湖南省株洲县高中数学第二章统计学案(无答案)新人教A版必修3

合集下载

高中数学 第二章 统计本章整合 新人教A版必修3(2021年最新整理)

高中数学 第二章 统计本章整合 新人教A版必修3(2021年最新整理)

高中数学第二章统计本章整合新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计本章整合新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计本章整合新人教A版必修3的全部内容。

高中数学第二章统计本章整合新人教A版必修3 知识网络专题探究专题一三种抽样方法的比较简单随机抽样、系统抽样、分层抽样的比较如下表:类别共同点各自特点联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相等;每次抽出个体后不再将它放回,即不从总体中逐个抽取总体中个体无差异且个数较少系统抽样将总体均分成几部分,按预先制定的规则在各部分中抽在第一组抽取样本时采用简单随机抽样总体中个体无差异且个数很多抽样方法抽取具有代表性的样本对整个统计问题起着至关重要的作用.高考中主要考查三种抽样方法的比较和辨析以及应用.错误!某高级中学有学生270人,其中一年级108人,二、三年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270。

高中数学 第二章 统计 2.1.2 系统抽样学案 新人教A版必修3(2021年最新整理)

高中数学 第二章 统计 2.1.2 系统抽样学案 新人教A版必修3(2021年最新整理)

高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.1.2 系统抽样学案新人教A版必修3的全部内容。

2.1。

2系统抽样【学习目标】1.理解系统抽样的定义、适用条件及其步骤.2.会利用系统抽样抽取样本.【学习重点】系统抽样的原理与步骤【基础知识】系统抽样(1)定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成____的若干部分,然后按照预先制定的____,从每一部分抽取____个体,得到所需要的样本,这种抽样的方法叫做系统抽样.(2)步骤:系统抽样的特征:(1)当总体中个体无差异且个体数目较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k=错误!错误!。

