植物生理学教案14
《植物生理学》教案

《植物生理学》教案课程代码:090100适用专业:生物科学学时数:54学时学分:学分执笔者:编写日期:2015年2月23日一、本课程的性质和目的本课程是为生物科学专业本科生开设的专业选修课程。
其基本任务是研究植物生命活动的规律和机理及其在植物生产中的应用。
通过学习,使学生掌握该课程的基本理论和研究方法,为学生从事相关教学和研究工作打下坚实的基础。
二、课程教学内容与及要求绪论(2学时)(一)教学要求了解植物生理学的定义、任务、产生、发展及展望。
(二)教学内容重点:植物生理学的定义、研究内容、形成、产生和发展第一节植物生理学的定义和研究内容第二节植物生理学的产生和发展第三节植物生理学与农业生产第四节怎样学好植物生理学,掌握与其有联系的学科的知识、注重实验以及结合生产实践(三)建议教学方法:贯彻少而精、启发式和形象化原则,通过幻灯、录像、多媒体等途径加深学生的印象,提高教学效果。
第一章植物的水分代谢(4学时)(一)教学要求了解植物体内水分存在状态和水分在植物生命活动中的作用;植物细胞及根系对水分的吸收;植物蒸腾作用的意义,发生部位以及影响蒸腾作用的因素;水分在植物体内的运输情况以及合理灌溉的生理基础等。
(二)教学内容重点:水在植物生命活动中的意义和水在细胞中的形态;水势概念、植物对水分的吸收、传导和散失的过程及影响这个过程的环境因素;合理灌溉的生理基础。
难点:水势概念、蒸腾作用、水分在植物体内的运输情况。
第一节水在植物生活中的重要性第二节水分的运动及水分进入植物细胞第三节植物根系对水的吸收。
第四节蒸腾作用。
第五节植物体内水分的运输第六节合理灌溉的生理基础(三)建议教学方法:贯彻少而精、启发式和形象化原则,通过幻灯、录像、多媒体等途径加深学生的印象,提高教学效果。
第二章植物的矿质营养(4学时)(一)教学要求通过学习使学生了解植物必需的矿质元素;植物体及其细胞对矿质元素的吸收;无机养料的同化;矿质元素在植物体内的运输以及合理施肥的生理基础等。
植物生理学教案绪论

植物生理学教案绪论一、教学目标1. 了解植物生理学的定义和研究内容2. 掌握植物生理学在农业生产中的应用3. 理解植物生理学与相关学科的关系4. 培养学生的学习兴趣和探究精神二、教学重点与难点1. 教学重点:植物生理学的定义、研究内容、应用及与相关学科的关系2. 教学难点:植物生理学的研究方法和技术三、教学准备1. 教材或教学资源2. 投影仪或白板3. 教学PPT或幻灯片四、教学过程1. 引入新课通过展示植物生长过程中的有趣现象,如植物的向光性、根的向地性等,引发学生对植物生理学的好奇心,激发学习兴趣。
2. 讲解植物生理学的定义和研究内容介绍植物生理学的定义,即研究植物生命活动规律的科学。
接着阐述植物生理学的研究内容,包括植物的光合作用、呼吸作用、营养吸收与运输、生长发育、逆境生理等。
3. 介绍植物生理学在农业生产中的应用讲解植物生理学在农业生产中的重要作用,如通过调节植物生长环境、改良栽培技术、选用优良品种等手段,提高作物产量和品质,实现农业可持续发展。
4. 阐述植物生理学与相关学科的关系介绍植物生理学与植物学、生态学、生物化学、分子生物学等学科的联系,强调植物生理学在多学科交叉中的地位和作用。
5. 总结与展望对本节课的内容进行简要总结,强调植物生理学在农业生产中的重要性。
鼓励学生继续深入学习,探索植物生理学领域的未知世界。
五、课后作业1. 复习本节课所学内容,整理笔记2. 查阅相关资料,了解植物生理学在农业生产中的应用实例六、教学延伸与实践活动1. 组织学生进行户外观察,例如参观植物园或农田,让学生亲身体验植物的生长过程和生理现象。
2. 安排学生进行实验操作,例如测定植物的光合作用速率、呼吸作用速率等,培养学生的实践能力和科学思维。
