结果.【解答】解:过 E 作 EG⊥平面 ABCD ,垂足为G,过 F 作 FH ⊥平面 ABCD ,垂足为H ,过 G 作 PQ∥AD ,交 AB 于 Q,交 CD 于 P,过 H 信 MN ∥BC,交 AB 于 N,交 CD 于 M,则它的体积:V=V E﹣AQPD+V EPQ﹣FMN +V F﹣NBCM=+S△EPQ?NQ +=++=5(立住持).应选: B.10.已知函数 f( x) =知足条件,对于 ? x1∈ R,存在独一的 x2∈ R,使得f ( x1)=f x2).当f(2a=f(3b)成即刻,则实数a b=()()+A.B.﹣C.+3 D.﹣+3【考点】分段函数的应用.【剖析】依据条件获得 f( x)在(﹣∞, 0)和( 0, +∞)上单一,获得 a,b 的关系进行求解即可.【解答】解:若对于 ? x1∈ R,存在独一的x2∈R,使得 f( x1) =f ( x2).∴f(x)在(﹣∞, 0)和( 0,+∞)上单一,则 b=3 ,且 a< 0,由 f (2a) =f ( 3b)得 f ( 2a) =f ( 9),即 2a 2+3= +3=3 +3,即 a=﹣,则 a+b=﹣+3,应选: D.11.以下图是三棱锥 D ﹣ ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线 DO 和 AB 所成角的余弦值等于()A.B.C.D.【考点】由三视图复原实物图;异面直线及其所成的角.【剖析】由题意复原出实物图形的直观图,如图从 A 出发的三个线段AB ,AC ,AD 两两垂直且 AB=AC=2 ,AD=1 ,O 是中点,在此图形中依据所给的数据求异面直线DO 和 AB 所成角的余弦值【解答】解:由题意得如图的直观图,从 A 出发的三个线段AB ,AC , AD 两两垂直且AB=AC=2 , AD=1 , O 是中点,取 AC 中点 E,连结 OE,则 OE=1,又可知 AE=1 ,因为 OE∥ AB ,,故角 DOE 即所求两异面直线所成的角在直角三角形DAE 中,求得DE=因为 O 是中点,在直角三角形ABC 中能够求得AO=在直角三角形DAO 中能够求得DO=在三角形 DOE 中,由余弦定理得cos∠ DOE==应选 A12.已知函数 f ( x ) =( a > 0,且 a ≠ 1)在 R 上单一递减,且对于 x f x ) | =2 ﹣ x 恰巧有两个不相等的实数解,则 a的取值范围是( )的方程 | ( A 0 B .[ , ] C .[,]∪{} D.[,)∪{} .(, ]【考点】 分段函数的应用;根的存在性及根的个数判断.【剖析】 利用函数是减函数,依据对数的图象和性质判断出a 的大概范围,再依据f ( x )为减函数,获得不等式组,利用函数的图象,方程的解的个数,推出 a 的范围.【解答】 解: y=loga ( x+1) +1 在 [ 0, +∞)递减,则 0< a < 1,函数 f ( x )在 R 上单一递减,则:;解得,;由图象可知,在 [ 0,+∞)上, | f ( x )| =2﹣ x 有且仅有一个解,故在(﹣ ∞, 0)上, | f ( x ) | =2 ﹣ x 相同有且仅有一个解,当 3a > 2 即 a > 时,联立 | x 2+( 4a ﹣3) x+3a| =2﹣ x ,则△ =( 4a ﹣ 2) 2﹣ 4(3a ﹣ 2) =0,解得 a= 或 1(舍去),当 1≤ 3a ≤ 2 时,由图象可知,切合条件,综上: a 的取值范围为 [, ] ∪ { } ,应选: C .二、填空题(共 4 小题,每题5 分,满分 20 分)13 1 x 1 ,则 y= x的最大值为..若﹣ <<+【考点】基本不等式.【剖析】利用分别常数法化简分析式,并凑出积为定值,由 x 的范围化为正数后,利用基本不等式求出函数的最大值.【解答】解:由题意得,y=+x===,∵﹣ 1< x<1,∴﹣ 2< x﹣ 1<0,则 0<﹣( x﹣1)< 2,∴=2 ,则,当且仅当时,此时 x=0 ,取等号,∴函数的最大值是0,故答案为: 0.14.数列 { a n} 的通项,其前 n 项和为 S n,则 S30=.【考点】数列的乞降.【剖析】由 a =n(cos2) =ncosπ可得数列是以 3 为周期的数列,且n,代入可求【解答】解:∵ a =n(cos2) =ncos πnS30=[]=故答案为1515.等腰三角形A BC 中, AB=4 , AC=BC=3 ,点 E,F 分别位于两腰上,E, F 将△ ABC 分成周长相等的三角形与四边形,面积分别为S1, S2,则的最大值为.【考点】基本不等式.【剖析】依据条件画出图象,由图求出底边上的高和sinA 的值,由正弦定理求出sinC,设CE=x ,CF=y,利用三角形的面积公式求出 S1和 S2=S 三角形ABC﹣S1,由条件列出方程化简后,依据基本不等式求出xy 的范围,代入化简后求出的最大值.【解答】解:设 E、 F 分别在 AC 和 BC 上,以下图:取 AB 的中点 D,连结 CD,∵AB=4 , AC=BC=3 ,∴ CD==,则 sinA==,由得, sinC===,设 CE=x , CF=y ,所以 S1=xysinC=,则 S2=S 三角形ABC﹣S1=2﹣ S1=,由条件得x y=3x 4y3,化简得x y=5,+﹣ +﹣ ++则 xy ≤=,当且仅当 x=y=时取等号,所以===≤= ,当且仅当 x=y=时取等号,则的最大值是,故答案为:.16.