(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.(4)在每段上仅抽一个个体,所分的组数(即段数)等于样本容量.(5)第一步编号中,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等,不再重新编号.【做一做1-1】中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为( )A.10 B.100 C.1 000 D.10 000【做一做1-2】为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40 B.30 C.20 D.12重难点突破:1.系统抽样与简单随机抽样的区别剖析:(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本.(2)抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,则可能会使抽样的代表性差些.(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上对产品质量的检验,由于不知道产品的数量,因此不能用简单随机抽样.2.系统抽样与简单随机抽样的联系剖析:(1)对总体均分后的每一部分进行抽样时,采用的是简单随机抽样.(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.(3)与简单随机抽样一样是不放回抽样.(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除后再进行系统抽样.3.系统抽样中的合理分段问题剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,从而得到所需的样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.(1)若从容量为N的总体中抽取容量为n的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k,以便对总体进行分段.(2)当错误!是整数时,取k=错误!作为分段间隔即可,如N=100,n=20,则分段间隔k=错误!=5.也就是将100个个体按平均每5个为1段(组)进行分段(组);(3)当错误!不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n整除,这时分段间隔k=错误!,如N=101,n=20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k=错误!=5,也就是说,只需将100个个体平均分为20段(组).(4)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.【例题讲解】【例题1】下列问题中,最适合用系统抽样抽取样本的是( )A.从10名学生中,随机抽取2名学生参加义务劳动B.从全校3 000名学生中,随机抽取100名学生参加义务劳动C.从某市30 000名学生中,其中小学生有14 000人,初中生有10 000人,高中生有6 000人,抽取300名学生以了解该市学生的近视情况D.从某班周二值日小组6人中,随机抽取1人擦黑板【例题2】某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本.请用系统抽样的方法进行抽取,并写出过程.【例题3】现从全班63人中,用系统抽样方法任选10人进行高中生体重与身高的关系的调查.应如何实施?【达标检测】1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是()A.2 B.4 C.5 D.62.某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是( )A.6,16,26,36,46,56 B.3,10,17,24,31,38C.4,11,18,25,32,39 D.5,14,23,32,41,503.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中抽取50个入样C.从某厂生产的10个电子元件中抽取2个入样D.从某厂生产的20个电子元件中抽取5个入样4.将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一段编号为000,002,…,019,如果在第一段随机抽取的一个号码为015,则抽取的第40个号码为__________.5.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?【问题与收获】基础知识答案:(1)均衡规则一个(2)编号分段间隔简单随机抽样间隔k l+k l+2k【做一做1-1】 C 依题意,要抽十名幸运小观众,所以要分成十个组,每个组容量为10 000÷10=1 000,即分段间隔.【做一做1-2】 A ∵N=1 200,n=30,∴k=Nn=错误!=40.例题答案:【例题1】 B A项中总体个体无差异,但个数较少,适合用简单随机抽样;同样D项中也适合用简单随机抽样;C项中总体中个体有差异不适合用系统抽样;B项中,总体中有3 000个个体,个数较多且无差异,适合用系统抽样.【例题2】解:按照1∶5的比例抽取样本,则样本容量为错误!×295=59.抽样步骤是:(1)编号:按现有的号码.(2)确定分段间隔k=5,把295名同学分成59组,每组5人;第1段是编号为1~5的5名学生,第2段是编号为6~10的5名学生,依次下去,第59段是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设编号为l(1≤l≤5).(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.【例题3】第一步,先对63人随机编号01,02, (63)第二步,用抽签法从63人中随机剔除3人;第三步,余下60人重新编号为01,02,03,…,60,并分成10段,每段6人;第四步,从第一段6人中用抽签法抽出1个号,如02;第五步,将号码为02,08,14,20,26,32,38,44,50,56的学生作为样本.达标检测答案:1.A 因为1 252=50×25+2,所以应随机剔除2个个体.2. A 选取的号码间隔一样的系统抽样方法,需把总体分为6段,即1~10,11~20,21~30,31~40,41~50,51~60,既符合间隔为10又符合每一段取一号的只有A项.3.B A项中总体中个体间有差异,不适用系统抽样;C项和D项中总体中个体无差异,但个体数目不多,不适用系统抽样;B项中总体中个体间无差异,且个体数目较多,适宜用系统抽样.4.795 利用系统抽样抽取样本,在第1段抽取号码为015,分段间隔为100050=20,则在第i段中抽取号码为015+20(i-1).则抽取的第40个号码为015+(40-1)×20=795.5.解:用系统抽样抽取样本,样本容量是620×10%=62。

人教a版必修3第二章统计教案资料

人教a版必修3第二章统计教案资料

第二章统计初步授课课题:2.1.1简单随机抽样一、教学目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、重点与难点:重点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,难点:能灵活应用相关知识从总体中抽取样本。

三、教学用具:电脑,计算器,图形计算器四、教学方法:尝试,探究五、教学手段(教学用具):课件六、课时安排:一课时七、学情分析:一、授课课题:2.1.2 系统抽样一、教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。

二、重点与难点:重点是正确理解系统抽样的概念难点是能够灵活应用系统抽样的方法解决统计问题。

三、教学用具:电脑,计算器,图形计算器四、教学方法:尝试,探究五、教学手段(教学用具):课件六、课时安排:两课时七、学情分析:一、授课课题:2.1.3 分层抽样二、教学目标(三维目标):1、知识与技能(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

