2018年七一华源九年级五月月考数学试卷

合集下载

2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)

2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)

2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版) 1 / 192018-2019学年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷一、选择题(本大题共10小题,共30.0分)1. 下列交通标志中,是中心对称图形的是( )A.B.C.D.2. 方程4x 2-1=0的根是( )A.B. ,C.D. ,3. 方程x 2-4x +5=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根 4. 如图所示,△ABC 中,∠BAC =30°,将△ABC 绕点A 顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为( ) A. B. C. D.5. 二次函数y =ax 2+bx +2的图象经过点(-1,0),则代数式a -b 的值为( )A. 0B.C.D. 26. 函数y =-x 2-4x -3图象顶点坐标是( )A. B. C. D. 7. 一元二次方程y 2-y -=0配方后可化为( )A.B.C.D.8. 某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x ,则根据题意可列方程为( )A. B. C. D.9. 如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,如此进行下去,直至得到C 10,若点P (28,m )在第10段抛物线C 10上,则m 的值为( )A. 1B.C. 2D.10.已知直线PQ过y轴的正半轴上一个定点M,交抛物线y=x2于P、Q.若对过点M的任意直线PQ,都有+为定值,则点M的坐标是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.在平面直角坐标系中,点P(-5,3)关于原点对称点P′的坐标是______.12.已知a、b是一元二次方程x2-6x+5=0的两个实数根,则ab的值是______.13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为______.14.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的取值范围是______.15.若(a2+b2)(a2+b2-1)=12,则a2+b2为______.16.抛物线y=2x2-ax+m-a与x轴相交于不同两点A(x1,0)、B(x2,0),若存在整数a及整数m,使得1<x1<3和1<x2<3同时成立,则m=______.三、计算题(本大题共3小题,共24.0分)17.解方程:x2+4x-1=0.18.如图,在平面直角坐标系中,A(1,1),B(4,2),C(2,3).(1)清画出将△ABC向下平移3个单位得到的△A1B1C1;(2)请画出以点O为旋转中心,将△ABC逆时针旋转90°得到的△A1B2C2(3)请直接写出A1、A2的距离.2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)19.关于x的一元二次方程x2-(k+3)x+2k+2=0(1)若方程有一个根是3,求k的值;(2)若方程有一根小于1,求k的取值范围.四、解答题(本大题共5小题,共48.0分)20.已知抛物线y1=x2与直线y2=-x+3相交于A、B两点.(1)求A、B两点的坐标;(2)点O为坐标原点,△AOB的面积等于______;(3)当y1<y2时,x的取值范围是______.3 / 1921.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?22.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?23.如图1,在△ABC中,AC=7,∠ACB=45°,将△ABC绕点B按顺时针方向旋转,得到△DBE(其中A与D对应)(1)如图2,当点C在线段ED的延长线上时,△CDB的面积为2①求证:CB平分∠ACE;②求BC的长;(2)如图3,在(1)的条件下,点F为线段AB的中点,点P是线段DE上的动2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)点,在旋转过程中,线段FP长度的最大值与最小值之和等于______(请直接写出答案).24.如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c与直线l:y=kx+m(k<0)交于A(-1,-1)、B两点,与y轴交于C(0,2).(1)求抛物线的函数表达式;(2)若y轴平分∠ACB,求k的值;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.5 / 19答案和解析1.