卫星变轨问题

合集下载

卫星变轨问题知识点总结

卫星变轨问题知识点总结

卫星变轨问题知识点总结
卫星变轨是指卫星在轨道上偏离原有轨道进行调整的过程,用于满足不同的需求,如太阳同步轨道、地球静止轨道等。

以下是卫星变轨问题的几个知识点总结:
1. 变轨方式:变轨主要有化学推进剂变轨和电推进剂变轨两种方式。

前者通常采用火箭发动机进行推进,后者则利用电磁力进行推进。

2. 变轨方法:变轨方法通常包括单次变轨、多次变轨、连续变轨等几种。

其中单次变轨是指通过一次加速或减速达到目标轨道;多次变轨是分数次进行变轨,实现最终目标轨道;连续变轨则是通过对卫星进行定期推进来维持轨道的稳定。

3. 变轨技术:变轨技术主要包括贴近飞行、引力助推、轨道选择等。

贴近飞行需要精确掌握卫星的运动状态,以便在飞行过程中进行微调;引力助推则是利用行星或月球等天体的引力来实现变轨;轨道选择则是根据具体任务需求选择不同的轨道。

4. 变轨误差:变轨过程中存在着各种误差,如发动机性能波动、气象条件变化等。

这些误差会影响卫星的运行轨迹,需要对其进行修正和控制。

5. 动力学方程:卫星的运动状态可以通过动力学方程描述。

动力学方程包括万有引力、空气阻力、电磁效应等多个因素,并可通过数值积分方法求解得到卫星的运动状态。

总之,卫星变轨是卫星运行中重要的环节之一,需要精确掌握
变轨技术和动力学方程,保证卫星能够按照预定轨道稳定运行,实现各种任务目标。

专题4:卫星的变轨问题(课件)高一物理(人教版2019必修第二册)

专题4:卫星的变轨问题(课件)高一物理(人教版2019必修第二册)

第四部分:变轨的实质
变轨实质
变轨原因 万有引力与 向心力的关系
变轨结果
离心运动
近心运动
卫星速度增大
卫星速度减小
G
Mm r2
m
v2 r
G
Mm r2
m
v2 r
新圆轨道上运动的 线速度、角速度都减小, 周期变大,总能量增加
新圆轨道上运动的 线速度、角速度都增大, 周期变小,总能量减少
THANKS
感谢观看
原因二:发动机
正如汽车爬山一样,为了克服 阻力需要汽车发动机持续大功 率输出。持续高功率输出会加 重汽车发动机的负担,严重时 甚至损毁。所以人们用盘山公 路来解决汽车爬坡问题。
原因二:发动机
火箭也是一样,不过它 不仅考虑发动机输出功 率的问题,还要考虑燃 料分配等很多问题。
原因三:测控要求
发射火箭不仅要有足够的燃料, 还要能对火箭的飞行过程进行有效 的测量和控制。有效测控点越多, 测控精度就越高,发射过程也就越 可控。比如前期的入轨精度,真可 谓差之毫厘谬之千里。
【参考答案】BC
D.中国空间的面积
五、实例探究4——空间对 接
【典例4】2022年11月3日,长征五号B运载火箭将梦天实验舱送入预定轨道。之后,
梦天实验舱成功与天和核心舱对接,标志着我国空间站“T”字基本构型在轨组装完
成。天和核心舱绕地球稳定运行时距离地球表面约400km,已知地球半径约为6400km,
空间站 飞船
第三部分:两种变轨类型
渐变与突变
一、渐变 由于某种因素(如受到稀薄大气的阻力作用或外界引力等)的影
响,使卫星的轨道半径发生缓慢的变化(逐渐减小或逐渐增大),由于 半径变化缓慢,卫星的运动仍可以当做匀速圆周运动处理。

第八讲:卫星变轨问题和双星问题

第八讲:卫星变轨问题和双星问题

第八讲:卫星变轨问题和双星问题一、卫星相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb .若某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示.当它们转过的角度之差Δθ=π,即满足ωa Δt -ωb Δt =π时,两卫星第一次相距最远,如图乙所示.当它们转过的角度之差Δθ=2π,即满足ωa Δt -ωb Δt =2π时,两卫星再次相距最近.二、卫星变轨问题1.变轨分析(1)卫星在圆轨道上稳定运行时, G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . (2)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加.(3)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,例题、如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速周运动,且轨道半径为r ,某时刻工作卫星1、2分别位于轨道上的A 、B 两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力。

