2021年卫星变轨问题错解分析(典型例题详细解析)
第八讲:卫星变轨问题和双星问题解析版

第八讲:卫星变轨问题和双星问题一、卫星相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb .若某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示.当它们转过的角度之差Δθ=π,即满足ωa Δt -ωb Δt =π时,两卫星第一次相距最远,如图乙所示.当它们转过的角度之差Δθ=2π,即满足ωa Δt -ωb Δt =2π时,两卫星再次相距最近.二、卫星变轨问题1.变轨分析(1)卫星在圆轨道上稳定运行时, G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . (2)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加.(3)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,例题、如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速周运动,且轨道半径为r ,某时刻工作卫星1、2分别位于轨道上的A 、B 两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力。
下列判断正确的是( )例题、如图所示,三个质点a 、b 、c 质量分别为m 1、m 2、M ,(M >>m 1,M >>m 2).a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a :T b =1:k .(k >1,为正整数)从图示位置开始,在b 运动一周的过程中,则( )A .a 、b 距离最近的次数为k 次B .a 、b 距离最近的次数为k+1次C .a 、b 、c 共线的次数为2k 次轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. 三、多星模型1.定义绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.A .这两颗卫星的加速度大小相等,均为22gR rB .卫星1出A 位置运动到B 位置所需的时间是3rr R gC .这两颗卫星的机械能一定相等D .卫星1向后喷气就一定能够追上卫星22.特点(1)各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L 2=m 2ω22r 2. (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2. (3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L . 3.两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.针对训练题型1:相遇问题1.如图所示,A 和B 两行星绕同一恒星C 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,某一时刻两行星相距最近,则( )A .经过T 1+T 2两行星再次相距最近B .经过两行星再次相距最近C .经过两行星相距最远D .经过两行星相距最远【解答】解:根据万有引力提供向心力,列出等式:=mω2rω=所以ωA>ωBA行星的周期为T1,B行星的周期为T2,所以T1=T2=两行星相距最近时,两行星应该在同一半径方向上。
卫星变轨问题的解决方案

,
t
《
÷ ; t
_ ◆ I
≯ ≯
岛
t
.
砻
r -。 一 一| 一 薯 : 』 j l j | : 亭
弘 0
在 高 中物 理 的 万有 引 力 部 分 . 常 会 涉及 到卫 星 的 轨 道变 常 化 问题 学生 在 解 决这 部 分 问 题 的 时候 容 易 思 维 混乱 . 从 下 无 手, 或者 胡 乱 带公 式 . 成 错 解 。其 实 在 解 决 这类 问题 时 , 造 我们
小 , 以本题 正 确 答 案 应为 B、 所 D
D 飞船 的重 力 势 能逐 渐 减 小 . . 动能 逐 渐 增 大 . 械 能 逐 渐 机
减 小
由于 解 题 思路 的不 同 .得到 的是 完 全 不 同 的 两个 结论 . 可 见一 个 正 确 的解 题 思路 对 解 翘 是 多 么 的重 要
( 由G . ) 3 = ) m( z 可得: 2 V 7 M , T  ̄ 9g r =r 越小, 越小。