【答案】C【解析】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.此题主要考查了中心对称的概念:中心对称是要寻找对称中心,旋转180度后与原图重合.2.【答案】B【解析】解:x2=,x=±.故选:B.先把方程变形为x2=,然后利用直接开平方法解方程.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.3.【答案】D【解析】解:∵△=(-4)2-4×1×5=-4<0,∴方程无实数根.故选:D.先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4.【答案】C【解析】解:∵旋转∴∠BAB'=50°,且∠BAC=30°∴∠B'AC=20°故选:C.根据旋转的性质可得∠BAB'=∠CAC'=50°,即可求∠∠B′AC的度数.本题考查了旋转的性质,熟练运用旋转的性质解决问题是本题的关键.5.【答案】B【解析】解:把(-1,0)代入y=ax2+bx+2,得a-b+2=0,即a-b=-2,故选:B.把(-1,0)代入y=ax2+bx+2,即可得出代数式a-b的值.本题考查了二次函数的图象上点的坐标特征,掌握待定系数法求解析式是解题的关键.6.【答案】B【解析】解:∵y=-x2-4x-3=-(x2+4x+4-4+3)=-(x+2)2+1∴顶点坐标为(-2,1);故选:B.将二次函数的一般形式化为顶点式后即可直接说出其顶点坐标;主要考查了二次函数的性质和求抛物线的对称轴和顶点坐标的方法.除去用配方法外还可用公式法.7.【答案】B【解析】7 / 19解:y2-y-=0y2-y=y2-y+=1(y-)2=1故选:B.根据配方法即可求出答案.本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.8.【答案】A【解析】解:依题意得3月份该型号汽车的销量为:2000(1+x)2,则2000(1+x)2=4500.故选:A.一般用增长后的量=增长前的量×(1+增长率),如果设商场利润的月平均增长率为x,然后根据已知条件可得出方程.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.【答案】D【解析】解:令y=0,则-x(x-3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C10在x轴下方,相当于抛物线C1向右平移3×9=27个单位,再沿x轴翻折得到,∴抛物线C10的解析式为y=(x-27)(x-27-3)=(x-27)(x-30),∵P(28,m)在第10段抛物线C10上,∴m=(28-27)(28-30)=-2.2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)9 / 19故选:D .求出抛物线C 1与x 轴的交点坐标,观察图形可知第偶数号抛物线都在x 轴下方,然后求出到抛物线平移的距离,再根据向右平移以及沿x 轴翻折,表示出抛物线C 10的解析式,然后把点P 的坐标代入计算即可得解.本题考查了二次函数图象与几何变换,利用点的变化确定函数图象的变化更简便,平移的规律:左加右减,上加下减. 10.【答案】B【解析】解:设M (0,m ).设直线PQ 的解析式为y=kx+m (k≠0), 联立y=x 2得到:kx+m=x 2, 整理,得 x 2-4kx-4m=0. 设P (x 1,),Q (x 2,),∴x 1+x 2=4k ,x 1•x 2=-4m .∵MP 2=(x 1)2+(m-)2=, MQ 2=(x 2)2+(m-)2=(1+k 2), ∴+=123,即存在m=2,即存在M (0,2),使得=为定值.故选:B .设直线PQ 的解析式为y=kx+b ,联立方程组,利用一元二次方程根与系数的关系和两点间的距离公式,化简整理,即可得到点M 的坐标.本题主要考查了二次函数的抛物线,以及二次函数的图象,韦达定理等内容,熟悉函数的图象和性质是关键. 11.【答案】(5,-3)【解析】解:点P(-5,3)关于原点对称点P′的坐标是(5,-3),故答案为:(5,-3).根据两个点关于原点对称时,它们的坐标符号相反可得答案.此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.【答案】5【解析】解:∵a、b是一元二次方程x2-6x+5=0的两个实数根,∴ab=5,故答案为:5.由韦达定理可得答案.本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.13.【答案】3【解析】解:由旋转得:AD=EF,AB=AE,∠D=90°,∵DE=EF,∴AD=DE,即△ADE为等腰直角三角形,根据勾股定理得:AE==3,则AB=AE=3,故答案为:3由旋转的性质得到AD=EF,AB=AE,再由DE=EF,等量代换得到AD=DE,即三角形AED为等腰直角三角形,利用勾股定理求出AE的长,即为AB的长.此题考查了旋转的性质,矩形的性质,熟练掌握旋转的性质是解本题的关键.14.【答案】m≤4【解析】2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)解:由图可知:y≥-4,即ax2+bx≥-4,∵ax2+bx+m=0,∴ax2+bx=-m,∴-m≥-4,∴m≤4.故答案为:m≤4.