德国有名数学家狄利克雷在数学领域成就明显,以其名命名的函数 f ( x)=称为狄利克雷函数,对于函数f(x)有以下四个命题:①f( f ( x)) =1;②函数 f ( x)是偶函数;③随意一个非零有理数T , f ( x+T ) =f ( x)对随意 x∈ R 恒成立;④存在三个点 A (x1, f( x1)),B ( x2, f(x2)), C( x3, f( x3)),使得△ ABC 为等边三角形.此中真命 的序号①②③④ .(写出全部正确命 的序号)【考点】 分段函数的 用.【剖析】 ① 依据函数的 法 ,可得不论 x 是有理数 是无理数,均有f ( f ( x ))=1;② 依据函数奇偶性的定 ,可得f ( x )是偶函数;③ 依据函数的表达式, 合有理数和无理数的性 ;④ 取 x 1=, x 2=0,x 3=,可得 A (, 0), B ( 0, 1), C (, 0),三点恰巧组成等 三角形.【解答】 解: ① ∵当 x 有理数 , f ( x )=1;当 x 无理数 , f ( x ) =0,∴当 x 有理数 ,ff ((x )) =f ( 1)=1;当 x 无理数 ,f ( f ( x )) =f ( 0) =1,即不论 x 是有理数 是无理数,均有 f ( f ( x )) =1 ,故 ① 正确;② ∵有理数的相反数 是有理数,无理数的相反数 是无理数,∴ 随意x ∈ R ,都有 f ( x )=f (x ),故 ② 正确;③ 若 x 是有理数,x Tx是无理数, x T也是无理数,+ 也是有理数; 若+∴依据函数的表达式,任取一个不 零的有理数T f x T ) =f x ) x ∈ R 恒成立,故, ( + ( ③ 正确;④ 取 x 1=, x 2=0, x 3=,可得 f ( x 1) =0, f ( x 2) =1, f (x 3) =0 ,∴A ( , 0),B ( 0,1), C (, 0),恰巧△ ABC 等 三角形,故 ④ 正确.即真命 的个数是 4 个,故答案 : ①②③④.三、解答 (共 6小 , 分70 分)17. { a n } 是公比大于1 的等比数列, S n 数列 { a n } 的前 n 和,已知 S 3=7,且 a 1,a 2, a 31 成等差数列.(1)求数列 { a n } 的通 公式;(2)若 b =log a, n=1, 2, 3⋯,乞降:.n4 2n +1【考点】 数列的乞降;等比数列的通 公式;等差数列的性 .【剖析】( 1)由已知得:, 数列 { a n } 的公比 q ,把等比数列的通 公式代入,求出q=2 ,a =1a n } 的通 公式.1 ,由此获得数列 {(2)先求出 b =log 4 4n=n,要求的式子即,用裂 法求出它n的 .【解答】 解:( 1)由已知得:,解得 a 2=2.aq aa 1= , a 3=2q ,数列 { n } 的公比 ,由2=2,可得又 S 3=7,可知+2+2q=7,即 2q 25q +2=0 ,解得 q=2,或 q= .由意得q> 1,∴ q=2, a1=1,故数列{ a n} 的通公式a n=2n﹣1.(2)由( 1)得 a2n+1=22n=4n,因为 b n=log 4 a2n+1,∴ b n=log 4 4n=n.=1++⋯+=1.+18.如,已知平面上直 l 1∥ l 2, A 、 B分是 l1、 l2上的点, C 是 l 1,l 2之必定点,C 到 l1的距离 CM=1 ,C 到 l 2的距离 CN=,△ ABC 内角 A 、 B 、C 所分 a、 b、c,a> b,且 bcosB=acosA(1)判断三角形△ ABC 的形状;(2)∠ ACM= θ, f(θ) =,求 f (θ)的最大.【考点】已知三角函数模型的用.【剖析】( 1)利用正弦定理,合合 bcosB=acosA ,得 sin2B=sin2A ,进而可三角形△ ABC 的形状;(2)∠ ACM= θ,表示出 f (θ) =,利用助角公式化,即可求 f (θ)的最大.【解答】解:( 1)由正弦定理可得:合 bcosB=acosA ,得 sin2B=sin2A∵a> b,∴ A > B∵A , B∈( 0,π),∴ 2B+2A= π,∴ A+B=,即C=∴△ ABC 是直角三角形;(2)∠ ACM= θ,由( 1)得∠ BCN=∴AC=,BC=∴f (θ) ==cosθ+=cos(θ ),∴θ=,f(θ)的最大.19.已知函数 f ( x) =2;(1)求函数 f( x)的最小正周期及增区;(2)在△ ABC 中,三内角 A , B, C 的分 a, b,c,已知函数 f ( x)的象点,若=4,求 a 的最小.【考点】三角函数中的恒等用;平面向量数目的运算.1f x)=sin(2x+),利用正弦函数的性可求【剖析】()利用三角恒等,可化(得函数 f( x)的最小正周期及增区;(2)由已知=4,化整理可得bc=8,再由余弦定理 a 2=b2+c22bccosA合不等式即可求得 a 的最小.【解答】解:( 1)所以,最小正周期T= π⋯,由 2kπ ≤ 2x+≤ 2kπ+ (k∈ Z )得: kπ ≤ x≤ kπ+ (k∈ Z ),∴函数 f( x)的增区[ kπ ,kπ+] ( k∈ Z)⋯(2)由知:=c 2+b2bccosA a2=2bccosA bccosA=bc=4 ,∴bc=8 ,由余弦定理得:a 2=b2+c22bccosA=b2+c2bc≥ 2bc bc=bc=8,∴a≥ 2,∴a 的最小2⋯20.如,在四棱P ABCD 中,底面ABCD 直角梯形,∠ADC= ∠BCD=90 °,BC=2 ,,PD=4 ,∠ PDA=60 °,且平面 PAD⊥平面 ABCD .(Ⅰ)求: AD ⊥ PB;(Ⅱ)在段 PA 上能否存在一点M ,使二面角 M BC D 的大小,若存在,求的;若不存在,明原因.