七、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生课后作业的完成质量,评估学生对课堂所学内容的理解和掌握程度。
植物生理学教案(2024)

26
06
植物的生殖生理与种子形成
2024/1/29
27
植物的生殖方式及特点
有性生殖
通过精子和卵细胞的结合形成合 子,再发育成新个体。有性生殖 具有遗传多样性,有利于植物适
应环境变化。
无性生殖
通过营养器官(如根、茎、叶) 的分裂、出芽或孢子等方式繁殖 新个体。无性生殖繁殖速度快,
能保持母本的优良性状。
研究方法
植物生理学的研究方法包括实验观察、生理生化分析、分子生物学技术、生物信息学分析等多 种手段,以揭示植物生命活动的本质和规律。
2024/1/29
5
植物生理学在农业生产中的应用
01 作物育种
通过了解植物生理机制,可以指导作物育种工作 ,选育出高产、优质、抗逆性强的新品种。
02 栽培技术
根据植物生理学原理,可以制定合理的栽培技术 措施,如合理施肥、灌溉、病虫害防治等,提高 作物产量和品质。
25
植物生长调控技术及其在农业生产中的应用
调控技术
通过外源施加生长物质或其类似物、改变环境条件等手段,调控植物生长发育 过程。
农业生产应用
提高作物产量和品质,改善植物生长环境适应性,促进作物早熟和增产等。例 如,利用赤霉素促进杂交水稻制种产量的提高,利用乙烯利促进棉花叶片脱落 和采收等。
2024/1/29
1. 光照强度
直接影响光反应速率,光 照越强,光合作用速率越 快。
3. 二氧化碳浓度
是光合作用的原料之一, 浓度高低直接影响光合作 用的速率。
2024/1/29
2. 温度
影响酶的活性,适宜的温 度有利于光合作用的进行 。
14
呼吸作用的概念、类型及生理意义
• 概念:呼吸作用是指植物体内的有机物在细胞内经过一系列的 氧化分解,最终生成二氧化碳或其他产物,并且释放出能量的 过程。
植物生理学教案植物体内有机物的运输

植物生理学教案——植物体内有机物的运输教学目标:1. 了解植物体内有机物的运输途径和机制;2. 掌握植物体内有机物的运输方式和过程;3. 能够运用所学知识解释生活中有关植物体内有机物运输的现象。
教学重点:1. 植物体内有机物的运输途径;2. 植物体内有机物的运输机制。
教学难点:1. 植物体内有机物的运输过程;2. 生活现象与植物体内有机物运输的联系。
第一章:植物体内有机物的运输概述1.1 植物体内有机物的运输定义1.2 植物体内有机物的运输重要性1.3 植物体内有机物的运输研究意义第二章:植物体内有机物的运输途径2.1 木质部运输途径2.2 韧皮部运输途径2.3 细胞间隙运输途径第三章:植物体内有机物的运输机制3.1 被动运输机制3.2 主动运输机制3.3 协助扩散运输机制第四章:植物体内有机物的运输过程4.1 合成与储存过程4.2 加载与卸载过程4.3 运输与分配过程第五章:生活现象与植物体内有机物运输的联系5.1 植物生长与有机物运输5.2 果实成熟与有机物运输5.3 植物抗逆与有机物运输教学方法:1. 采用多媒体课件进行教学,直观展示植物体内有机物的运输过程;2. 结合生活实例,引导学生理解植物体内有机物运输的重要性;3. 开展课堂讨论,激发学生对植物体内有机物运输的兴趣和探究欲望。
教学评价:1. 课堂提问:检查学生对植物体内有机物运输的基本概念的理解;2. 课后作业:巩固学生对植物体内有机物运输的知识;3. 课程论文:培养学生运用所学知识分析生活现象的能力。