结合图象可得y≥-4,即ax2+bx≥-4,由ax2+bx+m=0可得ax2+bx=-m,则有-m≥-4,即可解决问题.本题主要考查抛物线与x轴的交点坐标,与一元二次方程之间的关系、解一元一次不等式等知识,利用数形结合的思想是解决本题的关键.15.【答案】4【解析】解:设a2+b2=x,则原方程可化为:x(x-1)=12,整理得x2-x-12=0,x1=-3,x2=4,a2+b2=-3无意义,∴a2+b2=4,故答案为:4.设a2+b2=x,把原方程化为关于x的一元二次方程,解方程得到方程的两个根,根据偶次方的非负性判断得到答案.本题考查的是换元法解一元二次方程,灵活运用换元法、掌握一元二次方程的解法是解题的关键.16.【答案】13或15或19【解析】解:存在.理由:∵抛物线y=2x2-ax+m-a与x轴相交于不同两点A(x1,0)、B(x2,0),11 / 19∴△=(-a)2-4×2×(m-a)>0,a2-8m+8a>0,∵2>0,∴抛物线开口向上,∴当x=1或3时,y>0;且对称轴也在1和3之间,由题意可知,,∴4<a<12,∵a是整数,∴a=5或6或7或8或9或10或11,当a=5时,代入不等式组,得:,不等式组无整数解.当a=6时,代入不等式组,得:,不等式组无整数解.当a=7时,代入不等式组,得:,解得:12<m<13,则m=13.当a=8时,代入不等式组,得:,解得:14<m<16,则m=15.当a=9时,代入不等式组,得:,解得:18<m<19,则m=19.当a=10时,代入不等式组,得:,不等式组无整数解.当a=11时,代入不等式组,得:,不等式组无整数解.综上所述,整数m=13或15或19时,使得1<x1<3和1<x2<3同时成立.故答案为:13或15或19.存在.根据抛物线与x轴相交于不同两点,可知△>0,根据1<x1<3和1<x2<3,及开口向上,可知当x=1或3时,y>0,对称轴也在1与3之间,列不等2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版) 13 / 19式组,根据4<a <12,得整数a 的值,分情况代入不等式组分别解出即可. 本题考查二次函数的性质、不等式组等知识,解题的关键是灵活运用已知列不等式,利用二次函数的性质解决问题,学会利用不等式组解决问题,属于中考压轴题.17.【答案】解:∵x 2+4x -1=0∴x 2+4x =1∴x 2+4x +4=1+4∴(x +2)2=5∴x =-2±∴x 1=-2+ ,x 2=-2- .【解析】首先进行移项,得到x 2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【答案】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)根据题意得:A 1、A 2的距离为 = . 【解析】(1)画出△ABC 向下平移3个单位的三角形,如图所示;(2)画出△ABC 逆时针旋转90°得到的三角形,如图所示;(3)在网格中,利用勾股定理求出所求即可.此题考查了作图-旋转变换,平移变换,熟练掌握旋转与平移规律是解本题的关键.19.【答案】解:(1)把x=3代入方程x2-(k+3)x+2k+2=0得9-3(k+3)+2k+2=0,解得k=2;(2)△=(k+3)2-4(2k+2)=(k-1)2,x=,∵x1=k+1,k2=2,∴方程有一根小于1,∴k+1<1,∴k<0.【解析】(1)把x=3代入方程得到9-3(k+3)+2k+2=0,然后解关于k的一次方程即可;(2)先计算判别式的值,再利用求根公式计算出x1=k+1,k2=2,然后根据题意得到k+1<1,从而解关于k的不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.20.【答案】-2<x<【解析】解:(1)解方程组得或,所以A点坐标为(-2,4),B(,);(2)当x=0时,y=-x+3=3,则直线y=-x+3与y轴的交点坐标为(0,3),所以,△AOB的面积=×3×(+2)=;(3)当-2<x<时,y1<y2.故答案为;-2<x<.(1)通过解方程组得A点和B点坐标;(2)先求出直线y=-x+3与y轴的交点坐标,然后根据三角形面积公式求解;2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)(3)写出一次函数图象在抛物线上方所对应的自变量的范围即可.本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0),利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.21.【答案】解:(1)设各通道的宽度为x米,根据题意得:(90-3x)(60-3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:-=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.【解析】(1)设各通道的宽度为x米,四块小矩形区域可合成长为(90-3x)米、宽为(60-3x)米的大矩形,根据草地的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该工程队原计划每天完成y平方米的绿化任务,根据工作时间=工作总量÷工作效率结合提前 2 天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出分式方程.22.