r 』
综 上 可知 : 速 度 增 大 , 速 度增 大 , 线 角 周期 减 小 , 能增 大 。 动
势 能 减 小 。此 外 . 于 存 在 阻 力做 负 功 . 成 飞船 的机 械 能 减 由 造
究 》 2 0 ,0 1
来 讲 的不 同范 围 , 即不 同的 语 言环 境 中表 现 } 的 “ ” 使 用 情 { { 们 的
况 及语 义 的 不 同
3陈 小荷 ,主观 量 问题 初 探 》J ,世界 汉语 教 学》 19 . 《 []《 ,94
4 吕叔 湘 , 现 代 汉 语 八 百词 》 M ] 商务 印书 馆 , 9 1 . 《 [ , 1 8
专题02 变轨问题(解析版)

02.变轨问题—万有引力与航天绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供,r m r Tm ma r v m r GMm 222224ωπ====,轨道半径r 确定后(在轨),与之对应的卫星线速度r GM v =,周期GMr T 32π=,向心加速度=a 2r GM 等也都是唯一确定的。
如果卫星的质量是确定的,那么,与轨道半径r 对应的卫星的动能、重力势能、总机械能也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生了变化,上述所有物理量都将随之变化。
一类变轨是卫星因为受稀薄大气的影响速度变小,从而做向心运动,使卫星在更低的轨道运行;另一类变轨例如发射同步卫星,先将卫星发射到近地轨道I ,使其绕地球做匀速圆周运动,速率为1v ,变轨时在P 点点火加速,短时间内将速率由1v 增加到2v ,使卫星进入椭圆形转移轨道 II ;卫星运行到远地点Q 时,速率为3v ,此时进行第二次点火加速,短时间内将速率由3v 增加到4v ,使卫星进入同步轨道III ,绕地球做匀速圆周运动。
如图所示:1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 变轨后进入轨道2做匀速圆周运动下列说法正确的是A.不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B.不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量 【答案】B【解析】从1到2,需要加速逃逸,A 错;2Mm Gma R =可得21a R∝,半径相同,加速度相同,卫星在椭圆轨道1上运动时,运动半径变化,a 在变,C 错B 对;卫星在圆形轨道2上运动时,过程中的速度方向时刻改变,所以动量方向不同,D 错。
2.如图6所示,飞船从轨道1变轨至轨道2。
若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】根据r m r Tm ma r v m r GMm 222224ωπ====, 得,动能=k E r GMm 2,r 变大,所以动能变小,A 错误;加速度=a 2r GM ,r 变大,所以加速度变小,B 错误;周期GMr T 32π=,r 变大,所以周期变大,C 正确;角速度3rGM=ω,r 变大,所以角速度变小,D 正确。
专题15 卫星变轨问题 2021年高考物理二轮专题解读与训练(解析版)

专题15 卫星变轨问题一、单选题1.“嫦娥三号”任务是我国探月工程“绕、落、回”三步走中的第二步,“嫦娥三号”分三步实现了在月球表面平稳着陆.一、从100公里×100公里的绕月圆轨道上,通过变轨进入100公里×15公里的绕月椭圆轨道;二、着陆器在15公里高度开启发动机反推减速,进入缓慢的下降状态,到100米左右着陆器悬停,着陆器自动判断合适的着陆点;三、缓慢下降到距离月面4米高度时无初速自由下落着陆.下图是“嫦娥三号”飞行轨道示意图(悬停阶段示意图未画出).下列说法错误的是( )A .“嫦娥三号”在椭圆轨道上的周期小于圆轨道上的周期B .“嫦娥三号”在圆轨道和椭圆轨道经过相切点时的加速度相等C .着陆器在100米左右悬停时处于失重状态D .着陆瞬间的速度一定小于9m/s【答案】C【解析】A .据题意,“嫦娥三号”在椭圆轨道上的周期和在圆轨道上的周期可以通过开普勒第三定律分析,即3322=R R T T 圆椭圆椭由于R R >圆椭,则T T >圆椭故选项A 正确,不符合题意;B .据2Mm Gma R= 可得向心加速度 2GM a R= 可知,切点加速度相等,故选项B 正确,不符合题意;C .当着陆器处于悬停状态时受力平衡,故选项C 错误,符合题意;D .由于着陆瞬间做自由落体运动,则着陆瞬间速度为v === 故选项D 正确,不符合题意。
故选C 。