第六章:植物体内有机物的运输实例分析6.1 实例一:筛管与韧皮部的有机物运输6.2 实例二:木质部中的水分与无机盐运输6.3 实例三:顶端优势与有机物运输第七章:环境因素对植物体内有机物运输的影响7.1 温度对植物体内有机物运输的影响7.2 光照对植物体内有机物运输的影响7.3 水分对植物体内有机物运输的影响第八章:植物体内有机物运输与农业生产8.1 有机物运输与作物产量8.2 有机物运输与作物品质8.3 有机物运输与农业施肥第九章:植物体内有机物运输的科研方法9.1 实验设计:如何研究植物体内有机物运输9.2 观察方法:显微镜观察植物体内有机物运输9.3 测定技术:有机物运输的定量分析第十章:植物体内有机物运输的前沿领域10.1 植物体内有机物运输的分子机制10.2 植物体内有机物运输的基因调控10.3 植物体内有机物运输的生物技术应用教学方法:1. 结合具体实例,分析植物体内有机物运输的实际情况;2. 通过讨论和实验,探究环境因素对植物体内有机物运输的影响;3. 联系农业生产,了解植物体内有机物运输在实际生产中的应用;4. 利用科研方法,培养学生对植物体内有机物运输研究的兴趣;5. 关注前沿领域,引导学生了解植物体内有机物运输的最新发展。
植物生理学 教案

植物生理学教案教案标题:植物生理学教学目标:1. 了解植物生理学的基本概念和重要性。
2. 掌握植物的生长和发育过程以及与环境因素的关系。
3. 理解植物的营养需求和光合作用过程。
教学重点:1. 植物的生长和发育过程。
2. 植物对环境因素的反应和适应能力。
3. 植物的营养需求和光合作用的原理。
教学准备:1. 教学资料:教科书、课件、多媒体设备等。
2. 实验设备:显微镜、植物生长箱等。
3. 实验材料:植物样本、培养基等。
教学过程:一、导入(5分钟)利用引人入胜的故事或实例,向学生介绍植物生理学的重要性和应用领域。
二、知识讲解(15分钟)1. 植物的生长和发育过程:种子萌发、幼苗生长、成株发育等。
2. 植物对环境因素的反应和适应能力:光、温度、水分、土壤矿质等。
3. 植物的营养需求和光合作用的原理:养分吸收、运输和利用过程。
三、实验演示(20分钟)1. 示范种子萌发实验:使用显微镜观察种子的发育过程。
2. 示范温度对植物生长的影响实验:设置不同温度条件下的植物生长箱,观察植物的生长情况。
3. 示范养分供应对光合作用的影响实验:在不同营养培养基上培养植物,观察光合作用的效果。
四、讨论与总结(10分钟)与学生进行讨论,回答他们对实验中观察到的现象和原理的疑问。
总结重点概念和实验结果。
五、拓展延伸(10分钟)引导学生思考和探究植物生理学在农业、园艺、药学等领域的应用,展示相关案例或实践经验。
六、作业布置(5分钟)要求学生完成相关阅读和实验报告,以巩固所学内容并培养科学思维能力。
教学反思:教学过程中应注意实验的设计和操作,确保实验过程的安全和有效性。
同时,适时调整教学方法,激发学生的兴趣和参与度。
《植物生理学》备课备课教案

《植物生理学》备课教案一、教学目标1. 知识与技能:(1)理解植物细胞的基本结构和功能;(2)掌握植物细胞的分裂和分化过程;(3)了解植物的光合作用和呼吸作用;(4)认识植物的生长发育和生殖过程。
2. 过程与方法:(1)通过观察植物细胞切片,了解植物细胞的结构;(2)利用实验方法,探究植物的光合作用和呼吸作用;(3)观察植物的生长和发育过程,分析其生理机制。
3. 情感态度价值观:培养学生对植物生理学的兴趣,增强其关爱植物、保护生态环境的意识。
二、教学重点与难点1. 教学重点:(1)植物细胞的基本结构和功能;(2)植物的光合作用和呼吸作用;(3)植物的生长发育和生殖过程。
2. 教学难点:(1)植物细胞的分裂和分化过程;(2)光合作用和呼吸作用的关系;(3)植物生长发育的生理机制。
三、教学准备1. 教材:《植物生理学》;2. 实验器材:显微镜、植物细胞切片、实验药品等;3. 课件:植物细胞结构、光合作用和呼吸作用、生长发育过程等图片和视频。
四、教学过程1. 导入:通过展示植物生长过程的图片,引发学生对植物生理学的兴趣,导入新课。