【考点】与二面角相关的立体几何合;空中直与直之的地点关系.【剖析】( I ) B 作 BO∥ CD,交 AD 于 O,接 OP, AD ⊥ OB,由勾股定理得出 AD ⊥OP,故而 AD ⊥平面 OPB,于是 AD ⊥ PB;(II )以 O 为原点成立坐标系,设 M( m,0,n),求出平面 BCM 的平面 ABCD 的法向量,令|cos> |=cos解出n的值.<,进而得出【解答】证明:( I)过 B 作 BO∥ CD ,交 AD 于 O,连结 OP.∵AD ∥ BC ,∠ ADC= ∠BCD=90 °,CD ∥ OB,∴四边形 OBCD 是矩形,∴OB ⊥ AD . OD=BC=2 ,∵PD=4 ,∠ PDA=60 °,∴ OP==2 .222,∴ OP⊥OD .∴OP +OD =PD又 OP? 平面 OPB, OB ? 平面 OPB,OP∩OB=O ,∴AD ⊥平面 OPB,∵ PB ? 平面 OPB ,∴AD ⊥ PB.(I I )∵平面 PAD⊥平面 ABCD ,平面 PAD∩平面 ABCD=AD , OA ⊥AD ,∴OP⊥平面 ABCD .以 O 为原点,以 OA , OB,OP 为坐标轴成立空间直角坐标系,以下图:则 B ( 0,,0),C(﹣2,,0),假定存在点M ( m, 0, n)使得二面角M ﹣ BC ﹣ D 的大小为,则=(﹣ m,,﹣n),=(﹣ 2, 0, 0).设平面 BCM 的法向量为=( x, y, z),则.∴,令 y=1 得=( 0,1,).∵OP⊥平面 ABCD ,∴=( 0,0, 1)为平面ABCD 的一个法向量.∴cos<>===.解得n=1.∴==.21.已知圆 C: x 2+y2=2,点 P( 2, 0), M ( 0, 2),设 Q 为圆 C 上一个动点.(1)求△ QPM 面积的最大值,并求出最大值时对应点Q 的坐标;(2)在( 1)的结论下,过点 Q 作两条相异直线分别与圆 C 订交于 A,B 两点,若直线 QA 、QB 的倾斜角互补,问直线AB 与直线 PM 能否垂直?请说明原因.【考点】直线与圆的地点关系.【剖析】(1)先求出 |PM|=2,设点Q到PM的距离为h,圆心C到PM d的距离为,△QPM 面积的最大值即需要h 取的最大值,此时点Q 与圆心 C 的连线与 PM 垂直,由此能求出结果.2)设直线QA的斜率为k,则直线QB斜率为﹣k,直线QA的方程:y1=k x 1(+(+)联立,得(1+k 2) x2+2k( k﹣1) x+k2﹣2k﹣ 1=0 ,进而求出 x A,x B,由此能求出直线 AB 与直线 PM 垂直.【解答】解:( 1)因为点 P(2, 0),M ( 0, 2),所以 | PM | =2,设点 Q 到 PM 的距离为 h,圆心 C 到 PM 的距离为 d,所以=.△QPM 面积的最大值即需要h 取的最大值,此时点 Q 与圆心 C 的连线与 PM 垂直,故有最大值 h=d+r=,最大面积,此时点 Q 坐标为点(﹣1,﹣1).(2)直线 AB 与直线 PM 垂直,原因以下:因为过点 Q(﹣ 1,﹣ 1)作两条相异直线分别与圆 C 订交于 A、B 两点,直线 QA 、 QB 的倾斜角互补,所以直线QA 、 QB 斜率都存在.设直线 QA 的斜率为 k,则直线 QB 斜率为﹣ k,所以直线 QA 的方程: y+1=k (x+1)联立,得(1 k2)x22k(k1)x k22k﹣1=0,++﹣+﹣又因为点 Q(﹣ 1,﹣ 1)在圆 C 上,故有,所以 x A =,同理,===1,又kPM =,所以有k PM?k AB=﹣ 1,故直线AB 与直线 PM 垂直.22.已知函数 f ( x) =lnx(Ⅰ)若函数F(x) =tf (x)与函数g( x) =x 2﹣ 1 在点 x=1 处有共同的切线l ,求 t 的值;(Ⅱ)证明:;(Ⅲ)若不等式mf( x)≥ a+x 对全部的都成立,务实数 a 的取值范围.【考点】函数恒成立问题;利用导数研究曲线上某点切线方程.【剖析】(Ⅰ)求函数的导数,依据导数的几何意义成立方程关系即可获得结论.(Ⅱ)结构函数h( x)=f ( x)﹣ x 和 G(x) =,求函数的导数,分别求出函数的最值进行比较比较即可.(Ⅲ)利用参数分别法,转变为以m 为变量的函数关系进行求解即可.【解答】解:(Ⅰ) g′( x) =2x , F( x) =tf ( x) =tlnx ,F′(x) =tf ′( x) =,∵F( x)=tf ( x)与函数g( x) =x 2﹣1 在点 x=1 处有共同的切线l,∴k=F ′( 1) =g ′( 1),即 t=2,(Ⅱ)令h( x) =f ( x)﹣ x,则 h′( x) =﹣1=,则h(x)在(0,1)上是增函数,在( 1, +∞)上是减函数,∴h( x)的最大值为 h( 1) =﹣ 1,∴| h( x) | 的最大值是 1,设 G( x) ==+,G′(x)=,故 G( x)在( 0,e)上是增函数,在( e, +∞)上是减函数,故 G( x)max= + < 1,∴;(Ⅲ)不等式 mf x )≥ a x对全部的 都成立,( + 则 a ≤ mlnx ﹣ x 对全部的都成立,令 H ( x ) =mlnx ﹣ x ,是对于 m 的一次函数,∵ x ∈ [ 1, e 2] ,∴ lnx ∈ [ 0,2] ,∴当 m=0 时, H ( m )获得最小值﹣ x ,即 a ≤﹣ x ,当 x ∈ [ 1, e 2] 时,恒成立,故 a ≤﹣ e 2.河北省唐山一中2017届高三上学期期中数学试卷(理科)Word版含解析2016年12月15日21。