2.2018年12月8日中国在西昌卫星发射中心成功发射了嫦娥四号探测器,经过地月转移飞行,按计划顺利完成近月制动,进入环月椭圆轨道,然后实施近月制动,顺利完成“太空刹车”,被月球捕获,进入距月球表面约100km 的环月圆形轨道,准备登录月球背面.如图所示,则关于嫦娥四号在环月椭圆轨道和环月圆形轨道运行的说法正确的是( )A .在环月椭圆轨道运行时,A 点速度小于B 点速度B .由环月椭圆轨道进入环月圆形轨道应该在A 点加速C .在环月椭圆轨道和环月圆形轨道上通过A 点的加速度相等D .在环月椭圆轨道运行的周期比环月圆形轨道的周期小【答案】C【解析】A.根据开普勒第二定律可知近月点速度大,远月点速度小,故A错误;B.由环月椭圆轨道进入环月圆形轨道应该在A点应减速,因要由离心运动变为圆周运动,速度要变小,故B错误;C.在同一点万有引力产生加速度,加速度相等,故C正确;D.由开普勒第三定律可知轨道大的周期大,故D错误;所以C正确,ABD错误.3.已成为我国首个人造太阳系小行星的“嫦娥二号”,2014年2月再次刷新我国深空探测最远距离纪录,超过7 000万公里,“嫦娥二号”是我国探月工程二期的先导星,它先在距月球表面高度为h的轨道上做匀速圆周运动,运行周期为T;然后从月球轨道出发飞赴日地拉格朗日L2点(物体在该点受日、地引力平衡)进行科学探测.若以R表示月球的半径,引力常量为G,则()A.“嫦娥二号”卫星绕月运行时的线速度为2R T πB.月球的质量为2324()R hGTπ+C.物体在月球表面自由下落的加速度为22 4R T πD.嫦娥二号卫星在月球轨道需经过减速才能飞赴日地拉格朗日L2点【答案】B【解析】A项:卫星运行的线速度22()r R hvT Tππ+==,故A错误;B项:根据万有引力提供向心力2224MmG m rr Tπ=,解得:2324()R hMGTπ+=,故B正确;C项:根据万有引力等于重力,即2'24Rm mgTπ=,解得:2'24RgTπ=其中T′是在月球表面做匀速圆周运动的周期,故C错误;D项:要从月球轨道出发飞赴日地拉格朗日L2点进行科学探测需要做离心运动,应加速,故D错误.故应选B.4.2013年12月,“嫦娥三号”携带月球车“玉兔”从距月面高度为100km的环月圆轨道Ⅰ上的P点变轨,进入近月点为15km的椭圆轨道Ⅱ,经各种控制后于近月点Q成功落月,如图所示,关于“嫦娥三号”下列说法正确的是()A.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期B.在轨道Ⅰ上经P点的速度大于在轨道Ⅱ上经P点的速度C.在轨迹Ⅱ上由P点到Q点的过程中机械能增加D.沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度【答案】B【解析】由开普勒第三定律确定周期大小关系,根据卫星变轨原理确定卫星是加速还是减速变轨.由牛顿第二定律和万有引力定律分析加速度关系.轨道Ⅱ的半长轴小于轨道I的半径,根据开普勒第三定律32RKT可知沿轨道Ⅱ运行的周期小于轨道I上的周期,故A错误;在轨道I上运动,从P点开始变轨,可知嫦娥三号做近心运动,在P点应该制动减速以减小需要的向心力,通过做近心运动减小轨道半径,故B正确;在轨道Ⅱ上由P点运行到Q点的过程中,嫦娥三号只受到万有引力的作用,机械能守恒;故C错误;在轨道Ⅱ上运动时,卫星只受万有引力作用,在P点时的万有引力比Q点的小,故P点的加速度小于在Q点的加速度,故D错误.5.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则()A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度等于在轨道1上的角速度C .卫星在轨道2上经过P 点时的加速度大于它在轨道3上经过P 点时的加速度D .卫星在轨道1上经过Q 点时的速率小于它在轨道2上经过Q 点时的速率【答案】D【解析】A .卫星绕地球做匀速圆周运动时,由万有引力提供向心力得:22Mm v G m r r=,得v =可知卫星的轨道半径越大,速率越小,所以卫星在轨道3上的速率小于在轨道1上的速率,故A 错误; B .由万有引力提供向心力得:22Mm G mr rω=,得ω=则轨道半径大的角速度小,所以卫星在轨道3上的角速度小于在轨道1上的角速度,故B 错误; C .卫星运行时只受万有引力,由2Mm G ma r =得:加速度 2GM a r = 则知在同一地点,卫星的加速度相等,故C 错误;D .从轨道1到轨道2,卫星在Q 点是做逐渐远离圆心的运动,要实现这个运动必须使卫星加速,使其所需向心力大于万有引力,所以卫星在轨道1上经过Q 点时的速率小于它在轨道2上经过Q 点时的速率,故D正确.故选D。