2. 教学内容:(1)植物细胞的基本结构和功能;(2)植物细胞的分裂和分化过程;(3)植物的光合作用和呼吸作用;(4)植物的生长发育和生殖过程。
3. 课堂讨论:引导学生结合教材内容,分组讨论植物细胞的结构、功能以及光合作用和呼吸作用的关系。
4. 实验操作:分组进行植物细胞切片观察实验,让学生亲自操作显微镜,观察植物细胞的结构。
五、课后作业1. 复习教材,整理本节课所学的知识点;2. 完成课后练习题,巩固所学内容;3. 预习下一节课的内容,为课堂学习做好准备。
六、教学评估1. 课堂问答:通过提问方式检查学生对植物细胞结构、功能以及光合作用和呼吸作用的理解程度。
2. 实验报告:评估学生在实验过程中的操作技能以及对观察结果的描述和分析。
3. 课后作业:检查学生对课堂所学知识的巩固情况。
(完整版)植物生理学教案

光信号转导途径光敏色素、来自花色素等光 受体介导的信号转导途径 。
温度信号转导途径
温度感受器介导的信号转 导途径,如春化作用。
植物生长与发育的农业应用
作物育种
通过遗传改良,选育具有优良 生长和发育特性的作物品种。
作物栽培
通过合理的农业措施,如施肥 、灌溉、除草等,调控作物的 生长和发育。
设施农业
利用设施条件,调控环境因子 ,促进作物的生长和发育,提 高产量和品质。
• 维持细胞内外环境稳定:呼吸作用参与细胞内pH值、渗透压等环境因素的调节。
呼吸作用的生理意义及影响因素
温度
适宜的温度有利于呼吸作用的进行, 过高或过低的温度都会抑制呼吸作用 。
氧气浓度
有氧呼吸需要充足的氧气,低氧或无 氧条件会抑制有氧呼吸,促进无氧呼 吸。
呼吸作用的生理意义及影响因素
水分
适宜的水分含量有利于呼吸作用的进行,水分过多或过少都会抑制呼吸作用。
液泡
06 调节细胞内的水分和离子浓度
,维持细胞的渗透压和pH值稳 定。
03
植物的水分生理
水的物理和化学性质
02
01
03
水的物理性质 无色、无味、透明的液体。 在4°C时密度最大,具有异常的膨胀特性。
水的物理和化学性质
• 高比热容和高汽化热,对稳定环境温度有重要作用。
水的物理和化学性质
01
水的化学性质
研究对象
植物的细胞、组织、器官以及整 体植株在各种环境条件下的生理 活动和代谢过程。
植物生理学的历史与发展
01
02
03
04
萌芽阶段
古代人们对植物生理现象的观 察和描述。
实验生理学阶段
17-18世纪,通过实验手段研 究植物生理过程。
《植物生理学》备课备课教案

《植物生理学》备课教案一、教学目标:1. 知识与技能:(1)理解植物细胞的基本结构和功能;(2)掌握植物的光合作用和呼吸作用的原理及应用;(3)了解植物生长发育的过程和调控机制。
2. 过程与方法:(1)通过观察植物细胞切片,认识植物细胞的结构;(2)利用实验方法探究植物的光合作用和呼吸作用;(3)观察植物生长发育过程,分析其调控机制。
3. 情感态度价值观:培养学生对植物生理学的兴趣,提高学生关注生态环境、珍惜资源的意识。
二、教学重点与难点:1. 教学重点:(1)植物细胞的基本结构和功能;(2)植物的光合作用和呼吸作用的原理及应用;(3)植物生长发育的过程和调控机制。
2. 教学难点:(1)植物细胞结构与功能的对应关系;(2)光合作用和呼吸作用过程中的物质变化;(3)植物生长发育的分子调控机制。
三、教学方法与手段:1. 教学方法:(1)讲授法:讲解植物细胞结构、光合作用和呼吸作用的原理;(2)实验法:进行植物光合作用和呼吸作用的实验;(3)观察法:观察植物生长发育过程;(4)讨论法:分组讨论植物生长发育的调控机制。
2. 教学手段:(1)多媒体课件:展示植物细胞结构、光合作用和呼吸作用的过程;(2)实验器材:进行光合作用和呼吸作用的实验;(3)观察植物生长发育的实物材料。
