2013年中考数学试卷分类汇编-解直角三角形(方位角问题)要点

合集下载

2013年中考数学试卷分类汇编 解直角三角形(三角函数应用)

2013年中考数学试卷分类汇编 解直角三角形(三角函数应用)
在Rt△ABD中,∵AB=8,∠ABD=30°,
∴AD= AB=4,BD= AD=4 .
在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,
∴DC=AD=4,
∴BC=BD+DC=4 +4.
点评:
本题考查了解直角三角形的知识,属于基础题,解答本题的关键是在直角三角形中利用解直角三角形的知识求出BD、DC的长度.
CD=AB-DF=30-10=20米。
2、(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )
A. B. C. D.
考点:解直角三角形.
专题:计算题.
分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.
解答:
解:(1)在△ABC中,∵AD
在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,
∴DC=AD=1.
在△ADB中,∵∠ADB=90°,sinB= ,AD=1,
∴AB= =3,
∴BD= =2 ,
∴BC=BD+DC=2 +1;
(2)∵AE是BC边上的中线,
考点:
直角三角形斜边上的中线.
分析:
连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.
解答:
解:连接OP,
∵△AOB是直角三角形,P为斜边AB的中点,
∴OP= AB,
∵AB=20cm,
∴OP=10cm,
故答案为:10.
点评:
此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.
解直角三角形(三角函数应用)

2013中考数学解直角三角形(答案)

2013中考数学解直角三角形(答案)

DABCEF新思维教育一对一个性化教案授课日期: 2013 年 1月 日学生姓名 教师姓名 授课时段年 级 初三学 科数学课 型一对一教学内容解直角三角形在实际问题中的运用 教 学 重、难点要点一:锐角三角函数的基本概念1.(·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干?2.(綦江中考)如图,在矩形A B C D 中,E 是BC 边上的点,A E B C =,D F AE ⊥,垂足为F ,连接D E .(1)求证:A B E △D F A ≌△;(2)如果10A D A B =,=6,求sin E D F ∠的值.AOBEC D3、(宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.4、(肇庆中考)在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.5、(·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B D A C =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(·钦州中考)sin30°的值为( )A .32B .22C .12D .332.(长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .(21),B .(12),C .(211)+,D .(121)+,3.(定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .83米 C .833米 D .433米4.宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( )A.︒50 B.︒60 C.︒70 D.︒80 5.(毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫-⎪⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭, C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(襄樊中考)计算:2cos 45tan 60cos 30+ 等于( )(A )1 (B )2 (C )2 (D )3 三、解答题11.(·黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45°12.(崇左中考)计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.13.(义乌中考)计算:33sin 602cos 458-+要点三、解直角三角形在实际问题中的运用1.(庆阳中考)如图(1),一扇窗户打开后用窗钩AB可将其固定.如图(2)是如图(1)中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(3 1.7≈,结果精确到整数)2.(郴州中考)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB的高度为1.5米,测得仰角 为30°,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN是多少米?(取2=1.414,3=1.732,结果保留两位小数)3、(眉山中考)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离。

2013年中考数学试卷分类汇编解直角三角形(仰角俯角坡度问题)

2013年中考数学试卷分类汇编解直角三角形(仰角俯角坡度问题)

解直角三角形(仰角俯角坡度问题)1、(德阳市2013 年)如图,热气球的探测器显示,从热气球 A 看一栋高楼顶部 B 的仰角为300,看这栋高楼底部 C 的俯角为600,热气球 A 与高楼的水平距离为120m,这栋高楼 BC的高度为A. 40 3 mB. 80 3 mC. 120 3 mD. 160 3 m答案:D分析:过 A 作 AD⊥ BC于 D,则∠ BAD= 30°,∠ CAD=60°, AD= 120。