3、情感、态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

人教A版高中数学必修3《二章 统计 复习参考题》优质课教案_11

人教A版高中数学必修3《二章 统计  复习参考题》优质课教案_11

课题:用样本的频率分布估计总体分布本节内容为人教A版《普通高中课程标准实验教科书》必修3第2章第2节第1小节——《用样本的频率分布估计总体分布》的第一课时.一、教学设计1.教学目标分析《数学课程标准》强调统计思想与运用统计思想解决实际问题的能力,要求学生系统地经历提出问题、收集数据、整理分析数据、做出推理与决策的全过程.通过本节的学习,让学生体会统计思想与确定性思想的差异,并能从所获得的数据提取有价值的信息,作出合理的决策.统计与现实生活的联系是非常紧密的,因此本节内容对学生来说应该是充满趣味性和吸引力的.教科书选择居民生活用水定额管理问题,引导学生从具体的问题中总结、抽象出一般规律,让学生体会其中的统计原理,感受统计与实际生活的联系以及在解决现实问题中的作用.通过以上分析,确定教学目标如下:1.通过实例体会分布的意义和作用,通过对现实生活的探究,感知应用数学知识解决问题的方法.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,理解数形结合的数学思想和逻辑推理的数学方法.3.通过对样本分析和总体估计的过程,感受数学在实际生活中的作用,通过实例体会频率分布直方图的特征,并利用它分析样本的分布,准确地作出总体估计,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.2.教学内容解析本节内容在高中统计部分占有十分重要的地位,一方面它与前面学习的抽样方法(简单随机抽样、系统抽样及分层抽样)之间有着紧密的联系,是在学习完抽样方法后的第一节课.数据被收集后,很自然地要从中提取出我们所需要的信息,使我们能够通过样本来估计总体.然而数据通常是多而杂乱的,我们往往无法直接从中理解它们的含义.于是,采用什么方法来分析数据就成为急需解决的问题.我们常常借助图、表、计算等方式来分析数据,帮助我们获取数据中的规律,将数据中所包含的信息转化成直观的容易理解的形式.这样,频率分布表和频率分布直方图就自然地产生了.在此基础上,我们就可以对总体作出相应的估计;另一方面本节内容本身就是利用样本估计总体的一个重要方法,它是后面即将要学习的用样本的数字特征估计总体数字特征的基础,二者在思想方法上是一脉相承的,为后续知识的学习作了很好的铺垫.本节的引言首先说明了用统计方法解决实际问题的一般框架,明确了估计总体分布和总体数字特征的重要性.接着通过对“居民生活用水定额管理问题”的探究,引出对总体分布的估计问题及估计总体分布的途径的讨论,这个问题贯穿本节始终.通过对该问题的探究,让学生学习列频率分布表和画频率分布直方图,最后又围绕这个问题的解决方案,让学生尝试用直方图来解决实际问题,体会用样本估计总体的思想.根据以上分析,本节课的教学重点确定为:(1)会列频率分布表,画频率分布直方图;(2)了解频率分布与总体分布之间的关系,体会用样本估计总体的思想.3.教学问题诊断学生在小学学习过频数条形图,在初中就知道了分布的初步概念,对用样本估计总体有一定的认识,也已经学过把样本数据表示成频率条形图的形式,能从图表上直观地看出数据的分布情况,对用图表反映知识有一定的意识,这些都为本节内容的学习做了铺垫.虽然有些学生对直方图有所接触,但具体的操作步骤并不熟悉,同时,学生根据图形处理数据的能力不足,更不会利用图形分析问题、解决问题,对常见的数学思想的认识和应用停留在表面层次上,所以本节课的教学难点确定为:(1)能通过样本的频率分布估计总体分布;(2)体会分布的意义与作用.4.教学对策分析本节课通过对现实生活中实际例子的讲解,以问题探究和动手操作为主要方式,以问题解决为主线,引导学生通过对问题的交流讨论,学会画频率分布表和直方图,让学生体会观察——猜想——发现——归纳的学习方法.由于涉及数据较多,教学中采用多媒体课件辅助教学,如ppt、excel等突出重点,突破难点.5.教学基本流程导入新课→实例探究→操作讨论→方法归纳→应用示例→课堂练习→课堂小结6.教学过程设计(一)导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,武汉市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费. 如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?(二)实例探究问题1:如果标准太低,会影响居民的日常生活;如果标准太高,则不利于节水.那么你认为,为了较合理地确定出这个标准,需要了解哪些相关信息,做哪些工作?为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此应采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.通过抽样调查,获得100位居民2010年的月均用水量如下表(单位:t)3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.63.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.43.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.83.