2017届高三数学上学期期中试题理

2017届高三数学上学期期中试题理

2017届高三数学上学期期中试题理数学试卷(理)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

其中第Ⅰ卷满分60分,第Ⅱ卷满分90分。

本试卷满分150分,考试时间为120分钟。

2、答卷前,考生务必将自己的姓名、班级、写在答题卡上。

3、将第Ⅰ卷选出答案后,和第二卷答案都写在答题卡相应标号位置,答错位置不得分。

第Ⅰ卷一、选择题(每题只有一个正确选项,每题5分共60分)1. 若集合,则等于( ){}{}Ax x y y B x x N x A ∈-==>-+∈=,4,0452B A ⋃A. B. C. D.B {}4,2,1{}4,3,2,1{}4,3,2,1,0,1-2.若tan α=,则cos2α+2sin 2α等于()43A .B .C . 1D .2548256425163.已知△ABC 中,的对边分别为.若,且,则()A . 2B .C .D .4.曲线与直线及所围成的封闭图形的面积为()x y 2=1-=x y 4=xA. B. C. D.2ln 22ln 2-2ln 4-2ln 24-5.给出如下四个命题:①若“”为假命题,则均为假命题;q p ∧q p ,②命题“若”的否命题为“若”;122,b ->>a b a 则122,a -≤≤bb a 则 ③命题“任意”的否定是“存在”;01,2≥+∈x R x 01,200<+∈x R x④函数在处导数存在,若p :;q :x=x0是的极值点,则是的必要条件,但不是的充分条件;其中真命题的个数是()()f x 0x =x ()00/=x f ()f x p q qA.1B.2C.3D. 46.已知=(1,sin2x),=(2,sin2x),其中x ∈(0,π),若,则tanx的值等于() A .-1 B . 1 C .D .→a →b ||||||→→→←=⋅b a b a227.已知是平面内两个互相垂直的单位向量,若向量满足,则||的最大值是().←←b a ,0)()(=-⋅-→→←←c b c aA . 1B . 2C .D .2228.某班文艺晚会,准备从A,B 等8个节目中选出4个节目,要求:A,B。