BC= BD+ CD= 120tan30 °+ 120tan60 °= 1603 ,选D。

2、(2013?衢州)如图,小敏同学想丈量一棵大树的高度.她站在 B 处仰望树顶,测得仰角为30°,再往大树的方向行进4m,测得仰角为60°,已知小敏同学身高(AB)为 1.6m,则这棵树的高度为()(结果精准到0.1m,≈1.73).A. 3.5m B. 3.6m C. 4.3m D. 5.1m考点:解直角三角形的应用- 仰角俯角问题.专题:应用题.剖析:设 CD=x,在 Rt△ACD中求出 AD,在 Rt△CED中求出 ED,再由 AE=4m,可求出 x 的值,再由树高 =CD+FD即可得出答案.解答:解:设 CD=x,在 Rt△A CD中, CD=x,∠ CAD=30°,则 AD= x,在 Rt△CED中, CD=x,∠ CED=60°,则 ED= x,由题意得, AD﹣ED= x﹣x=4,解得: x=2,则这棵树的高度=2+1.6 ≈5.1m.应选 D.评论:本题考察认识直角三角形的应用,解答本题重点是结构直角三角形,利用三角函数的知识表示出有关线段的长度.3、(2013聊城)河堤横断面以下图,堤高BC=6米,迎水坡AB的坡比为1:,则 AB的长为()A. 12B.4米C.5米D.6米考点:解直角三角形的应用- 坡度坡角问题.剖析:依据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,而后依据勾股定理求得 AB的长度.解答:解: Rt△ABC 中, BC=6米,=1:,∴则 AC=BC×=6,∴AB===12.应选 A.评论:本题主要考察解直角三角形的应用,结构直角三角形解直角三角形而且娴熟运用勾股定理是解答本题的重点.4、(2013?宁夏)如图是某水库大坝横断面表示图.此中∠ABC=120°, BC的长是 50m,则水库大坝的高度h 是(AB、 CD分别表示水库上下底面的水平线,)A. 25m B. 25m C. 25m D.m考点:解直角三角形的应用- 坡度坡角问题.剖析:第一过点 C 作 CE⊥AB 于点 E,易得∠ CBE=60°,在即可求得答案.解答:解:过点 C 作 CE⊥AB 于点 E,∵∠ ABC=120°,∴∠ CBE=60°,在 Rt△CBE中, BC=50m,∴CE=BC?sin60°=25(m).应选 A.Rt△CBE中, BC=50m,利用正弦函数,评论:本题考察了坡度坡角问题.注意能结构直角三角形,并利用解直角三角形的知识求解是解本题的重点.5、( 2013 成都市)如图,某山坡的坡面 AB=200米,坡角BAC 30 ,则该山坡的高BC的长为_____米。

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习

x tan 21°
8 3
x

B
D
第 19 题图

Rt△CEG 中, tan
CGE
CE GE
,则 GE
tan
CE CGE
x tan 37°
4 3
x
∵ EF FG EG,∴ 8 x 50 4 x . x 37.5 ,∴ CD CE ED 37.51.5 39 (米).
3
3
答:古塔的高度约是 39 米. ························ 6 分
a2 b2
a 由 Sin A=c,求∠A;∠B=90°-A,b=
c2 - a2
∠B=90°-A,a=b·Sin A,c=cosA
A bC 一

角 一锐角
锐角,对边 (如∠A,a)
∠B=90°-A,b=,c=
斜边,锐角(如 c,∠A)
∠B=90°-A,a=c·Sin A, b=c·cos A
2、测量物体的高度的常见模型
35º 40
CB
D
面 CD 有多长
º
(结果精确到 0.1m.参考数据:sin40º ≈,cos40º ≈,sin35º ≈,tan35º ≈
(2012)20.(8 分)
附历年真题标准答案:
(2007)19.(本小题满分 6 分)
解:过 C 作 AB 的垂线,交直线 AB 于点 D,得到 Rt△ACD 与 Rt△BCD.
数学模型
所用 应测数据
工具
α β x
h1
h
皮尺
αβ a
h x
侧倾 器
仰角α 俯角β 高度 a
俯角α 俯角β
高度
数量关系