高考物理计算题复习《卫星变轨问题》(解析版)

《卫星变轨问题》一、计算题1.轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。
已知卫星在停泊轨道和工作轨道的运行半径分别为a和b,地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面重力加速度为。
求:地球与月球质量之比;卫星在停泊轨道上运行的线速度;卫星在工作轨道上运行的周期。
2.2班做“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N圈所用时间为t,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g,地球半径为求:飞船在A点的加速度大小.远地点B距地面的高度.沿着椭圆轨道从A到B的时间.3.如图为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T,轨道半径为r,椭圆轨道的近地点B离地心的距离为,引力常量为G,飞船的质量为m,求:地球的质量及飞船在轨道Ⅰ上的线速度大小;若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量求飞船在A点变轨时发动机对飞船做的功.4.如图所示,“嫦娥一号”卫星在飞向月球的过程中,经“地月转移轨道”到达近月点Q,为了被月球捕获成为月球的卫星,需要在Q点进行制动减速制动之后进入轨道Ⅲ,随后在Q点再经过两次制动,最终进入环绕月球的圆形轨道Ⅰ已知“嫦娥一号卫星”在轨道Ⅰ上运动时,卫星距离月球的高度为h,月球的质量月,月球的半径为月,万有引力恒量为忽略月球自转,求:“嫦娥一号”在Q点的加速度a.“嫦娥一号”在轨道Ⅰ上绕月球做圆周运动的线速度.若规定两质点相距无际远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能 —,式中G为引力常量.为使“嫦娥一号”卫星在Q 点进行第一次制动后能成为月球的卫星,同时在随后的运动过程其高度都不小于轨道Ⅰ的高度h,试计算卫星第一次制动后的速度大小应满足什么条件.5.如图是发射地球同步卫星的简化轨道示意图,先将卫星发射至距地面高度为的近地轨道Ⅰ上在卫星经过A点时点火实施变轨,进入远地点为B的椭圆轨道Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ已知地球表面的重力加速度为g,地球自转周期为T,地球的半径为R,求:卫星在近地轨道Ⅰ上的速度大小;点距地面的高度.6.为了探测X星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为的圆轨道上运动,周期为,总质量为。
专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题导练目标 导练内容目标1 卫星的变轨问题 目标2 天体追及相遇问题 目标3双星和多星问题一、卫星的变轨问题 1.两类变轨简介两类变轨离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与 向心力的 大小关系 G Mmr 2<m v 2rG Mmr 2>m v 2r2.变轨前后各运行物理参量的比较(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v1、v3,在轨道Ⅰ上过A点和B点时速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A 点,卫星的加速度都相同,同理,经过B点加速度也相同。
(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。
若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3。
①在A点,由圆周Ⅰ变至椭圆Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;②在B点,由椭圆Ⅰ变至圆周Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;反之也有相应的规律。
【例1】2013年12月6日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。