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.64.13.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.84.33.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.02.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.32.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.42.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.42.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2(三)操作讨论问题2:从表中随意记录下的数据中很难直接看出规律,因此需要对统计数据进行整理分析.从上表中,你能获取哪些信息?很容易发现的是一个居民月均用水量的最大值为4.3,最小值为0.2.问题3:仅仅知道最值,这些数据还是一盘散沙,仍然无法知道用水量集中在哪个区间,如何进一步分析、研究这些数据呢? 分组问题4:进一步,分组如何进行?是组数越多(少)越好吗?分多少组比较合适呢?组分得太多,没有必要,会增加工作量,浪费资源;组分得太少,看不出规律,也达不到效果.因此,组分得太多或太少,都会影响我们了解数据的分布情况.应根据样本容量,对数据适当分组.问题5:我们将样本数据中的最大值和最小值的差称为极差.表中数据的极差是多少?如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?各组数据的取值范围可以如何设定?极差为4.1,共分9组,各组数据的范围可设定为[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].问题6:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种用样本的频率分布估计总体分布的统计思想.问题7:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a 的取值)有何建议?88%的居民月用水量在3t 以下,可建议取a =3.(四)方法归纳问题8:通过上面的讨论,你能归纳出列频率分布表的步骤吗?第一步,求极差.第二步,决定组距与组数.1.00100合计0.022[4,4.5] 0.044[3.5,4) 0.066[3,3.5) 0.1414[2.5,3) 0.2525[2,2.5) 0.2222[1.5,2) 0.1515[1,1.5) 0.088[0.5,1) 0.044[0,0.5)频率频数频数分组第三步,确定分点,将数据分组.第四步,列频率分布表.问题9:有了频率分布表,虽然能反映样本数据的频率分布情况,但不够直观.请大家回忆,我们在函数、线性规划等章节的学习过程中,是如何将已知条件直观化、形象化的?作图问题10:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的频率分布直方图表示.频率分布直方图中=频率小长方形的高组距.那么小长方形的面积表示什么?所有小长方形的面积和=?图1小长方形的面积表示该组的频率.所有小长方形的面积和=1.问题11:你能概括出频率分布直方图的作图步骤吗?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.(五)应用示例例1.为了了解九年级女生身高情况,某中学对九年级女生的身高(单位:cm )进行了一次测量,将所得数据整理后列出了频率分布表如下:(1)求出表中m ,N M n ,,所表示的数;(2)在图2122--中画出频率分布直方图.(六)课堂练习练习1:样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算X 的值为,样本数据落在[6,14)内的频数为.(七)课堂小结1. 频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律.我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2. 频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3. 样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况.二、教学反思本节课我采用分析与思考的方法引导学生的自主探究活动,教给学生分析问题、解决问题的研究方法,培养学生善于动手、善于观察、善于思考的学习习惯.鼓励学生大胆积极参与,使学生在自主探究和合作交流中理解和掌握本节课的内容,力求在整个探究学习的过程中充满师生交流、生生交流以及互动.本节课从问题入手,使学生带着兴趣进入课堂,为学习新知识做好了准备,设计符合学生的认知规律,从具体到抽象,从特殊到一般,从学生熟悉的、有兴趣的问题开始,通过设疑迁疑让学生逐步理解统计的数学思想方法,对学生今后学习和分析数学问题很有帮助.不足之处是在学生探究这个环节上留给学生思考的时间少了点;同时,对于频率分布直方图中为什么用频率/组距作为纵坐标,而不直接用频率作为纵坐标,我个人还存在疑惑..本节课,我觉得基本上达到了教学目标,在整个教学过程中学生的参与积极性也还不错,暴露出的一个问题就是学生的语言表达不是很好,缺乏数学语言的准确性、简洁性.。