下列判断正确的是( )例题、如图所示,三个质点a 、b 、c 质量分别为m 1、m 2、M ,(M >>m 1,M >>m 2).a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a :T b =1:k .(k >1,为正整数)从图示位置开始,在b 运动一周的过程中,则( )A .a 、b 距离最近的次数为k 次B .a 、b 距离最近的次数为k+1次C .a 、b 、c 共线的次数为2k 次轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. 三、多星模型1.定义绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.A .这两颗卫星的加速度大小相等,均为22gR rB .卫星1出A 位置运动到B 位置所需的时间是3rr R gC .这两颗卫星的机械能一定相等D .卫星1向后喷气就一定能够追上卫星22.特点(1)各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L 2=m 2ω22r 2. (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2. (3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L .3.两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.针对训练题型1:相遇问题1.如图所示,A 和B 两行星绕同一恒星C 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,某一时刻两行星相距最近,则( )A .经过T 1+T 2两行星再次相距最近B .经过两行星再次相距最近C .经过两行星相距最远D .经过两行星相距最远2.已知地球自转周期为T0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星至少相隔多长时间才在同一城市的正上方出现一次.()A.B.C.D.题型2:变轨问题3.如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。

卫星变轨问题

卫星变轨问题

- 1 - 一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。

如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化.由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力rmv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。

由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。

三、突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标. 如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2r GMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ.点火过程中卫星的线速度增大。

卫星变轨问题

卫星变轨问题

卫星变轨问题正常运行时速率、周期、加速度的比较。

1. 速度的比较。

卫星做匀速圆周运动,在同一个轨道上其环绕速率是不变的,不同轨道上环绕速率不同,高轨低速,所有轨道速度;卫星做椭圆运动,其速率是变化的,离地心越近,速率越大,离地心越远,速率越小,即近大远小,其运行速率。

在同一点,离心速度大于圆周速度,圆周速度大于近心速度。

简单讲就是,内小外大。

由此可以判断,在上图中, 。

2. 周期的比较。

比较半径或半长轴。

半径越大,周期越大。

所以有:.3. 加速度的比较。

正常运行时的加速度比较,可由来判断。

4. 向外变轨加速,向内变轨减速。

题目练习:1:某卫星在A 点短时间开动小型发动机进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B 为轨道Ⅱ上的一点,如图所示。

下列说法中正确的有 A .在轨道Ⅱ上经过A 的速率大于经过B 的速率 B .在轨道Ⅱ上经过A 的速率小于在轨道Ⅰ上经过A 点的速率C .在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度2:某宇宙飞船由运载火箭先送入近地点为A 、远地点为B 的椭圆轨道,在B 点实施变轨后,再进入预定圆轨道,如图4所示。

已知飞船在预定圆轨道上飞行n 圈所用时间为t ,近地点A 距地面高度为h 1,地球表面重力加速度为g ,地球半径为R 。

求:图4v 2v 3 v 4v 1 Q P Ⅰ Ⅲ Ⅱ B 轨道Ⅰ 轨道Ⅱ(1)飞船在近地点A的加速度a A为多大?(2)远地点B距地面的高度h2为多少?3.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小4.如图2所示,宇宙飞船A在低轨道上飞行,为了给更高轨道的空间站B输送物资,它可以采用喷气的方法改变速度,从而达到改变轨道的目的,则以下说法正确的是()图2A.它应沿运行速度方向喷气,与B对接后运行周期变小B.它应沿运行速度的反方向喷气,与B对接后运行周期变大C.它应沿运行速度方向喷气,与B对接后运行周期变大D.它应沿运行速度的反方向喷气,与B对接后运行周期变小5.某宇宙飞船在月球上空以速度v绕月球做圆周运动。

专题08 卫星变轨问题-物理核心探秘

专题08 卫星变轨问题-物理核心探秘

r 3 GM专题八、卫星变轨问题问题分析卫星环绕地球做匀速圆周运动时所需向心力由地球对它的万有引力提供,稳定运行时,其线速度、角速度、周期、向心加速度均为定值,且仅与轨道半径有关而与卫星质量无关;如果卫星所受万有引力不刚好提供向心力, 其运行速率及轨道半径均要发生变化,即发生变轨运动:若使卫星速率减小,则万有引力大于所需向心力,轨道半径将减小;若使卫星速率增大,则万有引力小于所需向心力,轨道半径将增大。