在“嫦娥三号”沿轨道Ⅰ经过P点时,通过调整速度使其进入椭圆轨道Ⅰ,在沿轨道Ⅰ经过Q点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。
卫星变轨专题
B 卫星在转移轨道上的周期小于24h
C 卫星在近地轨道及转移轨道上经过P点时的加速度相等
D 卫星在同步轨道及转移轨道上经过Q点时所需的向心力相等
例1.发射地球同步卫星时,先将卫星发射至近地圆轨道
1,然后点火,使其沿椭圆轨道2运行,最后再次点火,
将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3
圆周运动,速率为v1,第一次在P点点 火加速,在短时间内将速率由v1增加
v4
到v2,使卫星进入椭圆形的转移轨道
Ⅱ;卫星运行到远地点Q时的速率为
v3,此时进行第二次点火加速,在短
时间内将速率由v3增加到v4,使卫星
进入同步轨道Ⅲ,绕地球做匀速圆周
运动。则有( ABC )
v3 Q
v1 Ⅰ Ⅱ
Ⅲ
P v2
A v2>v1>v4>v3
a
课堂练习
1、据报道,“嫦娥一号”和“嫦娥二号”绕 月飞行器的圆形工作轨道距月球表面分别约 为200km和100km,运行速率分别为v1和v2。 那么,v1和v2的比值为(月球半径取1700km)
A 19 B 18 C 18 D 19
18
19
19
18
答案:C
课堂练习
2、我国成功实施了“神舟”七号载入航天飞行并 实现了航天员首次出舱。飞船先沿椭圆轨道飞行, 后在远地点343千米处点火加速,由椭圆轨道变成 高度为343千米的圆轨道,在此圆轨道上飞船运行 周期约为90分钟。下列判断正确的是(B C )
❖ D. 无论飞船采取何种措施,均不能与空间站 对接
◆例:4、如图所示.卫星由地面发射后,经过发射轨道 进入停泊轨道,然后在停泊轨道经过调速后进入地月转 移轨道,再次调速后进入工作轨道,卫星开始对月球进行 探测.已知地球与月球的质量之比为a,卫星的停泊轨道 与工作轨道的半径之比为b,卫星在停泊轨道与工作轨道 上均可视为做匀速圆周运动,则( AC ) A.卫星在停泊轨道和工作轨道运行的速度 之比为(a/b)1/2 B.卫星在停泊轨道和工作轨道运行的周期 之比为(b/a)1/2 C.卫星从停泊轨道进入地月转移轨道时, 卫星必须加速 D.卫星在停泊轨道运行的速度大于地球的 第一宇宙速度
卫星变轨问题(附知识点及相关习题的答案)
人造卫星变轨问题专题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对GM、周期T 2r 3、向心加速度 a GM应的卫星线速度 v 也都是确定的。
如果卫星r 2rGM的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述物理量之一发生变化,另外几个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小) ,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功, 使卫星速度减小, 所需要的向心力m v 2减r小了,而万有引力大小GMm没有变,因此卫星将做向心运动,即半径r 将减小。
r 2由㈠中结论可知:卫星线速度 v 将增大,周期 T 将减小,向心加速度三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在 P 点点火加速,在短时间内将速率由 v 1 增加到 v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点 Q 时的速率为 v 3,此时进行第二次点火加速, 在短时间内将速率由 v 3 增加到 v 4,使卫星进入同步轨道Ⅲ, 绕地球做匀速圆周运动。
a 将增大。
v 3ⅢQ v 4v 1 Ⅱ Ⅰ Pv 2第一次加速:卫星需要的向心力mv 2 增大了,但万有引力 GMm 没变,因此卫星将开始做rr 2离心运动,进入椭圆形的转移轨道Ⅱ。
卫星变轨问题双星模型(含解析)
卫星变轨问题双星模型类型一卫星的变轨和对接问题知识回望1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.例1(2019·北京市通州区期中)如图所示,一颗人造卫星原来在椭圆轨道1上绕地球E运行,在A点变轨后进入轨道2做匀速圆周运动,下列说法正确的是()A .在轨道1上,卫星在A 点的速度等于在B 点的速度 B .卫星在轨道2上的周期大于在轨道1上的周期C .在轨道1和轨道2上,卫星在A 点的速度大小相同D .在轨道1和轨道2上,卫星在A 点的加速度大小不同 【答案】B【解析】在轨道1上,卫星由A 点运动到B 点,万有引力做正功,动能变大,速度变大,故选项A 错误;由开普勒第三定律知卫星在轨道2上的周期较大,故选项B 正确;卫星由轨道1变到轨道2,需要在A 点加速,即在轨道1和轨道2上,卫星在A 点的速度大小不相同,故选项C 错误;由G Mm r 2=ma 得a =G Mr 2,可知在轨道1和轨道2上,卫星在A 点的加速度大小相等,故选项D 错误. 故选B 。