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课)2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课)2.3.1 变量之间的相关关系(新授课)2.3.2 两个变量的线性相关(第一课时)(新授课)2.3.2 两个变量的线性相关(第二课时)(新授课)2.3.2 生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。

本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。

二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。

(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。

(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

(4)通过试验、查阅资料、设计调查问卷等方法收集数据。

2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。

(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。

(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。

(4)进一步体会用样本估计总体的思想。

(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。

(6)形成对数据处理过程进行初步评价的意识。

人教A版高中数学必修3《二章 统计 小结》优质课教案_14

人教A版高中数学必修3《二章 统计  小结》优质课教案_14

第二章统计复习教案一、教学目标:1、整合本章知识点,完善知识结构,体会知识之间的相关关系,能应用所学知识解决一些简单的统计问题。

2、在归纳总结知识的过程中完善知识结构。

3、让学生在学习中自觉应用类比,数形结合等数学思想方法帮助学习。

二、教学重难点重点:构建本章(统计)的知识结构,能应用所学知识解决简单的统计问题。

难点:应用所学知识解决简单的统计问题。

三、教学方法:归纳总结法,讲练结合法四、教学用时:1课时五、教学过程设计2、用样本估计总体(1)用样本估计总体的两种情况 ①用样本的频率分布估计总体的分布.②用样本的数字特征估计总体的数字特征. (2)绘制频率分布直方图的步骤 (3)频率分布折线图和总体密度曲线频率分布直方图――――――――→连接各小长方形上端的中点频率分布折线图 ――――――――――――→样本容量不断增大,频率折线图接近于一条光滑曲线总体密度曲线 (4)茎叶图的制作步骤 ①将数据分为茎和叶两部分;②将最大茎和最小茎之间数据按大小次序排成一列; ③将各个数据的“叶”按大小次序写在茎右(左)侧.(5)数字特征①众数:一组数据中重复出现次数最多的数.②中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.③平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.④标准差的计算公式: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2 ⑤方差的计算公式:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],想一想:众数、中位数、平均数与频率分布直方图的关系。

3、两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. (2)正相关与负相关:① 正相关:散点图中的点散布在从左下角到右上角的区域. ② 负相关:散点图中的点散布在从左上角到右下角的区域. (3)回归直线的方程① 回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.② 回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程.二、巩固练习1、要从已编号(1—60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的枚导弹的编号可能是( ) A 、5,10,15,20,25,30 B 、3,13,23,33,43,53 C 、1,2,3,4,5,6 D 、2,4,8,16,32,482、某公司现有普通职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则普通职员,中级管理人员和高级管理人员各应该抽取多少人( )A 、8,15,7B 、16,2,2C 、16,3,1D 、12,3,5 3、右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( ) A 、161cm B 、162cmC 、163cm D 、164cm4、为了了解某地区高中学生的身体发育情况,抽查了该地区100名年龄在17.5~18岁的男生体重(单位:kg ),得到频率分布直方图如下: 求这100名学生中体重在56.5~64.5范围内的人数.5、某商场为了调查旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得数据整理后,画出频率分布直方图如下,已知图中从左到右前3个小矩形的面积之比为1︰2︰3,第二小组的频数为10. (1)求样本容量;(2)估计购鞋尺寸在37.5~43.556.5 60.5 64.5 68.5 72.56、已知某人5次上班途中所花时间的平均数为10分钟,方差为2分钟,其中有三次上班途中所花时间分别为9分钟,10分钟和11分钟,求另两次上班途中所花的时间.7、随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.8、某工厂经过技术改造后,生产某种产品的产量x 吨与相应的生产能耗y 吨标准煤有如下几组样本数据:(1)样本数据是否具有线性相关关系?若是,求出其回归方程; (2)预测生产100吨产品的生产能耗约需多少吨标准煤?三、课堂小结1、本章中统计的相关知识。

人教版高中数学A版必修三优秀教案(第二章--统计)

人教版高中数学A版必修三优秀教案(第二章--统计)

第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,200,…,700. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.整体设计教学分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当n N 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.通过自学课后“阅读与思考”,让学生进一步了解虚假广告是淡化总体和抽样方法、强化统计结果来夸大产品的有效性,以提高学生理论联系实际的能力.重点难点教学重点:实施系统抽样的步骤.教学难点:当nN 不是整数,如何实施系统抽样. 课时安排1课时教学过程导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样.推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N ,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.。