2017届高三联考数学理试题(含答案)word版

2017届高三联考数学理试题(含答案)word版

江西省丰、樟、高、宜四市2017届高三联考数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}2,1=A ,则满足{}3,2,1=B A 的集合B 的个数是 ( )A .1B .3C .4D .82.已知等比数列}{n a 中,各项都是正数,且2312,21,a a a 成等差,则87109a a a a ++= ( ) A .21+B .21-C .223+D .223- 3.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C.D4.已知数列}{n a 的通项公式是22++=kn n a n ,若对于*N n ∈,都有n n a a >+1成立,则实数k 的取值范围是 ( ) A .0>k B .1->k C .2->k D .3->k5.如图在棱长均为2的正四棱锥ABCD P -中,点E 为PC 中点,则下列命题正确的是( ) A .BE 平行面PAD ,且直线BE 到面PADB .BE 平行面PAD ,且直线BE 到面PADC .BE 不平行面PAD ,且BE 与平面PAD 所成角大于6πD .BE 不平行面PAD ,且BE 与面PAD 所成角小于6π 6.函数⎪⎩⎪⎨⎧≤≤+<≤-+=)380(),sin(2)02(,1πϕωx x x kx y 的图像如下图,则( )A .6,21,21πϕω===kB .3,21,21πϕω===kC .6,2,21πϕω==-=kD .3,2,2πϕω==-=k7.已知a =++-)12(log )122(log 27,则=-++)12(log )122(log 27( )A .a +1B .a -1C .aD .a -8.在ABC ∆中,3,2AB BC AC ===,若点O 为ABC ∆的内心,则AO AC ⋅的值为( )A .2B .73C .3D .59.已知函数20114321)(2011432x x x x x x f ++-+-+= ,试问函数()f x 在其定义域内有多少个零点?( )A .0B .1C .2D .310.已知数列}{n a 满足:311=a ,n n n a a a +=+21,用][x 表示不超过x 的最大整数,则 ]111111[201121++++++a a a 的值等于( )A .1B .2C .3D .4二、填空题(本大题共5小题,每小题5分,共25分)11.直线a y 2=与函数1-=xa y (0>a ,且1≠a )的图像有两个公共点,则实数a 的取值范围是 .12.设R a ∈,若函数R x ax e y x ∈+=,有大于零的极值点,则实数a 的取值范围是 . 13.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若C baa b c o s 6=+,则A C t a n t a n +BCtan tan = . 14. 已知图中(1)、(2)、(3)分别是一个立体模型的正视图、左视图、俯视图,这个立体模型由若干个棱长为1的小正方体组成,则这个立体模型的体积的所有可能值为 . (1)15.下列给出的四个命题中:①在ABC ∆中,B A ∠<∠的充要条件是B A sin sin <;②在同一坐标系中,函数x y sin =的图像和函数2xy =的图像只有一个公共点; ③函数)1(x f y +=的图像与函数)1(x f y -=的图像关于直线1=x 对称;④在实数数列{}n a 中,已知|1|||,|,1||||,1|||,0123121-=-=-==-n n a a a a a a a 则4321a a a a +++的最大值为2.其中为真命题的是_____________________.(写出所有真命题的序号). 三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)已知ABC ∆的周长为)12(4+,且A C B sin 2sin sin =+.(1)求边长a 的值;(2)若A S ABC sin 3=∆,求A cos 的值. 17.(本题满分12分)已知函数.3cos )4cos()4sin(32sin )(22---++=x x x x x f ππ(1)求函数)(x f 的最小正周期和单调递减区间; (2)求函数)(x f 在]3625,12[ππ-上的最大值和最小值并指出此时相应的x 的值.18.(本题满分12分)如图所示的几何体是由以正三角形ABC 为底面的直棱柱被平面DEF 所截而得. a AF CE BD AB ====,3,1,2,O 为AB 的中点.(1)当4=a 时,求平面DEF 与平面ABC 的夹角的余弦值; (2)当a 为何值时,在棱DE 上存在点P ,使⊥CP 平面DEF ?19.(本题满分12分)在数列{}n a 中,10a =,13n n n a a +=-+,其中1,2,3n = (1)求数列{}n a 的通项公式; (2)求1nn a a +的最大值.OPFEDCA20.(本小题满分13分)已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a的取值范围.21.(本小题满分14分)函数)0(1)(>+=x xx x f ,数列{}n a 和{}n b 满足:112a =,)(1n n a f a =+,函数)(x f y =的图像在点)))((,(*N n n f n ∈处的切线在y 轴上的截距为n b .(1)求数列{n a }的通项公式; (2)若数列2{}n n n b a a λ-的项中仅5255b a a λ-最小,求λ的取值范围; (3)若函数x x x g -=1)(,令函数,10,11)]()([)(22<<+-⋅+=x xx x g x f x h 数列{}n x 满足:10,211<<=n x x 且)(1n n x h x =+其中n N *∈. 证明:2222311212231()()()n n n n x x x x x x x x x x x x ++---+++….参考答案一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 答案CCADDABDBB二、填空题(本大题共5小题,每小题5分,共25分) 11.210<<a 12.1-<a 13.4 14. 6或7 15.①④ 三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)解 (1)根据正弦定理,A C B sin 2sin sin =+可化为a c b 2=+. ………3分联立方程组⎪⎩⎪⎨⎧=++=++ac b c b a 2)12(4,解得4=a . ………6分(2)A S ABC sin 3=∆ ,A A bc sin 3sin 21=∴6=∴bc . ………9分 又由(1)可知,24=+c b , 由余弦定理得∴3122)(2cos 22222=--+=-+=bc a bc c b bc a c b A . ………12分 17.(本题满分12分)解:(1)3cos )4cos()4sin(32sin )(22---++=x x x x x f ππ32cos )4(sin 322--+=x x πx x 2cos 2sin 3-=)62sin(2π-=x …………3分所以ππ==22T …………4分 由)(2326222Z k k x k ∈+≤-≤+πππππ得 )(653Z k k x k ∈+≤≤+ππππ所以函数)(x f 的最小正周期为)](65,3[,Z k k k ∈++πππππ单调递减区间为………6分 (2)由(1)有).62sin(2)(π-=x x f因为],3625,12[ππ-∈x 所以]911,3[62πππ-∈-x …………8分y因为.911sin 34sin )3sin(πππ<=-所以当)(,3;3)(,12x f x x f x 函数时当取得最小值函数时ππ=--=取得最大值2…………12分18. (本题满分12分)(1)分别取AB 、DF 的中点O 、G ,连接OC 、OG .以直线OB 、OC 、OG 分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,4==a AF ,则D 、E 、F 的坐标分别为D (1,0,1)、E (0,3,3)、F (-1,0,4),∴DE =(-1,3,2),DF =(-2,0,3) 设平面DEF 的法向量),,(z y x n =,由⎪⎩⎪⎨⎧=+-=⋅=++-=⋅032023z x z y x 得 z y z x 63,23-==,可取)1,63,23(-= …… 3分 平面ABC 的法向量可以取)1,0,0(=m∴10301121491=++==…… 5分 ∴平面DEF 与平面ABC 的夹角的余弦值为1030. ……6分 (2)在(1)的坐标系中,a AF =,=(-1,3,2),=(-2,0,a -1). 因P 在DE 上,设DE DP λ=,则)12,3,1()2,3,1()1,0,1(+-=-+=+=λλλλ∴)12),1(3,1()0,3,0()12,3,1(+--=-+-=-=λλλλλλOC OP CP 于是⊥CP 平面DEF 的充要条件为⎪⎩⎪⎨⎧=+-+--=⋅=++-+-=⋅0)12)(1()1(20)12(2)1(31λλλλλa DF CP由此解得,2,41==a λ 即当a =2时,在DE 上存在靠近D 的第一个四等分点P ,使⊥CP 平面DEF . ……12分19.(本题满分12分)解(1)11113(3)44n n n n a a ++-⋅=--⋅ ………2分从而数列1{3}4n n a -⋅是首项为13344a -=-,公比为1-的等比数列,∴133(1)44n n n a =⋅+-⋅. ………5分(2)当n 为偶数时,11111333314441333333344n n n n n n n a a ++++⋅++===+--⋅- ∴1n n a a +随n 增大而减小,即当n 为偶数时21312n n a a a a +=≤ ………8分当n 为奇数时,11111333314441333333344n n n n n n n a a ++++⋅--===-++⋅+ ∴1n n a a +随n 增大而增大,且11132n n a a +<< ………11分综上,1n n a a +最大值为12……12分 20. (本小题满分13分)解:⑴ 函数)(x f 的定义域为),0(+∞,2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,…2分 ∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞。