【答案】解:(1)y=100+10(60-x)=-10x+700.(2)设每星期利润为W元,W=(x-30)(-10x+700)=-10(x-50)2+4000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:-10(x-50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:-10(x-50)2+4000≥3910,解得:47≤x≤53,15 / 19∵y=100+10(60-x)=-10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.【解析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)①根据方程即可解决问题;②列出不等式先求出售价的范围,即可解决问题.本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,学会利用图象法解一元二次不等式,属于中考常考题型.23.【答案】4+4【解析】(1)①证明:如图2中,连接CD.∵BE=BC,∴∠E=∠BCE=45°,∵∠ACB=45°,∴∠ACB=∠ECB,∴BC平分∠ACE.②如图2中,作BH⊥DE于H.∵BC=BE,∠E=∠BCE=45°,∴△BCE是等腰直角三角形,∵BH⊥CE,∴CH=HE,∴BH=HC=HE,设BH=HC=HE=x,则CD=2x-7,∵S△CDB=2,∴×(2x-7)×x=2,解得x=4或-(舍弃),∴BH=CH=4,2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版) 17 / 19∴BC==4.(2)如图3,过B 作BP ⊥AC 于P ,以B 为圆心BP 为半径画圆交BC 于P 1,FP 1有最小值,此时在Rt △BPC 中,CP=PB=4,AP=3,∴AB==5, ∴BF=,∴BP 1=4,∴FP 1的最小值为4-=;如图,以B 为圆心BC 为半径画圆交AB 的延长线于P 2,FP 2有最大值; 此时FP 2=BC+BF=4+,∴线段FP 的最大值与最小值的和为4+4. 故答案为4+4.(1)①如图2中,连接CD .只要证明∠ACB=∠ECB=45°即可;②如图2中,作BH ⊥DE 于H .首先证明△BCE 是等腰直角三角形,设BH=CH=HE=x ,利用三角形的面积公式构建方程求出x 即可解决问题; (2)如图3,过B 作BP ⊥AC 于P ,以B 为圆心BP 为半径画圆交BC 于P 1,FP 1有最小值,如图,以B 为圆心BC 为半径画圆交AB 的延长线于P 2,FP 2有最大值,求出最大值和最小值即可解决问题;此题考查三角形综合题、等腰直角三角形的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答,属于中考压轴题.24.【答案】解:(1)把A(-1,-1)、C(0,2)代入y=-x2+bx+c得,-1-b+2=-1,解得:b=2,∴抛物线的函数表达式为:y=-x2+2x+2;(2)如图1,过A作AD∥x轴交BC于D,则AD⊥y轴,∵y轴平分∠ACB,∴y轴垂直平分AD,∴A,D关于y轴对称,∵A(-1,-1),∴D(1,-1),设直线BC的解析式为y=ax+b,∴ ,∴ ,∴直线BC的解析式为y=-3x+2,解,解得:或,∴B(5,-13),把A(-1,-1),B(5,-13)代入y=kx+m得,解得:k=-2;(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,由题意可知:-k+m=-1,∴m=k-1,∴y=kx+k-1,∴kx+k-1=-x2+2x+2,解得,x1=-1,x2=3-k,∴B(3-k,-k2+4k-1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴=,2018-2019年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷(解析版)∴AM•BN=PN•PM,∴1×(k2-4k+1)=(3-k-)(+1),∵k<0,∴k=.【解析】(1)把A(-1,-1)、C(0,2)代入y=-x2+bx+c解方程组即可得到结论;(2)过A作AD∥x轴交BC于D,则AD⊥y轴,根据等腰三角形的性质和线段垂直平分线的性质得到A,D关于y轴对称,求得D(1,-1),设直线BC的解析式为y=ax+b,得到直线BC的解析式为y=-3x+2,求出B(5,-13),把A(-1,-1),B(5,-13)代入y=kx+m解方程组即可得到结论;(3)过A作AM⊥x轴于M,过B作BN⊥x轴于N,求得m=k-1,解方程得到B (3-k,-k2+4k-1),设AB中点为O′,根据已知条件得到以AB为直径的圆与x 轴只有一个交点,且P为切点,求得O′P⊥x轴,求出P (,0),根据相似三角形的性质即可得到结论.此题主要考查二次函数的综合问题,待定系数法求函数的解析式,相似三角形的判定和性质,直线与圆的位置关系,正确的理解题意是解题的关键.19 / 19。