四、教学过程:1. 导入:通过展示植物王国的图片,引导学生关注植物的生长发育过程,激发学习兴趣。
2. 植物细胞结构与功能:(1)讲解植物细胞的基本结构,如细胞壁、细胞膜、细胞质、细胞核等;(2)分析植物细胞各结构的功能及对应关系。
3. 光合作用和呼吸作用:(1)讲解光合作用的原理及应用,如绿色植物的光合作用、蓝藻的光合作用等;(2)讲解呼吸作用的原理及应用,如植物的呼吸作用、微生物的呼吸作用等;(3)分析光合作用和呼吸作用之间的关系。
4. 植物生长发育:(1)讲解植物生长发育的过程,如种子萌发、植株生长、开花结果等;(2)分析植物生长发育的调控机制,如激素调节、基因调控等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本内容第九章光形态建成(photomorphogenesis)光对植物的影响主要有两个方面:(1)光是绿色植物光合作用必需的;(2)光调节植物整个生长发育,以便更好地适应外界环境。
这种依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成(photomorphogenesis),亦即光控制发育的过程。
相反,暗中生长的植物表现出各种黄化特征,如茎细而长、顶端呈钩状弯曲和叶片小而呈黄白色,这种现象称为暗形态建成(skotomorphogenesis)(图9-1)。
图9-1 白芥幼苗在光下和黑暗中生长光合作用是将光能转变为化学能;而在光形态建成过程中,光只作为一个信号去激发受体,推动细胞内一系列反应,最终表现为形态结构的变化。
一些光形态建成反应所需红闪光的能量和一般光合作用补偿点的能量相差10个数量级,甚为微弱。
给黄化幼苗一个微弱的闪光,在几小时之内就可以观察到一系列光形态建成的去黄化反应,如茎伸长减慢、弯钩伸展,合成叶绿素等。
目前已知至少存在3种光受体:1) 光敏色素,(phytochrome)感受红光及远红光区域的光;2)隐花色素(cyptochrome)和向光素(phototropin),感受蓝光和近紫外光区域的光;3)UV-B受体,感受紫外光B区域的光。
第一节光敏色素的发现、分布和性质一、光敏色素的发现美国农业部马里兰州贝尔茨维尔(Beltsville)农业研究中心的Borthwick 和Hendricks(1952)以大型光谱仪将白光分离成单色光,处理莴苣种子,发现红光(red light)(波长650-680nm)促进种子发芽,而远红光(far-red light)(波长710-740nm)逆转这个过程。
从图9-2和表9-1可见,莴苣种子萌发百分率的高低决定于最后一次曝光波长,在红光下萌发率高,在远红光下,萌发率低。
1959年Butler等研制出双波长分光光度计,测定黄化玉米幼苗的吸收光谱。
他们发现,经红光处理后,幼苗的吸收光谱中的红光区域减少,而远红光区域增多;如果用远红光处理,则红光区域增多,远红光区域消失。
红光和远红光轮流照射后,这种吸收光谱可多次地可逆变化。
上述结果说明这种红光-远红光可逆反应的光受体可能是具两种存在形式的单一色素。
他们以后成功地分离出这种吸收红光-远红光可逆转换的光受体(色素蛋白质),称之为光敏色素(phytochrome)。
目前已知,绿藻、红藻、地衣、苔藓、蕨类、裸子植物和被子植物中许多生理现象都和光敏色素的调控有关。
真菌没有光敏色素,另有隐花色素吸收蓝光进行形态建成。
二、光敏色素的分布光敏色素分布在植物各个器官中。
黄化幼苗的光敏色素含量比绿色幼苗多20 100倍。
禾本科植物的胚芽鞘尖端、黄化豌豆幼苗的弯钩、各种植物的分生组织和根尖等部分的光敏色素含量较多。
一般来说,蛋白质丰富的分生组织中含有较多的光敏色素(图9-3)。
在细胞中,细胞溶胶和细胞核中都有光敏色素。
三光敏色素的化学性质及光化学转换(一)光敏色素的化学性质光敏色素是一种易溶于水的色素蛋白质。