Mmv 224 2Gr2=m=mω r = mrT 2r =ma 向=mg ,解得 v =, ω= ,a =g = GM ,T =2π, 向r 2由于卫星的线速度决定着卫星的动能,即 E k = 1 2mv 2, 而卫星高度越高,其具有的重力势能也就越大,对于上述 规律可以简记为:高轨低速小动能,高轨高势大周期.具体含义是卫星的运行轨道越高,卫星的线速度、角速度、向心加速度、卫星所在位 置处的重力加速度,就越小;卫星的动能越小,卫星的重力势能就越大,卫星运行周 期也越大,反之则反.李老师温馨提示:在遇到卫星轨道转移问题时,椭圆轨道和圆周轨道的相切点的线速度时,要牢记内小外大,其含义是,内轨道的线速度小,外轨道的线速度大!如图所示,M 点是轨道 2 和 3 的相切点,2 是内轨道,3 是外轨道,则有 v 2<v 3, 原因是对于卫星沿轨道 3 圆周运动通过 M 点时,满足 GMm v 2=m 2 ,而轨道 2 由远地点 M 点向近地点 N 点运动r 2r时做近心运动,满足 GMm v 2>m 2 ;卫星沿轨道 1 圆周运动通过 N 点,满足 G r 2rMm v 2=m 1 r2 r,而轨道 2 由远地点 N点向近地点 M 点运动时做离心运动,满足 GMm r 2 v 2 <m 2 ,则有 v 1<v 2。

r这个规律同样适合于玻尔理论,氢原子能级问题!卫星变轨的实质两类变轨 离心运动 近心运动 变轨起因 卫星速度突然增大卫星速度突然减小万有引力与向心力 的大小关系GMm <mv 2r2rGMm >mv 2r2r变轨结果转变为椭圆轨道运动或在较大半径 圆轨道上运动转变为椭圆轨道运动或在较小半径圆 轨道上运动GM rGM r 33 2 MN1在处理下列实际问题中,请你先用上述 14 个文字进行判断,可以做到秒杀答案,然后再详细参考一下解析!【调研 1】(2013·新课标全国Ⅰ)2012 年 6 月 18 日,“神州九号”飞船与“天宫一号”目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气, 下面说法正确的是 ()A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,“天宫一号”的动能可能会增加C. 如不加干预,“天宫一号”的轨道高度将缓慢降低D. 航天员在“天宫一号”中处于失重状态,说明航天员不受地球引力作用【解析】第一宇宙速度为最大环绕速度,天宫一号的线速度一定小于第一宇宙速度,故 A 选项错误;根据万有引力提供向心力,有 G Mm=m v r 2 r,解得v ,得轨道高度降低,卫星的线速度增大,故动能将增大,所以 B 选项正确;卫星由于摩擦阻力做功,利用控制变量,假设轨道高度不变,只能是速度减小,提供的引力大于卫星所需要的向心力,故卫星将做近心运动,即轨道半径将减小,故 C 项正确;航天员在“天宫一号”中处于失重状态,而这恰好是航天员受地球引力全部用于做圆周运动的向心力导致的完全失重状态,D 选项错误. 答案 BC【调研2】2008 年9 月25 日至28 日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点 343 千米处点火加速,由椭圆轨道变成高度为 343 千米的圆轨道,在此圆轨道上飞船运行周期约为 90 分钟.下列判断正确的是 ( )A. 飞船变轨前后的机械能相等B. 飞船在圆轨道上时航天员出舱前后都处于失重状态C. 飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D. 飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度【解析】飞船点火变轨,前后的机械能不守恒,所以 A 项不正确.飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B 项正确.飞船在此圆轨道上运动的周期 90 分钟小于同步卫星运动 的周期 24 小时,根据 T =2π,可知,飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度,C 项正ω确.飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D 项不正确. 答案 BC【调研 3】探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与2变轨前相比( )GM rGM r A .轨道半径变小 B .向心加速度变小 C .线速度变小D .角速度变小【解析】 由开普勒定律知,对绕同一中心天体的所有卫星,轨道的半长轴的三次方跟公转周期的二次方的R 32π比值都相等,即 T 2 =k ,知周期减小,则半径减小,A 选项正确;由ω= T,知角速度增大,D 选项错误;根据 G Mm =ma ,得 a = GM r 2 r 2 ,半径减小,向心加速度变大,B 选项错误;由 G Mm r 2 v 2 =m ,解得线速度 v = , r得轨道高度降低,卫星的线速度增大,C 选项错误. 答案 A【调研 4】“神舟十号”与“天宫一号”已 5 次成功实现交会对接。