[实用参考]北京市第四中学2017届高三上学期期中考试数学(理)试题含答案.doc

[实用参考]北京市第四中学2017届高三上学期期中考试数学(理)试题含答案.doc
6
2
], k Z .
3
7
1
(Ⅱ)因为 0 x ,所以
2x
,所以
sin(2 x ) 1 ,
2
6
66
2
6
于是 1 2sin(2 x ) 2 ,所以 2 f ( x) 1 .
6
当且仅当 x
时 f ( x) 取最小值 f ( x ) min f ( ) 2 ;
2
2
当且仅当 2 x
,即 x 时最大值 f ( x) max f ( ) 1 .
所以 A B B A . 由定义可知: f A B ( x) f A ( x ) f B ( x) . 所以对任意元素 x , f ( A B ) C ( x ) f A B ( x ) fC ( x) f A ( x) f B ( x) f C ( x ) , f A ( B C ) ( x) f A ( x) fB C ( x) f A ( x) f B ( x ) fC ( x) .
d a4 a1 12 3 3.
3
3
所以 an a1 ( n 1) d 3n, n
N.
设等比数列 bn an 的公比为 q ,由题意得
3
q
b4 a4
20 12 8 ,解得 q 2 .
b1 a1 4 3
所以 bn an
n1
n1
b1 a1 q
2.
n1Βιβλιοθήκη n1从而 bn an 2
3n 2 , n N .
n1
(Ⅱ)由(Ⅰ)知 bn 3n 2 , n N .
(Ⅰ)写出 f A (1) 和 f B (1) 的值,并用列举法写出集合 A B ;
(Ⅱ)用 Card (M ) 表示有限集合 M 所含元素的个数, 求 Card ( X A) Card ( X B ) 的最小值; (Ⅲ)有多少个集合对 P,Q ,满足 P, Q A B ,且 ( P A) ( Q B) A B ?