2024年湖北省武汉市七一华源中学九年级下学期月考数学试题

2024年湖北省武汉市七一华源中学九年级下学期月考数学试题

2024年 湖北省武汉市七一华源中学九年级下学期月考数学试题一、单选题1.-5的相反数是( )A .15-B .15C .5D .-52.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.成语是中国文化的瑰宝,下列成语描述的事件是不可能事件的是( ) A .守株待兔B .水中捞月C .旭日东升D .水涨船高4.某几何体的三视图如图所示,则该几何体为( )A .B .C .D .5.若0a ≠,下列运算正确的是( )A .()235a a =B .330a a +=C .624a a a ÷=D a6.在数学活动课上,小明同学将含30︒角的直角三角板的一个顶点按如图方式放置在直尺上,测得123∠=︒,则2∠的度数是( ).A.23︒B.53︒C.60︒D.67︒7.将分别标有“中”、“考”、“必”、“胜”汉字的四张卡片装在一个不透明的盒子中,这些卡片除汉字外无其他差别,随机抽出其中两张,抽出的卡片上的汉字能组成“必胜”的概率是()A.12B.14C.16D.188.暑期将至,某游泳俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠;按照方案一所需费用为y1(元),且y=k1x+b;按照方案二所需费用为y2(元),且y2=k2x,其函数象如图所示.若小明打算办一张暑期专享卡使得游泳时费用更合算,则他去游泳的次数x至少是()A.5 B.6 C.7 D.89.如图,AB是Oe一条弦,将劣弧沿弦AB翻折,连结AO并延长交翻折后的弧于点C,连结BC,若2AB=,1BC=,则AC的长为()A B C D 10.小雨利用几何画板探究函数y =()ax b x c --图象,在他输入一组a ,b ,c的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A .a >0,b >0,c =0B .a <0,b >0,c =0C .a >0,b =0,c =0D .a <0,b =0,c >0二、填空题11.“燕雪花大轩台”是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只在0.000003kg 左右,0.000003用科学记数法可表示为. 12.反比例函数m y x =的图象经过点,8m A m ⎛⎫⎪⎝⎭,则反比例函数的表达式为. 13.化简293332x x x x x⎛⎫++÷ ⎪--⎝⎭的结果是.14.如图,一艘游轮在A 处测得北偏东45︒的方向上有一灯塔B .游轮以/时的速度向正东方向航行2小时到达C 处,此时测得灯塔B 在C 处北偏东15︒的方向上.则A 处与灯塔B 相距海里.(结果精确到1 1.41≈ 1.73≈)15.如图,一块材料的形状是锐角三角形ABC ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,若AEF △、BGE △、CHF V 的面积分别为4、6、3,则求这个正方形零件的边长是.16.抛物线()20y ax bx c c +=+>经过()1,0A ,(),0B t 两点,且42t -<<-.下列四个结论:①0ab >;②20c a +<;③当12x >-时,y 随x 的增大而减小;④方程()()9104x x t --+=必有两个不相等的实数根.则正确的结论有(填写序号).三、解答题17.解不等式组()211212x x x ⎧-<+⎪⎨+≥-⎪⎩,并求该不等式组的正整数解.18.如图,已知AB CD ∥,A C ∠=∠,直线BE 交AD 的延长线于点E ,(1)求证:CBE E ∠=∠.(2)当BC DE =时,连接DB 、CE ,请添加一个条件,使四边形BCED 是菱形.(不用证明) 19.端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题: (1)样本中,七年级活动成绩为7分的学生数是________,七年级活动成绩是9分所在扇形的圆心角度数是(2)=a _______,b =______;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,请你估计全校七八年级1200名学生中“优秀”的人数.20.如图,在四边形ABCD 中,AB CD ∥,AD CD ⊥,BC DC =,以D 为圆心,AD 为半径作弧,(1)求证:BC 为D e 的切线;(2)若AD =3AB CD +=,求图中阴影部分的面积.21.如图是由小正方形组成的88⨯网格,每个小正方形的顶点叫做格点,A 、B 、C 三点是格点,点D 是线段AB 与竖网格线的交点.仅用无刻度的直尺在给定网格中完成画图.(1)在图1中,作ABC V 的角平分线BP ,再在BP 上画点Q ,使DQ DB =; (2)在图2中,连接CD ,画CD 的中点M ;(3)在图3中,在AC 上画点E ,使得ADE ACB △△∽. 22.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是 米,抛物线的顶点坐标为 ;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.23.【问题提出】如图,在ABC V 中,AD BC ⊥,CE AB ⊥,连接DE ,探究DEAC的值.【问题探究】(1)先将问题特殊化.如图1,当A D B D =时,直接写出DEAC的值为__________; (2)再探究一般情形、如图2,当AD nBD =时,求DEAC的值; 【问题拓展】如图3,在AD C △中,AD CD ⊥,3AD CD ==,P 是ADC △内一点,2DP =,AE CP ⊥于E ,CE 交AD 于F ,当CDE V 的面积最大时,直接写出DEFACFS S △△的值为________.24.如图1,已知抛物线2142y x kx =--交x 轴于点A ,B (A 在B 点左侧),交y 轴负半轴于点C ,()2,0A -.(1)求该抛物线的解析式;(2)已知直线364y x =--交x 轴于点D ,交y 轴于点E ,过抛物线上一动点P 作PQ DE ⊥于Q ,求PQ 的最小值;(3)如图2,将抛物线L 向上平移()04m m <<个单位长度得到抛物线1L ,抛物线1L 与y 轴交于点C ,过点C 作y 轴的垂线交抛物线1L 于另一点D .F 为抛物线1L 的对称轴与x 轴的交点,P 为线段OC 上一点,若PCD V 与POF V 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.。