解直角三角形应用题(方位角、仰角与俯角、坡度)分类汇编

解直角三角形应用题(方位角、仰角与俯角、坡度)分类汇编

:i h l=hlα基础知识2解直角三角形的应用举例1.仰角与俯角:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

2.坡度与坡角:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等. 把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα== 3.方位角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角.如图,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向).【题型1】仰角与俯角如图,两幢建筑物AB 和CD ,AB ⊥BD ,CD ⊥BD ,AB =15m ,CD =20m ,AB 和CD 之间有一观景池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B 、E 、D 在同一直线上),求两幢建筑物之间的距离BD (结果精确到0.1m ).(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)【变式训练】1.如图,宁宁在家里楼顶上的点A处,测量建在与自家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为多少米(精确到0.1).2.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m).(参考数据:≈1.414,≈1.732)3.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为240米,求这栋大楼的高度.4.如图,曦曦在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.【题型2】坡度与坡角如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则应水坡面AB的长度是多少?【变式训练】1.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是多少米?2.如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度为i=1∶1.2(垂直高度CE与水平宽度DE的比),上底BC=10 m,天桥高度CE=5 m,求天桥下底AD的长度.(结果精确到0.1 m,参考数据:sin35°≈ 0.57,cos35°≈ 0.82,tan35°≈ 0.70)3.如图,一楼房AB后有一假山,其坡度为i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比).4.如图,曦曦在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA=100米,山坡坡度为i=1:2, 且O 、A 、B 在同一条直线上。

2013年全国各地中考数学试卷分类汇编:解直角三角形资料

2013年全国各地中考数学试卷分类汇编:解直角三角形资料

1.(2013·济宁,18,?分)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A 的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)考点:解直角三角形的应用-方向角问题.分析:过点B作BD⊥AC交AC于点D,根据方向角分别求出∠DAB和∠DCB的度数,然后在Rt△ABD和Rt△BCD中,分别解直角三角形求出AD、CD的长度,然后根据时间=路程÷速度即可求出需要的时间.解答:解:过点B作BD⊥AC交AC于点D,由题意得,∠DAB=180°-47°-79°=54°,∠DCB=47°-36°=11°,在Rt△ABD中,∵AB=5.5,∠DAB=54°,=cos54°,=sin54°,∴AD=5.5×0.59=3.245,BD=4.445,在Rt△BCD中,∵BD=4.445,∠DCB=11°,∴=tan11°,∴CD==23.394,∴AC=AD+CD=3.245+23.394≈26.64(km),则时间t=26.64÷30≈0.90(h).答:需要0.90h到达.点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形并解直角三角形.2.(2013•绍兴10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.【思路分析】(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.【解析】1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AP平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.【方法指导】本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.3.(2013四川内江,20,10分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB 为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).CE==∵,(∴+4.(2013陕西,20,8分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m 。

2013中考数学热点考点解析-解直角三角形 课件

2013中考数学热点考点解析-解直角三角形 课件

图 6-5-6
解:由题意知,当 α 越大,梯子的顶端达到的最大高度越 大.因为当 50° ≤α≤70° 时,能够使人安全攀爬,所以当 α=70° 时 AC 最大. 在 Rt△ABC 中,AB=6 米,α=70° , AC AC sin70° AB ,即 0.94≈ 6 ,解得 AC ≈5.6. = 答:梯子的顶端能达到的最大高度 AC 约为 5.6 米.
解直角三角形的实际运用
例 2:(2011 年浙江金华)如图 6-5-6,生活经验表明,靠墙
摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使
人安全攀爬,现在有一长为 6 米的梯子 AB,试求能够使人安全攀爬
时,梯子的顶端能达到的最大高度 AC(sin50°≈0.77,cos70°≈0.34,cos50°≈0.64).
小结与反思:解决此类问题的关键在于掌握各函数间的边 角关系,能够选择恰当知识解决具体问题,灵活运用勾股定理
和三角函数以及解直角三角形知识.
5.(2011 年山东济宁)如图 6-5-4,是一张宽为 m 的矩形
台球桌 ABCD,一球从点 M(点 M 在长边 CD 上)出发沿虚线 MN
射向边BC,然后反弹到边AB 上的 P 点.如果MC=n,∠CMN m-n· α tan tan α =α.那么 P 点与 B 点的距离为__________.
小结与反思:用解直角三角形的方法去解决实际问题的关 键在于审清题意,把题目中的实际问题转化为数学问题,再套 用恰当的公式和选用适当的方法把问题具体化,必要的时候要 把实际问题建立一个数学模型.
7.(2011 年甘肃兰州)某水库大坝的横断面是梯形,坝内斜 坡的坡度 i=1∶ 3,坝外斜坡的坡度 i=1∶1,则两个坡角的