2017秋期中高三数学(理)试题及答案

2017秋期中高三数学(理)试题及答案

2017年秋期期中考试三数学试题(理)及答案一、选择题:1.已知集合}13|{+-==x xy x A ,}1lg |{<=x x B ,则A∩B=( D ) A . ]3,1[- B .]3,1(- C .(0,1] D .(0,3]2.复数z 满足i z z 48||-=+,则z=( A )A.i 43+B.i 43-C.i 34+D.i 34-3.设命题p :0ln ,0>->∀x x x ,则p ⌝为( D )A .0ln ,0≤->∀x x xB .0ln ,0<->∀x x xC .0ln ,0000≤-≤∃x x xD .0ln ,0000≤->∃x x x4.设{n a }为等差数列,公差2-=d ,n S 为其前n 项和,若1110S S =,则1a =( B )A .18B .20C .22D .245.若y x ,是正数,且141=+yx ,则xy 有( A ) A .最小值16 B .最小值161 C .最大值16 D .最大值161 6.在△ABC 中,8=a ,10=b ,︒=45A ,则此三角形解的情况是( B )A .一解B .两解C .一解或两解D .无解7.已知函数g (x )是R 上的奇函数,且当0<x 时,)1ln()(x x g --=,函数⎩⎨⎧><=)0)(()0()(3x x g x x x f ,若)()2(2x f x f >-,则实数x 的取值范围是( D )A .(-2,1)B .(-∞,-2)∪(1,2)∪(2,+∞)C .(-1,2)D .(-2,-2)∪(-2,0)∪(0,1) 8.已知)(x f y =是定义域为⎭⎬⎫⎩⎨⎧≤∈==+4,4sink N k k x x A 且π,值域为{}3,,e B π=的函数,则这样的函数共有( A )个.A.6B.27C.64D.819.若函数⎪⎩⎪⎨⎧>≤--=0,ln 0,1)(2x x x kx x xx f 有且只有2个不同的零点,则实数k 的取值范围是( C )A .(-4,0)B .(-4,0]C . (-∞,0]D .(-∞,0)10.已知O 是ABC ∆所在平面内的一定点,动点P满足),0(+∞∈+=λλAC AB OA OP ,则动点P 的轨迹一定通过ABC ∆的( A )A.内心B.垂心C.外心D.重心11.已知有穷数列{}n a 中,n=1,2,3, ,729.且1)1()12(+-⋅-=n n n a .从数列{}n a 中依次取出.,,,1452 a a a 构成新数列{}n b ,容易发现数列{}n b 是以-3为首项,-3为公比的等比数列.记数列{}n a 的所有项的和为S ,数列{}n b 的所有项的和为T ,则( A )A.T S >B.T S =C.T S <D.S 与T 的大小关系不确定12.4枝玫瑰花与5枝茶花的价格之和不小于22元,而6枝玫瑰花与3枝茶花的价格之和不大于24元,则2枝玫瑰花和3枝茶花的价格之差的最大值是( B ) A.-1 B.0 C.1 D.2二、填空题: 13.已知,52cos sin =θθ则θtan = .212或 14.在ABC ∆中,7=AB ,25=AC .若O 为ABC ∆的外心,则=⋅BC AO.28815.下列结论:①”的充要条件;”是““a a a >>1②存在x a x a a xlog ,0,1<>>使得;③函数x x y 2tan 1tan 2-=的最小正周期为2π;④任意的锐角三角形ABC 中,有A B cos sin >成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016—2017学年第一学期十一县(市)高三年级期中联考
数学(理科)试卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.
第Ⅰ卷(选择题 共50分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数11i
z i
-=
+,z 是z 的共轭复数,则z 等于( ) A .1
B .2
C .4
D .
12
2.设全集}7,5,3,1{=U ,集合|}5|,1{-=a M , U M ⊆, }7,5{=M C U ,实数a 的值为( ) A .2或8-
B .2-或8-
C .2-或8
D .2或8
3.下列说法中,正确的是 ( )
A .命题“若22am bm <,则a b <”的逆命题是真命题
B .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题
C .已知R x ∈,则“1x >”是“2x >”的充分不必要条件
D .命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02
≤-x x ”
4.把函数x sin 3x cos )x (f -=的图象向左平移m 个单位, 所得图象关于y 轴对称, 则m
的最小值为 ( ) A.
65π B. 32π C. 3π D. 6
π 5.由函数)0(cos π≤≤=x x y 的图象与直线π=x 及
1=y 的图象围成一个封闭的图形的面积是( )
A 、1
B 、π
C 、2
D 、π2
6.等比数列
{}
n a 中,12a =,8a =4,函数
()128()()()f x x x a x a x a =--- ,
则()'
0f
=( )
A .6
2 B. 9
2 C. 12
2 D. 15
2
7.当20π
<<x 时,函数x
x x x f 2sin sin 82cos 1)(2++=的最小值为
( )
A .2
B .32
C .4
D . 34
8.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有
)()1()1(x f x x xf +=+,则)2
5
(f 的值是 ( )
A. 0
B.
21 C. 1 D. 2
5
9.已知向量a 与b 的夹角为30°,且||a ||1b = ,设2p a b =+ ,2q a b =-
,则向量p
在q 方向上的投影为( )
A B . C .1 D .–1
10.已知函数()f x 满足:①定义域为R ;②对任意R x ∈,有(
2)2()f x f x +=;③当[1,1]
x ∈-时,()||1f x x =-+.则方程4()log ||f x x =在区间[10,10]-内的零点的个数是( ) A .18
B .12
C .11
D .10
第Ⅱ卷(非选择题 共100分)
二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上) 11. 当253(0,),(1)m x y m m x --∈+∞=--⋅时幂函数为增函数,则实数m 的值为
12.在ABC ∆中,若,,a b c 成等差数列,30,B =
ABC ∆的面积为
3
2
,则b =______ 13.设 0,1a a >≠,函数f (x )= (
)2lg 23
x x a
-+ 有最大值,则不等式(
)2log 57a x x -+>0的解
集为_______.
14.设有两个命题::p 不等式2
24)3
1(x x m x ->>+对一切实数x 恒成立;
:q x m x f )27()(--=是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围