七一华源中学2018~2019学年度下学期八年级数学五月检测试题

七一华源中学2018~2019学年度下学期八年级数学五月检测试题

七一华源中学2018~2019学年度下学期八年级数学五月检测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.下列图像中,表示y 是x 的函数的个数是( )A .1B .2C .3D .42.式子xx 1+在实数范围内有意义, 则x 的取值范围是( ) A .x ≥-1 B .x >-1且x ≠0 C .x ≥-1且x ≠0D .x >0 3.一次函数y =-3x +5的图像不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图,下列三角形中是直角三角形的是( )5.如图,在四边形ABCD 中,AB =3,BC =4,CD =12,AD =13,∠B =90°,则四边形ABCD 的面积是( ) A .30B .34C .36D .386.在正方形ABCD 的内部,以AD 为边作等边△ADE ,则∠AEB 的度数为( ) A .75°B .20°C .15°D .15°或者75°7.如图所示,函数y 1=|x -1|和1212+=x y 的图像相交于(0,1)、(4,3) 两点,y 1>y 2时,x 的取值范围( ) A .1<x <3B .0<x <4C .x <1或者x >3D .x <0或者x >48.如图,□ABCD 中的两内角∠BAD 、∠ADC 的平分线AE 、DF 别交BC 于E 、F 点.若EF =2,AB =5,则AD 的长度是( ) A .6B .7C .8D .99.如图,直线AB 的解析式为y =x +n 与直线y =kx +m 交于C 点(其中k 、m 、n 为常数),点C 的横坐标为3,下列四个结论:① 关于x 的方程x +n =kx +m 的解为x =3;② 关于x 的不等式(k -1) x <n -m 的解集为x >3;③ 直线y =kx +m 上的有两点(x 1,y 1)、(x 2,y 2),若x 1<x 2时,则y 1<y 2;④ 直线y =x +n 上的有两点(a ,b )、(c ,d ),则(a -b ) (c -d )=n 2,其中正确结论的序号是( ) A .只有①②③B .只有①②④C .只有②④D .只有①④10.△ABC 为直角三角形,两直角边AB =6,AC =8.点P 为△ABC 内一点,且满足点P 到三边的距离和为536,点D 为边AC 的中点,则DP 的最小值为( ) A .655 B .453 C .352D .554 二、填空题(本大题共6个小题,每小题3分,共18分)11.化简:12=__________;324=__________;2)3(-π =__________ 12.在平面直角坐标系中,(8,a )在直线1021+-=x y 的图像上,则a =__________ 13.将y =3x +3向右平移1个单位,得到直线函数解析式为__________________14.如图,△ABC ,∠ABC =45°,∠ACB =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则BDAB=___________15.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界) , 其中A (1,1)、B (2,1)、C (2,2)、D (1,2).用信号枪沿直线y =-2x +b 发射信号. 当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b 的取值范围是___________16.正方形ABCD 的边长为10,点E 是正方形外一动点,∠AED =45°,P 为AB 的中点.当E 运动时,线段PE 的取值范围为_____________________________ 三、解答题(共8题,共72分) 17.(本题8分)计算: (1) 182712⨯÷ (2) )22(28+-18.(本题8分)关于函数y =|x -2| (1) 当x ≥2时,y =__________ (2) 当x <2时,y =__________ (3) 在右图中画出函数y =|x -2|的图象 (4) b x y +=21与(3)中的图象有交点,则写出b 范围为____________19.(本题8分)如图,已知平行四边形ABCD 中,点E 为BC 边的中点,连接DE 并延长DE 交AB 延长线于F ,求证:CD =BF20.(本题8分)如图,在正方形ABCD 中,E 为BC 的中点,F 是CD 上一点,且CD CF 41,求证: (1) ∠AEF =90° (2) ∠BAE =∠EAF21.(本题8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度 (1) 请在所给的网格内画出以线段AB 、BC 为边的菱形ABCD ,并写出点D 的坐标________ (2) 菱形ABCD 的面积为___________(3) 菱形ABCD 不动,将坐标系向下平移t 个单位长度,移动后的原点记为点K ,使得KA +KD 的值最小,则t 的值为___________22.(本题10分)我市从 2018年 1月 1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A 、B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500元;用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样 (1) 求A 、B 两种型号电动自行车的进货单价(2) 若A 型电动自行车每辆售价为2800元,B 型电动自行车每辆售价为3500元.设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元,写出y 与m 之间的函数关系式,并写出商店能获得最大利润的进货方案(3) 在(2)的条件下,由于市场浮动,A 型电动自行车售价上调a (100<a <300)元,B 型售价不变,此时商店能获得最大利润为14400,求a 值23.(本题10分)四边形ABCD 为平行四边形,点P 为平面内一点, (1) 若AP =BC ,连AP 、DP① 如图1,点P 在边BC 上,求证:PD 平分∠APC② 如图2,过P 作PD 的垂线交DC 的延长线于点F ,FP 交AB 于点E ,求证:DF =2AE (2) 如图3,∠ABC =60°,点P 在对角线DB 上,点M 在边AD 上,MP =CD 且∠AMP =∠ABD AB =5,BP =3,直接写出平行四边形ABCD 的面积24.(本题12分)在平面直角坐标系,点A (0,a )、B (b ,0),B 、C 关于y 轴对称,且34 a +(b +4)2=0 (1) 求点B 的坐标(2) 如图2,将△ABC 绕点O 逆旋针旋转α(0<α<90°),AB 交x 轴于点E ,过E 作EF ⊥AB 交BC 于点F ,过F 作FH ⊥AC 于点H ,求∠HEO(3) 如图3,点M 为y 轴正半轴上一动点,过点M 做MN ∥AC ,交直线y =-x 于点N .以MN 为对角线作正方形MPNQ ,当M 在运动时,OQMO是否为定值?若是求出其值;若不是,请说明理由。

七一华源中学2017~2018学年度下学期九年级数学五月检测试题(二)

七一华源中学2017~2018学年度下学期九年级数学五月检测试题(二)