高中数学 第二章 统计教案 新人教A版必修3

高中数学 第二章 统计教案 新人教A版必修3

第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间约需7课时,具体分配如下(仅供参考):2.1.1 简单随机抽样约1课时2.1.2 系统抽样约1课时2.1.3 分层抽样约1课时2.2.1 用样本的频率分布估计总体分布约1课时2.2.2 用样本的数字特征估计总体的数字特征约1课时2.3 变量间的相关关系约1课时本章复习约1课时2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果% 选举结果%Roosevelt 43 62Landon 57 38 你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,200,…,700. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计简单随机抽样一.学习要求1. 正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2. 在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;3. 感受抽样统计的重要性和必要性.二.课前自学(一)阅读课本,梳理知识1.简单随机抽样设一个总体含有N个个体,从中逐个__________________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都______________,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类(1)抽签法.抽签法的步骤为:①将总体中的N个个体_____________________;②把号码写在号签上;③将号签放在一个容器中,并_____________________;④从容器中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数法.①随机数法:利用______________、随机数骰子或计算机产生的随机数进行抽样的方法.②用随机数表法抽取样本的步骤是:(ⅰ)将总体中的个体编号(每个号码位数___________);(ⅱ)在随机数表中______________作为开始;(ⅲ)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则______________;若得到的号码不在编号中或前面已经取出,则___________,如此继续下去,直到取满为止;(ⅳ)根据选定的号码抽取样本.(二)基础自测,检验效果1.抽签法中,确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取 D.抽样不放回2.下列抽取样本的方式属于简单随机抽样的是()①从无限多个个体中抽取100个个体作样本;②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里;③从8台电脑中不放回随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取).A.①B.②C.③ D.以上都不对3.为了了解某班学生会考的合格率,要从该班60名同学中抽取20人进行考查分析,则这次考查中的总体容量是_______________,样本容量是_____________.4.当选用随机数表法读数,选定开始读取的数后,读数的方向为_________________.(三)疑惑摘要三.课中互动(一)合作探究1.简单随机抽样假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?2.简单随机抽样简单随机抽样每个个体被抽取的可能性是否都相等?3.抽签法一般什么情况下考虑使用抽签法?4.抽签法在用抽签法抽取样本时,为保证抽样的公平性,关键的一步是什么?5.随机数法有同学认为:“随机数表只有一张,并且读数时只能按照从左向右的顺序读取.”你认为这种说法正确吗?6.随机数法用随机数法抽取样本时应怎样对总体编号?(二)展示交流题型1:(随机抽样)例1 (1)某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100(2)要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为____.题型2:(简单随机抽样和抽签法)例2 某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用抽签法抽取上述样本?题型2:随机数表法例3从800件产品中抽取60件进行质检,利用随机数法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数,则最先抽取的4件产品的编号依次是,,,.(如图摘录了随机数表第7行至第9行的各数)(三)课堂小结1.通过样本去推断总体的三个步骤2.可用简单随机抽样抽取样本的依据3.一个试验能否用抽签法的关键4.用随机数表法进行抽取的要点四.课后探究(一)练习1.在简单随机抽样中,某一个个体被抽到的可能性A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与经几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为A. D.013.从2017名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2017人中剔除17人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率为__________(二)探究(接受挑战)4.为了确定高一某化学实验在实际操作中的成功率,现从1 200名高一学生的实验报告单中取出50个进行抽样统计,来判断该实验的成功率,请你设计一下抽样过程.系统抽样一.学习要求1.理解系统抽样的概念.2.掌握系统抽样的一般步骤,会利用系统抽样抽取样本.3.理解系统抽样与简单随机抽样的关系,能够灵活应用系统抽样的方法解决统计问题.二.课前自学(一)阅读课本,梳理知识1. 系统抽样的定义:要从容量为 N 的总体中抽取容量为 n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取______个个体,得到所需要的________,这种抽样的方法叫做______________.2.