15.下图展示了一个由区间(0,4)到实数集R 的映射过程:区间(0,4)中的实数m 对应数轴上的点M (如图1),将线段AB 围成一个正方形,使两端点A B 、恰好重合(如图2),再将这个正方形放在平面直角坐标系中,使其中两个顶点在y 轴上,点A 的坐标为
(0,4)(如图3),若图3中
直线AM 与x 轴交于点
(,0)N n ,则m 的象就是n ,
记作()f m n =. 现给出以下命题: ①(2)0f =
②()f x 的图象关于点(2,0)
对称;
③()f x 在区间(3,4)上为常数函数;
④()f x 为偶函数。

其中正确的命题是__________(填序号)
三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)
设{}{}
,023,032},082{2
222<+-=>-+=<--=a ax x x C x x x B x x x A (a<0)
C B C A C R R =)]())[(C 且,求实数a 的取值范围。

17.(本小题满分12分)
设函数2()cos(2)2sin 3
f x x x π
=-
-
(1)求函数()f x 的最小正周期和单调递增区间;
(2)ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,且1
().1
,2
f B b c ===求a 的
值.
18.(本小题满分12分)
已知奇函数()x f 的定义域为R ,且()x f 在[)+∞,0上是增函数, 是否存在实数 m 使得()()()0cos 2432cos f m m f f >-+-θθ, 对一切⎥⎦

⎢⎣⎡∈2,0πθ都成立?若存在,求出实数m 的取值范围; 若不存在,请说明理由.
19.(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度 x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0 ;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.
(1)当2000≤≤x 时,求函数()x v 的表达式;
(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值(精确到1辆/小时).
20.(本小题满分13分)
等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 12b =,
且2232,b S = 33120b S =.
(1)求n a 与n b ; (2)若
212111
1n
x ax S S S +++≤++ 对任意正整数n 和任意R x ∈恒成立,求实数a 的取值范围.
21.(本题满分14分)
已知函数()ln f x x x x =+.
(1)求函数()f x 的图像在点(1,1)处的切线方程;
(2)若Z k ∈,且()(1)k x f x -<对任意1x >恒成立,求k 的最大值;
(3)当4n m >≥时,证明(
)()m
n
n m mn nm >.
参考答案
17.解:(1)分
单调增区间为………6分(2)………9分由正弦定理得………12分
18.解: 奇函数的定义域为
恒成立………2分
又在上单调递增
………4分
设,………6分
(1)当即时(舍)………8分(2)当即时………10分
(3)当即时
,综上………12分
20.解:(1)设的公差为,的公比为去,则为正数,
依题意有,即,………3分
解得或者(舍去),
故。

------------------------------------------- 6分
21.(1)解:因为,所以,
函数的图像在点处的切线方程;……3分
(2)由(1)知,,所以对任意恒成立,即
对任意恒成立.
令,则,
令,则,
所以函数在上单调递增.
因为,所以方程在上存在唯一实根,且满足.………5分
当,即,当,即,所以函数在上单调递减,在上单调递增.
所以.
所以.故整数的最大值是3.………8分。

相关文档
最新文档