2013年全国中考数学试题分类汇编_解直角三角形解读

2013年全国中考数学试题分类汇编_解直角三角形解读

2013年全国中考数学试题分类汇编解直角三角形(2013•郴州)我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).,即==5=5+20+5=25+5(25+5(2013•衡阳)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位),=20×,+1.5+1.5(2013,娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象. 已知A 、B 两点相距4米,探测线与地面的夹角分别是30︒和45︒,试确定生命所在点C 的深度.(精确到0.1 1.41≈ 1.73≈)(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=15×=55(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠P AB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50),≈=,≈=2(2013•巴中)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B 相距4米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据≈1.41,≈1.73)CD,=,=﹣≈3.5(2013,成都)如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为______100____米.(2013•达州)钓鱼岛自古以来就是中国领土。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方位角1、(2013年潍坊市)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时答案:D .考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键.2、(2013•株洲)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )3、(2013年河北)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN=40×2=80,又∠M=70°,∠N=40°,所以,∠MPN=70°,从而NP=NM=80,选D4、(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.=5、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=56、(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.7、(2013年广东湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60ο的方向上,求此时渔政船距钓鱼岛A 的距离AB .1.732≈)解:延长EB 至F ,则030CBF ∠=,00000180180603090ABC EBF CBF ∴∠=-∠-∠=--=,在Rt △ABC 中,060ACB ∠=,180402BC =⨯=,tan ,AB ACB BC=∠ tan 434 1.732 6.9AB BC ACB ∴=∠=≈⨯≈答:此时渔政船距钓鱼岛A 的距离AB 约为:6.9海里8、(2013•荆门)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.=9、(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)BF=BF=kmPD=xkmx=2AB=1kmBF=km之间的距离为10、(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)(小时)(小时)11、(2013泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C 处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.12、(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1),CD==6﹣≈6.2(海里)13、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)中,BD=AB•sin∠BAD=20×=10BC==(海里)海里.14、(2013•资阳)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)=≈0.35,DH=BH=12的时间为:===2.415、(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M 的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.km==16×60=12(sin30°=4(cos30°=8×∴BR=40•sin60°=20=20=,16、(2013年黄石)高考英语听力测试期间,需要杜绝考点周围的噪音。

如图,点A 是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C 点处有一消防队。

在听力考试期间,消防队突然接到报警电话,告知在位于C 点北偏东75°方向的F 点处突发火灾,消防队必须立即赶往救火。

已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶。

试问:消防车是否需要改道行驶?说明理由.(3取1.732)解析:解:过点A 作AH CF ⊥交CF 于H 点,由图可知 ∵000751560ACH ∠=-= ····················· (3分) ∴03 1.732sin 60125125108.25()2AH AC m ===⨯= ······· (3分) ∵100AH >米∴不需要改道行驶17、(2013四川南充,21,8分)如图,公路AB 为东西走向,在点A 北偏东36.5°方向上,距离5千米处是村庄M ;在点A 北偏东53.5°方向上,距离10千米处是村庄N (参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75).(1)求M ,N 两村之间的距离;(2)要在公路AB 旁修建一个土特产收购站P ,使得M ,N 两村到P 站的距离之和最短,求这个最短距离。

相关文档
最新文档