“罚球命中”的频率0.8220.812120011001000900800700600100200300500400七一华源中学2017~2018学年度下学期九年级数学五月检测试题(二)一、选择题:(共10小题,每小题3分,共30分)1.计算:-1+3的结果为()A.2 B.-2 C.4 D.-42.分式21x有意义,则x的取值范围是()A.x≠0B.x≠-2C.x>2D.x>-23.计算3x2-2x2的结果是()A.1 B.x2C.x4D.5x24.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.下图是对某球员罚球训练时命中情况的统计,下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822① 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812①其中合理的是()A.①B.①C.①①D.①①5.计算(a-2)(a+3)的结果是(A.a2-6 B.a2+6 C.a2+a-6 D.a2-a-66.点A(-2,5)关于x轴对称的点的坐标是()A.(2,5) B.(-2,-5) C.(2,-5) D.(5,-2)7.如图使用五个相同的立方体搭成的几何体,其主视图是()8.某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示:进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)则下列推断中正确的是()A.这一周中,该商品每天售价组成的这组数据的众数是5B.这一周中,该商品每天进价组成的这组数据的中位数是3C.该商品在周一这天所获的利润最小D.该商品在周六这天所获的利润最大9.如图,有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( )A .6条B .8条C .10条D .12条10.如图,⊙O 的内接正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE =2,则EG 长是( )A .215+ B .215- C .15+ D .15- 二、填空题:(共6小题,每小题3分,共18分) 11.计算:312-的结果是___________12.计算1111-++x x 的结果为___________ 13.如图,把直尺摆放在直角三角板ABC 上,①C =90°,①A =30°,使直尺和三角板的边分别交于点D 、E 、F 、G .若①CGD =24°,则①AFE =___________°14.连续掷一枚质地均匀的硬币两次,两次均正面朝上的概率为___________15.如图,在△ABC 中,①ABC =90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF =2,EF =22,则BC 边的长为___________16.在直角坐标系中,点A (-3,0)、B (0,-3).若函数y =ax 2+(2a -1)x -3与△AOB 的边有三个交点,则a 的取值范围是___________三、解答题:(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=+=-10352y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AC ①DF ,试判断AB 与DE 的关系并证明19.(本题8分)随着我市社会经济的发展和交通状况的改善,我市的旅游事业得到了高速发展.某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽取部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成如下两幅尚不完整的表和图:根据以上信息回答下列问题:(1) a =________,b =________,c =________,并将条形统计图补充完整(2) 这次调查中,个人年消费金额的中位数出现在___________组(3) 若这个企业有3000名员工,请你估计个人年旅游消费金额在6000元以上的人数20.(本题8分)某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠”若全票价为240元/人(1) 设学生数为x (x >0),甲旅行社收费为y 甲,乙旅行社收费为y 乙,用含x 的代数式分别表示y 甲和y 乙(结果要化简)(2) 当学生数是多少时,两家旅行社的收费一样(3) 就学生数x 讨论哪家旅行社更优惠21.(本题8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ①BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE(1) 求证:BE 与⊙O 相切(2) 连接AD 并延长交BE 于点F ,若OB =9,sin ①ABC =32,求BF 的长22.(本题10分)如图1,已知点A (-2,3),将OA 绕原点顺时针旋转90°至OB ,点B 在反比例函数xk y (x >0)的图像上 (1) 直接写出点B 的坐标和k 的值 (2) 点P 是该反比例函数图像上的一点(点P 在点B 右侧),若S △BOP ≥25,求点P 横坐标x P 的取值范围(3) 将OB 绕某个点旋转90°至MN ,其中点O 、B 分别与点M 、N 对应.若点M 、N 均在此反比例函数图像上,直接写出点M 的横坐标x M 的值23.(本题10分)如图1,已知△ABC 中,AB =8, BC =10,AC =12,D 是AC 边上一点,且AB 2=AD ·AC ,连接BD(1) 求证:BD 平分①ABC(2) 如图2,点E 、F 分别是BC 、AC 上两点(点E 不于B 、C 重合),①AEF =①C ,AE 与BD 相交于点G① 当E 是BC 中点时,求CF 的长① 如图3,连接GF ,当GE 平分①BGF 时,直接写出GEAG 的值24.(本题12分)如图1,已知抛物线C 1:y =-x 2+bx +c 与x 轴交于A (1,0)、B 两点,与y 轴交于点C (0,-3)(1) 求C 1的解析式(2) D 为线段BC 上一点, P 为点B 右侧抛物线上一点,PD =PB .当tan ①PBC =2时,求P 点坐标(3) 如图2,将该抛物线往上平移h (h ﹥0)个单位至C 2,C 2与y 轴交于点Q ,过Q 作射线QE 、QF 分别交抛物线C 2对称轴右侧于E 、F .若△QEF 的内心在直线y =h -3上,求证:直线EF 一定与过原点的某条定直线平行。