系统抽样的步骤为:一般地,假设要从容量为 N 的总体中抽取容量为 n 的样本,我们可以按下列步骤进行系统抽样:①将总体的 N 个个体_____________.②确定分段间隔 k,对编号进行分段.当N/n是整数时, k= _______;当不是整数时,先从N 个总体_________________,使得N/n是________,再取 k= _________.③在第 1 段用简单随机抽样法确定第一个个体编号 h .④按照一定的规则抽取样本,如果是将 h 加上间隔 k 的方法得到样本,那么得到的样本的编号为: h ,______,_______,….. ,__________3.系统抽样有以下特征:(1)当总体容量 N____________时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求____________,因此,系统抽样又称等距抽样,这时,间隔一般为 k=[N/n]([x]是指 x 的值的整数部分)(3)预先制定的规则指的是:在第 1 段内采用_____________确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.(4)系统抽样过程中每个个体被抽取的可能性仍然是__________________.(二)基础自测,检验效果1.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.4C.5D.62.在1000个有机会中奖的号码(编号为000~999)中,公证部门用随机抽取的方法确定后两位数为88的号码为中奖号码,则这10个中奖号码为_______________.3.某质检人员从编号为1~100的100件产品中,依次抽出号码为3,7,11,…93,97的产品进行检验,则这样的抽样方法是_______________.4.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段间隔为__________________.(三)疑惑摘要三.课中互动(一)合作探究1.某地区有高中生2400人,初中生10800人,小学生11100人,当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,请据材料回答下列问题.(1)此问题还能用简单随机抽样或系统抽样抽取样本吗?(2)怎么抽取更合理呢?(3)在上述抽样过程中,每个学生被抽到的可能性相等吗?2.系统抽样及其实施步骤根据系统抽样的操作步骤,探究以下问题:(1)用系统抽样从总体中抽取样本时,首先要做的工作是什么?(2)用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?(3)用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?(二)展示交流例1(系统抽样的概念)1.从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性()A.不全相等B.均不相等C.都相等,且为502007D.都相等,且为1402.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从l到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段抽出的号码为125,则第1段中用简单随机抽样确定的号码是()A.7B.5C.4D.3例2(系统抽样的步骤)一个体育代表队有200名运动员,其中两名是种子选手.现从中抽取13人参加某项运动会,若种子选手必须参加,请用系统抽样的方法给出抽样过程.例3(系统抽样的计算)1.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为()A.25,17,8B.25,16,9C.26,16,8D.24,17,92.将一个总体中的100个个体编号为0,1,2,3,…,99,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样的方法抽取一个容量为10的样本,如果在第0组(号码为0,1,…,9)随机抽取的号码为s,那么依次错位地抽取后面各组的号码,其第k组中抽取的号码个位数为k+s或k+s-10(如果k+s≥10),若s=6,则所抽取的10个号码依次是 .(三)课堂小结1.判断系统抽样的两个步骤步骤一:看是否在抽样前知道总体是由什么构成的,抽样方法能否保证每个个体按事先规定的可能性入样.步骤二:看是否将总体分成几个均衡的部分,并在第一个部分中进行简单随机抽.2.系统抽样与简单随机抽样的关系3.系统抽样计算的两个注意点(1)等距性:在系统抽样中,求解某一间隔上的号码,主要应用抽取的号码一定是等距的这一特点.(2)转化思想:系统抽样是把一个问题分成若干部分解决,从而把复杂的问题简单化,体现了转化思想.四.课后探究(一)练习1.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数法C.系统抽样D.有放回抽样2.高一(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样,采用等距抽取的方法抽取一个容量为4的样本,已知5,33,47的同学在样本中,那么还有一位同学的编号应为()A.19B.20C.29D.303.一个总体依有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是_________.(二)探究(接受挑战)3.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:40;确定随机数字:取一张人民币,编码的后两位数为02;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;…(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?分层抽样一.学习要求1.正确理解分层抽样的定义,灵活应用分层抽样抽取样本.2.掌握简单随机抽样、系统抽样、分层抽样的区别与联系.二.课前自学(一)阅读课本,梳理知识1.