相对分子量为250kDa 。
它是由2个亚基组成的二聚体,每个亚基有两个组成部分:生色团(chromophore 或phytochromobilin )和脱辅基蛋白(apoprotein ),两者合称为全蛋白(holoprotein )。
光敏色素生色团是一长链状的4个吡咯环,与胆色素的胆绿素(biliverdin )结构相似,分子量为612,具有独特的吸光特性。
光敏色素有两种类型:红光吸收型(red light-absorbing form ,Pr )和远红光吸收型(far-red light-absorbing form ,Pfr ),两者的光学特性不同。
图9-4是光敏色素两种类型的吸收光谱,Pr 的吸收高峰在660 nm ,而Pfr 的吸收高峰在730 nm 。
Pr 和Pfr 在不同光谱作用下可以相互转换。
当Pr 吸收660 nm 红光后,就转变为Pfr ,而 Pfr 吸收730 nm 远红光后,会逆转为Pr 。
Pfr 是生理激活型,Pr 是生理失活型。
图9-5是Pr 和Pfr 生色团的可能结构以及与脱辅基蛋白多肽相连接的部位。
脱辅基蛋白单体的分子量约为125 kDa ,它的半胱氨酸通过硫醚键与生色团相连结。
Pr P fr −−−→←−−−红光远红光 光敏色素生色团的生物合成是在黑暗条件下、在质体中进行的,其合成过程可能类似脱植基叶绿素(叶绿素的前身)的合成过程,因为两者都具四个吡咯环。
生色团在质体中合成后就被动地运送到胞质溶胶,与脱辅基蛋白装配形成光敏色素全蛋白(图9-6)。
在Pr 和Pfr 相互转化时,生色团和脱辅基蛋白也发生构象变化,其中生色团变化带动蛋白质变化,因为前者吸光。
Pr 生色团吸光后,吡咯环D 的C15和C16之间的双键旋转,进行顺反异构化。
这种变化导致四吡咯环构象也发生变化。
当Pr 转变为Pfr 时,脱辅基蛋白也进行构象变化。
试验证明,Pr 的N 末端暴露在分子表面,而Pfr 的则隐蔽在内部。
用圆二色谱法测定蛋白质的二级结构,得到α螺旋度增加几个百分点。
这是生色团与蛋白多肽氨基端相互作用的结果。
与Pfr 相比,Pr 的氨基端更加暴露于分子表面,分子的疏水性也更强。
(二)光敏色素基因和分子多型性光敏色素蛋白质的基因是多基因家族。
拟南芥的多基因家族中至少存在5个基因,分别为PHYA ,PHYB ,PHYC ,PHYD ,PHYE 。
不同基因编码的蛋白质有各自不同的时间、空间分布,有不同的生理功能。
人们曾将黄化幼苗中大量存在、见光后易分解的光敏色素称为类型I光敏色素,而将光下稳定存在的、在绿色幼苗中含量很少的光敏色素称为类型II光敏色素。
后来的研究表明,拟南芥PHYA 编码类型I光敏色素,而其他4种基因编码类型II光敏色素。
拟南芥PHYA的表达受光的负调节,在光下mRNA合成受到抑制。
而其余4种基因表达不受光的影响,属于组成性表达。
两种类型光敏色素的合成和降解途径见图9-7(三)光敏色素的光化学转换从图9-4可见,Pr 和Pfr在小于700 nm的各种光波下都有不同程度的吸收,有相当多的重叠。
在活体中,这两种类型的光敏色素是平衡的,这种平衡决定于光源的光波成分。
总光敏色素(P tot)= Pr+Pfr。
在一定波长下,具生理活性的Pfr 浓度和P tot浓度的比例就是光稳定平衡(photostationary equilibrium,ϕ),即ϕ= Pfr/ P tot。
不同波长的红光和远红光可组合成不同的混合光,能得到各种ϕ。
例如,白芥幼苗达到平衡时,饱和红光(660 nm)的ϕ值是0.8,就是说,总光敏色素的80%是Pfr,20%是Pr;饱和远红光(718 nm)的ϕ值是0.025,就是说,总光敏色素量的2.5%是Pfr,97.5%是Pr。