卫星变轨问题(推荐完整)

卫星变轨问题(推荐完整)

地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次
点火,将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2
、3相切于P点,如图所示。则当卫星分别在1、2、3轨道
上正常运行时,以下说法正确的是:
( BD )
A.卫星在轨道3上的速率大于在轨道1上的速率
B.卫星在轨道3上的角速度小于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上
(2)a、v 、ω、T 均与卫星的质量无关,只由轨道半径 r 和中 心天体质量共同决定。
(3)卫星变轨时半径的变化,根据万有引力和所需向心力的大
小关系判断;稳定在新轨道上的运行速度变化由 v = GrM判断。
(4)卫星在不同轨பைடு நூலகம்上运行时机械能不同,轨道半径越大,机 械能越大。
(5)卫星经过不同轨道相交的同一点时加速度相等,外轨道的 速度大于内轨道的速度。
卫星由低轨道进入高轨道后,重力势能增 加,动能减少,机械能增加 反之,卫星由高轨道进入低轨道后,重力 势能减少,动能增加,机械能减少 总结:1、势能的变化比动能变化快
2、轨道半径变大机械能增加,轨道 半径变小机械能减小,卫星在同一轨道上 运动,机械能不变。
(课标全国卷)发射地球同步卫星时,先将卫星发射至近
• 不行,因为飞船加速后做离心运动会偏离原来的圆 轨道而无法与空间站对接。
对接方法:
• 飞船首先在比空间站低的轨 道运行,当运行到适当位置 时,再加速运行到一个椭圆 轨道。
• 通过控制轨道使飞船跟空间 站恰好同时运行到两轨道的 相切点,此时飞船适当减速, 便可实现对接,如图示。
飞船
空间站
例:在太空中有两飞行器a、b,它们在绕地 球的同一圆形轨道上同向运行,a在前b在后,

专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题(解析版)

专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题导练目标 导练内容目标1 卫星的变轨问题 目标2 天体追及相遇问题 目标3双星和多星问题一、卫星的变轨问题 1.两类变轨简介两类变轨离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与 向心力的 大小关系 G Mmr 2<m v 2rG Mmr 2>m v 2r2.变轨前后各运行物理参量的比较(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v1、v3,在轨道Ⅰ上过A点和B点时速率分别为v A、v B。

在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。

(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A 点,卫星的加速度都相同,同理,经过B点加速度也相同。

(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。

(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。

若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3。

①在A点,由圆周Ⅰ变至椭圆Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;②在B点,由椭圆Ⅰ变至圆周Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;反之也有相应的规律。

【例1】2013年12月6日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。

在“嫦娥三号”沿轨道Ⅰ经过P点时,通过调整速度使其进入椭圆轨道Ⅰ,在沿轨道Ⅰ经过Q点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发射 ① 近 地 变 轨