(完整版)卫星变轨问题分析
卫星变轨问题分析一:理论说明:卫星变轨问题“四个”物理量的规律分析1.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.2.加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.二、基础训练1、[变轨中运行参量和能量分析](多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用2、[变轨中运行参量的分析](多选)如图所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km,周期为118 min 的工作轨道,开始对月球进行探测.下列说法正确的是()A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大C.卫星在轨道Ⅲ上运动周期比在轨道Ⅰ上短D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上多3、[变轨中运行参量的分析]2013年12月2日凌晨1时30分,嫦娥三号月球探测器搭载长征三号乙火箭发射升空.这是继2007年嫦娥一号、2010年嫦娥二号之后,我国发射的第3颗月球探测器,也是首颗月球软着陆探测器.嫦娥三号携带有一台无人月球车,重3吨多,是我国设计的最复杂的航天器.如图5所示为其飞行轨道示意图,则下列说法正确的是()A.嫦娥三号的发射速度应该大于11.2 km/sB.嫦娥三号在环月轨道1上P点的加速度大于在环月轨道2上P点的加速度C.嫦娥三号在环月轨道2上运动周期比在环月轨道1上运行周期小D.嫦娥三号在动力下降段中一直处于完全失重状态4.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星1和2均绕地心O做匀速圆周运动,轨道半径均为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置,如图5所示.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.以下判断正确的是().A.两颗卫星的向心加速度大小相等,均为R2g r2B.两颗卫星所受的向心力大小一定相等C.卫星1由位置A运动到位置B所需的时间可能为7πr3RrgD.如果要使卫星1追上卫星2,一定要使卫星1加速5、(多选)在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有()A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度6.2013年6月13日13时8分,搭载聂海胜、张晓光、王亚平3名航天员的“神舟十号”飞船与“天宫一号”目标飞行器在离地面343 km的近圆轨道上成功进行了我国载人空间交会对接.对接轨道所在空间存在极其稀薄的大气,下列说法正确的是()A.为实现对接,两者运行速度的大小都应等于第一宇宙速度B.对接前,“神舟十号”欲追上“天宫一号”,必须在同一轨道上点火加速C.由于稀薄空气,如果不加干预,天宫一号将靠近地球D.当航天员王亚平站在“天宫一号”内讲课不动时,她受平衡力作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫星变轨问题易错题分析
欧阳光明(2021.03.07)
一、不清楚变轨原因导致错解
分析变轨问题时,首先要让学生弄明白两个问题:一是物体做圆周运动需要的向心力,二是提供的向心力。
只有当提供的力能满足它需要的向心力时,即“供”与“需”平衡时,物体才能在稳定的轨道上做圆周运动,否则物体将发生变轨现象——物体远离圆心或靠近圆心。
当卫星受到的万有引力不够提供卫星做圆周运动所需的向心力时,卫星将做离心运动,当卫星受到的万有引力大于做圆周运动所需的向心力时卫星将在较低的椭圆轨道上运动,做近心运动。
导致变轨的原因是卫星或飞船在引力之外的外力,如阻力、发动机的推力等作用下,使运行速率发生变化,从而导致“供”与“需”不平衡而导致变轨。
这是卫星或飞船的不稳定运行阶段,不能用公式分析速度变化和轨道变化的关系。