(图9-8)在自然条件下,植物光反应的ϕ值为0.01-0.05时就可以引起很显著的生理变化。
Pr与Pfr之间的转变包括几个毫秒至微秒的中间反应。
在这些转变过程中,包括光化学反应和黑暗反应。
光化学反应局限于生色团,黑暗反应只有在含水条件下才能发生。
这就可以解释为什么干种子没有光敏色素反应,而用水浸泡后的种子才有光敏色素反应。
Pr比较稳定,Pfr比较不稳定。
在黑暗条件下,Pfr会逆转为Pr,降低Pfr浓度。
Pfr也会被蛋白酶降解。
Pfr的半衰期为20 min到4h。
第二节光敏色素的生理作用和反应类型一、光敏色素的生理作用光敏色素的生理作用甚为广泛,它影响植物一生的形态建成,从种子萌发到开花、结果及衰老。
表9-2列举了高等植物中一些由光敏色素控制的反应。
我国发现的光敏核不育水稻农垦58S的雄性器官发育过程,也是通过光敏色素去感受日照的长短。
上述反应中的某些过程,将在以后有关章节讨论。
光敏色素接受光刺激到发生形态反应的时间有快有慢。
快反应以分秒计,如棚田效应(Tanada effect)(图9-9)和转板藻叶绿体运动(图9-10)。
棚田效应指离体绿豆根尖在红光下诱导膜产生少量正电荷,所以能粘附在带负电荷的玻璃表面,而远红光则逆转这种粘附现象。
慢反应则以小时和天数计,例如,红光促进莴苣种子萌发(图9-2)和诱导幼苗去黄化反应。
二、光敏色素的反应类型根据对光量的需求,光敏色素反应可分为3种类型:(一)极低辐照度反应(very low fluence response,VLFR)极低辐照度反应可被1~100 nmol m-2的光诱导,在ϕ值仅为0.02时就满足反应条件,即使在实验室的安全灯光下反应都可能发生。
这样极低辐照度的红光可刺激暗中生长的燕麦芽鞘伸长,但抑制它的中胚轴生长;也刺激拟南芥种子的萌发。
这个极低辐照度反应遵守反比定律,即反应的程度与光辐照度和光照时间的乘积成正比,如增加光辐照度可减少照光时间,反之亦然。
(二)低辐照度反应(low fluence response,LFR)低辐照度反应也称为诱导反应,所需的光能量为1~1000 μmol m-2,是典型的红光-远红光可逆反应。
反应可被一个短暂的红闪光诱导,并可被随后的远红光照射所逆转。
在未达到光饱和时,反应也遵守反比定律。
种子和黄化苗的一些反应如莴苣种子需光萌发、转板藻叶绿体运动(图9-10)等属于这一类型。
(三)高辐照度反应(high irradiance response,HIR)高辐照度反应也称高光照反应,反应需要持续强光照(大于10μmolm-2),其饱和光照比低辐照度反应强100倍以上。
光照时间愈长,反应程度愈大,不遵守反比定律,红光反应也不能被远红光逆转。
由高辐照度引起的光形态建成有:双子叶植物的花色素苷的形成,芥菜、莴苣幼苗下胚轴的延长,天仙子开花的诱导和莴苣胚芽弯钩的张开等(表9-3)。
对光下生长的植物来说,光敏色素还作为环境中红光:远红光比率的感受器,传递不同光质、不同照光时间的信息,调节植物的发育。
例如,植物叶片含有叶绿素而吸收红光,透过或反射远红光。
当植物受到周围植物的遮阴时,R:FR值变小,阳生植物在这样的条件下,茎向上伸长速度加快,以获取更多的阳光,这就叫做避阴反应(shade avoidance response)。
植物对光与黑暗交替的24h循环过程作出的反应叫做光周期反应,将在第十一章讨论。
第三节光敏色素的作用机理对光敏色素作用机理的认识是一个逐步深入和完善的过程。
早先认为,生理激活型的Pfr一旦形成,即和某些物质(X)反应,生成Pfr⋅X复合物,最终引起生理反应。
而对X的性质却不清楚。
近年来的研究证明,光敏色素是苏氨酸/丝氨酸激酶,具有不同的功能区域,N末端是与生色团连接的区域,与决定光敏色素的光化学特性有关,phyA、phyB的特异性也在此区域表现出来。