转移轨道


⑧ ⑥

轨道修正
对接问题:宇宙飞船与空间站的对接
• 空间站实际上就是一个载有人的人造卫星, 那么,地球上的人如何到达空间站,空间 站上的人又如何返回地面?这些活动都需 要通过宇宙飞船来完成,这就存在一个宇 宙飞船与空间站对接的问题。
•思考:能否把宇宙飞船先发射到空间站的同 一轨道上,再通过加速去追上空间站实现对 接呢?
• 不行,因为飞船加速后做离心运动会偏离原来的圆 轨道而无法与空间站对接。
对接方ห้องสมุดไป่ตู้:
• 飞船首先在比空间站低的轨 道运行,当运行到适当位置 时,再加速运行到一个椭圆 轨道。
空间站
• 通过控制轨道使飞船跟空间 站恰好同时运行到两轨道的 相切点,此时飞船适当减速, 便可实现对接,如图示。
飞船
例:在太空中有两飞行器a、b,它们在绕地 球的同一圆形轨道上同向运行,a在前b在后, 它都配有能沿运动方向向前或向后喷气的发动 机,现要想b 尽快追上a 并完成对接,b应采 取的措施是( B ) A、沿运动方向喷气 B、先沿运动方向喷气,后沿运动反方向喷气 C、沿运动反方向喷气 D、先沿运动反方向喷气,后沿运动方向喷气
卫星变轨问题
卫星变轨原理
V
m
A
F引
r
Mm F引 G 2 r
v2 F向 m r
F引<F向
F引>F向
F引 F向
M
在A点万有引力相同
A点速度—内小外大(在A点看轨迹)
卫星变轨原理
思考:人造卫星在低轨道上运行,要想让其在 高轨道上运行,应采取什么措施? 在低轨道上加速,使其沿椭 圆轨道运行,当行至椭圆轨 道的远点处时再次加速,即 可使其沿高轨道运行。
v
减小
卫星变轨原理
L
F引
v3
mv3 Mm G 2 L L
2
使 卫 星 进 入 更 高 轨 道 做 圆 周 运 2 mv 4 Mm 动 使卫星加速到 v 4,使 G 2 L L
v4 v3
卫 星 的 回 收
1、如图所示,发射同步卫星时,先将卫星发射至近地 圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次 点火将其送入同步圆轨道3。轨道1、2相切于P点,2、3 相切于Q点。当卫星分别在1、2、3上正常运行时,以下 说法正确的是( ) 3 A、在轨道3上的速率大 2 于1上的速率 1 · P B、在轨道3上的角速度 Q 小于1上的角速度 C、在轨道2上经过Q点时 的速率等于在轨道3上经过Q点时的速率 D、在轨道1上经过P点时的加速度等于在轨道2上 经过P点时的加速度
“嫦娥奔月” 图
1. 2007年10月24日“嫦娥一号”卫星星箭分离,卫星进入绕 地轨道。在绕地运行时,要经过三次近地变轨:12小时椭圆轨 道①→24小时椭圆轨道②→48小时椭圆轨道③→修正轨道④→ 地月转移轨道⑤。11月5日11时,当卫星经过距月球表面高度 为h的A点时,再经三次变轨:12小时椭圆轨道⑥→3.5小时椭圆 轨道⑦→最后进入周期为T的极月圆轨道⑧ ,如图所示( D )
万有引力相同
·
1、卫星在二轨道相切点
2、卫星在椭圆轨道运行
速度—内小外大(切点看轨迹) 近地点---速度大,动能大 远地点---速度小,动能小
卫星变轨原理
mv2 Mm 使卫星加速到v 2 , 使 G 2 R R
卫星在圆轨 道运行速度 V1
2
R
1
F引
θ>900
2
V2
mv1 Mm G 2 R R
2
2、如图是发射地球同步卫星的简化轨道示意图,先将 卫星发射至距地面高度为h1的近地轨道Ⅰ上.在卫星 经过A点时点火实施变轨,进入远地点为B的椭圆轨道 Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ. 已知地球表面重力加速度为g,地球自转周期为T,地 球的半径为R.求: (1)近地轨道Ⅰ上的速度大小; (2)远地点B距地面的高度。
A.“嫦娥一号”由⑤到⑥需加速、由⑦到⑧需减速 B.发射“嫦娥一号”的速度必须达到第三宇宙速度 C.在绕月圆轨道上,卫星周期与卫星质量有关 D.卫星受月球的引力与它到月球中心距离的平方成反比 E.在绕月圆轨道上,卫星受地球的引力大于受月球的引力
② ③
转移轨道
发射 近 地 变 轨






轨道修正
2. 2007年10月24日,“嫦娥一号”卫星星箭分离,卫星进入 绕地轨道。在绕地运行时,要经过三次近地变轨:12小时椭 圆轨道①→24小时椭圆轨道②→48小时椭圆轨道③→修正轨 道④→地月转移轨道⑤。11月5日11时,当卫星经过距月球表 面高度为h的A点时,再经三次变轨:12小时椭圆轨道⑥→3.5 小时椭圆轨道⑦→最后进入周期为T的极月圆轨道⑧ ,如图 所示。若月球半径为R,试写出月球表面重力加速度的表达式。
相关文档
最新文档