层抽样的概念在抽样时,将总体分成_________的层,然后按照 _____________,从各层_____地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持___________与____________的一致性,这对提高样本的代表性非常重要.当总体是由_______________的几个部分组成时,往往选用分层抽样的方法.(二)基础自测,检验效果1.总体由差异明显的几部分组成时,通常采用方法抽取样本.2.如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性是()A.1NB.1nC.NnD.nN3.某工厂生产A,B,C三种不同型号的产品,产品数量之比为2:3:5,现用分层抽样方法抽取一个容量为n的样本,样本中A型产品有16件,那么此样本容量n= .(三)疑惑摘要三.课中互动(一)合作探究1.某地区有高中生2400人,初中生10800人,小学生11100人,当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,请据材料回答下列问题.(1)此问题还能用简单随机抽样或系统抽样抽取样本吗?(2)怎么抽取更合理呢?(3)在上述抽样过程中,每个学生被抽到的可能性相等吗?2.分层抽样的实施及步骤在分层抽样的步骤中,为什么要将总体分成互不交叉的层?3.分层抽样的实施及步骤在分层抽样中,如果总体的个体数为N,样本容量为n,第i 层的个体数为k,则在第i层应抽取的个体数如何算?4.分层抽样的实施及步骤有人说系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样的概念,故系统抽样是一种特殊的分层抽样,对吗?为什么?5.分层抽样的实施及步骤样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数,该如何处理?6、简单随机抽样、系统抽样、分层抽样的比较(二)展示交流例1(分层抽样的概念)1.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A.6B.8C.10D.122.已知某校的初中学生人数、高中学生人数、教师人数比为20:15:2,现在用分层抽样的方法从所有师生中抽取一个容量为N的样本进行调查,若从高中学生中抽取了60人,则N=________.例2(分层抽样的应用)某学校共有教职工900名,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x的值.(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?例3(三种抽样方法的综合应用)为了调查某学校的教学水平,将抽取这个学校高三年级的部分学生本学年的考试成绩进行调查,为了全面反映实际情况,采取以下三种方式进行抽查(已知该学校高三年级共有20个班,并且每个班内的学生按随机方式编好了学号,假定该学校每班学生人数都相同):第一种先从全年级20个班中任意抽取1个班,再从该班任意抽取20人,抽查这20人的学习成绩;第二种从每个班中各抽取1人,共计20人,抽查这20人的成绩;第三种把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行调查(若按成绩分,则该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽查方式中各自采用何种抽样方法?(2)试分别写出上面三种抽查方式各自抽取样本的步骤.(三)学习小结1.分层抽样的特点2.分层抽样的操作步骤3.三种抽样方法的对比四.课后探究(一)练习1.某高中在校学生2 000人,高一年级与高二年级人数相同并都比高三年级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参与而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:其中a:b:c=2:3:5,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二年级参与跑步的学生中应抽取()A.36人B.60人C.24人D.30人2.某中学共有学生2 000人,为了了解学生的视力情况,现采用分层抽样的方法抽取一个200人的样本,若女生比男生少抽了10人,则该校女生有人.(二)探究3.某单位有技术工人18名、技术员12人、行政人员6人、现需从中抽取一个容量为n的样本.如果采用系统抽样或分层抽样,都不需要剔除个体;如果样本容量为n+1,则在系统抽样时,需要从总体中剔除1个个体,求n的值.用样本的频率分布估计总体分布(1)一.学习要求1.通过实例体会分布的意义与作用;2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图.二.课前自学(一)阅读课本,梳理知识1.频率分布表:2.编制频率分布表的步骤:(1) ,决定组数和组距,组距=组数全距; (2) ,区间一般左闭右开(为了遵循统计分组穷尽和互斥原则,所以统计上规定,凡是总体某一个单位的变量值是相邻两组的界限值,这一个单位归入作为下限值的那一组内,即所谓“上限不在内”原则);(3) ,计算频率,列出频率分布表.3. 频率分布直方图: (在平面直角坐标中,横轴表示数据分组,即各组组距,纵轴表示频率).(1) 频率分布表、频率分布直方图等是将统计对象的样本值,用直观图表表示出来,以反映总体分布的重要方法,直方图绘图步骤:①计算一组数据中最大值与最小值的差,即求极差.②决定组距与组数.③将数据分组.④列出频率分布表.⑤画频率分布直方图.(2)频率分布直方图的特征:4.频率分布折线图与总体密度曲线(1)连接频率分布直方图中各小长方形上端的_____,就得到频率分布折线图.(2)在样本频率分布直方图中,当样本容量逐渐增加,作图时所分的组数增加, _____减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(二)基础自测,检验效果1.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 等于________.)A .0.13B .0.39C .0.52D .0.643.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为________.(三)疑惑摘要三.课中互动(一)问题情景问题1:在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。

相关文档
最新文档