例一:宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是()
A.飞船加速直到追上空间站,完成对接
B.飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接
C.飞船加速至一个较高轨道再减速追上空间站完成对接
D.无论飞船采取何种措施,均不能与空间站对接
错解:选A 。
错误原因分析:不清楚飞船速度变化导致"供"与"需"不平衡而导致出现变轨。
答案:选B 。
分析:先开动飞船上的发动机使飞船减速,此时万有引力大于所需要的向心力,飞船做近心运动,到达较低轨
道时,由222()Mm G m r r T π=得2T =小于空间站的周期,飞船运行得要比空间站快。
当将要追上空间站时,再开动飞船上的发动机让飞船加速,使万有引力小于所需要的向心力而做离心运动,到达空间站轨道而追上空间站,故B 正确。
如果飞船先加速,它受到的万有引力将不足以提供向心力而做离心运动,到达更高的轨道,这使它的周期变长。
这样它再减速回到空间站所在的轨道时,会看到它离空间站更远了,因此C 错。
二、不会分析能量转化导致错解
例二:人造地球卫星在轨道半径较小的轨道A 上运行时机械能为E A ,它若进入轨道半径较大的轨道B 运行时机械能为E B ,在轨道变化后这颗卫星()
A .动能减小,势能增加,E
B >E A
B .动能减小,势能增加,E B =E A
C .动能减小,势能增加,E B <E A
D .动能增加,势能增加,
E B >E A
错解:选D 。
错误原因分析:没有考虑到变轨过程中万有引力做功导致错解。
答案:选A 。
要使卫星由较低轨道进入较高轨道,必须开动发动机使卫星加速,卫星做离心运动。
在离心运动过程中万有引力对卫星做负功,卫星运行速度的大小不断减小,动能不断减小而势能增大。
由于推力对卫星做了正功,因此卫星机械能变大。
三、对椭圆轨道特点理解错误导致错解
例三:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示,则卫星分别在轨道1、2、3上正常运行时,下列说法正确的是( )
A .卫星在轨道3上的速率大于在轨道1上的速率
B .卫星在轨道3上角速度的小于在轨道1上的角速度
C .卫星在轨道1上经过Q 点时的加速度等于它在轨道2上经过Q 点时的加速度
D .卫星在轨道2上经过P 点时的加速度小于它在轨道3
上经P
过P 点时的加速度
错解:选BD 。
错误原因分析:不清楚卫星在椭圆轨道近地点和远地点时,加速度都是由万有引力产生的,因此加速度相等。
不清楚椭圆轨道和圆轨道在同一个点的曲率半径不相等,盲目套用圆周运动的公式导致错解。
答案:选BC 。
分析:卫星在 1 、3轨道上均做匀速圆周运动,由万有引力提供向心力可知卫星在轨道1上的速率和角速度比在轨道3上的大,因此B 正确。
卫星在不同轨道1、2上经过同一点Q ,由2R
Mm G F 引可知,所受的合外力是一样大的,由牛顿定律可知,加速度一样大。
因而选项C 是对的。
同理,卫星过P 点时,不论卫星在轨道2还是在轨道3上,卫星所受的引力大小是相等的,故D 错。
不仅如此,在近地点或远地点,由于万有引力的方向和速度方向垂直,所以卫星只有向心加速度,其切向加速度为零,因此,卫星在不同轨道上经过P 点或Q 点时,卫星的向心加速度也相等。
但是由于椭圆轨道和圆轨道在同一个点的曲率半径不相等,因此卫星的速度不相等。
例如就同一点P ,沿轨道2运行的向心加速度为:a 1=v 12/r ,r 指椭圆轨道在P 点的曲率半径,沿轨道3做圆周运行时,其向心加速度为:a 2=v 22/ R ,R 指卫星在P 点时卫星到地心的距离。
由于a 1=a 2,所以v 12/r =v 22/R ,但由于r <R ,所以v 1<v 2。
因此,卫星要从椭圆轨道运行到大圆轨道,只要在远地点P 时,卫星的推进器向后喷气使卫星加速,当卫星速度达到沿大圆做圆周运动所需要的速度时,卫星就不再沿椭圆轨
道运行而沿大圆做圆周运动了。
从受力上来看,由于卫星在轨道3上运动时,卫星做的是匀速圆周运动,万有引力刚好提供卫星运动所需的向心力,即R mV R GMm 222 ,所以卫星沿椭圆轨道运动到远
地点P 时,万有引力大于卫星做圆周运动的向心力,即212mV GMm R R >,所以卫星将相对地球做近心运动。
若要使卫星做圆周运动,就必须开动推进器使卫星加速,这也正是卫星在变轨时需要点火的原因。
由以上分析可知,对于变轨问题的分析,首先要清楚导致变轨的原因,根据万有引力和做圆周运动所需向心力的关系分析卫星做离心运动还是近心运动,然后再根据功能关系分析能量的变化。