2017七一华源九年级数学五月考卷附答案

2017七一华源九年级数学五月考卷附答案

2016~2017届九年级数学五月月考测试1.4的结果为( ) A .±2 B .2 C .-2 D .42.若代数式21+x 在实数范围内有意义,则实数x 的取值范围是( )A .x =-2B .x >-2C .x≠0D .x≠-23.下列计算的结果为a 8的是( )A .a 2·a 4B .a 16-a 2C .a 16÷a 2D .(a 4)24下列事件发生的概率为0的是( ) A .射击运动员只射击1次,就命中靶心 B .任取一个实数x ,都有0x ≥C .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmD .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 5.运用乘法公式计算(a -1)2的结果是( )A .a 2-a +1 B . a 2+1 C .a 2-1 D .a 2-2a+1 6. 点A(-3,2)关于y 轴的对称点的坐标为( )A .(-3,-2)B .(3,-2)C .(3,2)D .(2,3)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是( )8.在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下: 11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数和众数分别是( )A.11.2,11.4B.11.4,10.2 A.10.2,10.2 A.11.2,10.29.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3) 10、已知x 为任意实数时,函数21y x x a =+-+的最小值为74,则实数a 的值( ) A. 1,12-B. 1,1- C . 1- D. 62,62-二.填空题11.计算:2-(-3)=___________ 12.计算:1212---x xx =___________ 13. 小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为 14. 已知: 如图, AD∥BC, AE、BE 分别平分∠DAC 和∠ABC, 若∠DAC=50°, ∠ABC=70°,则∠E 的度数是 .第14题 第15题(1) 第15题(2)15.如,1,等腰直角△ACD 的斜边CD 与含30°角的直角△ADE 的长直角边AD 重合,DE=8,如图2,将△ACD 绕A 点顺时针旋转至两三角形的斜边重合,C 点对应点为'C ,连接'C D ,则'C D 长为 .16.如图,正方形ABCD 的边长为4,DC 边与直线l 的夹角为60°,E 为直线l 上一动点,以DE 为边向右边作正方形DEFG ,连接BF ,M 为线段BF 中点,E 点从C 点出发沿直线l 向右运动到A 、D 、E 三点共线时停止,则运动过程中M 点走过的路径长为 .三.解答题17. 解方程:2x -1=3(x -2)EDAEA18.已知AD =CB , ∠A =∠C ,AE =CF ,求证:EB ∥DF .19. 为了了解学生对体育活动的喜爱情况,某校对参加足球、篮球、乒乓球、羽毛球这四个课外活动小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面问 (l )此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中的篮球部分的圆心角的度数。

湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题

湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题

湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将一元二次方程2215x x -=化成一般式后,若二次项系数为2,则一次项系数、常数项分别为()A .1,5-B .5-,1-C .1-,5-D .5,1-2.下列数学经典图形中,是中心对称图形的是()A .B .C .D .3.己知二次函数2(2)3y x =---,下列说法正确的是()A .对称轴为直线2x =-B .顶点坐标为(2,3)C .函数的最大值是3-D .函数的最小值是3-4.解一元二次方程2240x x +-=,配方后正确的是()A .2(1)3x +=B .2(1)4x +=C .2(1)5x +=D .2(2)8x +=5.如图,将扇形PAA '围成一个圆锥,若扇形半径为18,100APA '∠=︒,则圆锥的底面半径为()A.4B.6.如图,把ABC以点AA.CAE BED∠=∠D.CE 7.如图,某小区规划在一个长使其中两条与AB平行,另一条与为112m2,设小路的宽为xmA.2x2-25x+16=0B.x 8.如图,在半径为2,圆心角为接CD,则阴影部分的面积是(A.112π-B.129.如图,点B 是圆内一个定点,且点B 到圆上最近一点的距离为2,到圆上最远一点距离为8,则经过点B 的弦MN 的长度取值范围是()A .48MN ≤≤B .610MN ≤≤C .46MN ≤≤D .810MN ≤≤10.若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,则s 的取值范围是()A .1s <-B .0s <C .01s <<D .10s -<<15.如图,抛物线2(0)y ax bx c a =++≠与x 列四个结论:①0abc <;②0a b c ++>;③230b a +<;④不等式02x <<.16.如图,Rt ABC △中,ACB ∠,,DCB E F △分别为边,AC AB 最小值为.三、解答题17.若关于x 的一元二次方程根.18.如图,ABC 中,ACB ∠=点B 的对应点B '落在边(1)判断BCB 'V 的形状,并证明;(2)A B ''交AC 于点D ,若2BC =,求19.已知抛物线:2(y ax bx c a =++≠x…1-0123(1)求证:CD 与O 相切;(2)若2,6BE AE ==,求21.请用无刻度的直尺完成以下作图,作图过程用虚线表示,作图结果用实线表示.(1)如图1,小正方形的边长为1,小正方形的顶点叫做格点,已知A ,B ,O 经过A ,B ,C 三点.①画出圆心O ;②在圆上作点D ,使得 CD AB =,请作出所有的D 点;(2)如图2,AB 是O 的直径,CD AB ∥,先作平行四边形CABF ,再在使得CH AC=22.测试某种型号的无人机着陆后的滑行情况,收集相关数据如下表:滑行时间()s t 0滑行速度()m/s v 60滑行距离(m)y 058.5(1)求抛物线解析式;(2)如图1,过A 点的直线33:44l y x =+交抛物线于另一点过点P 作直线PQ x ⊥轴交抛物线于点Q ,若APQ △点的坐标;(3)如图2,将AOC 绕平面内一点M 逆时针旋转90︒后得到,A O C A '''△与A '对应,C 与C '对应,若点A '和点C '均落在抛物线上,求点M 的坐标.。

2018年七一九年级5月月考数学试卷(1)

2018年七一九年级5月月考数学试卷(1)

2017—2018学年度下学期九年级数学五月检测试题(考试时间:120分钟满分:120分)命题人:陈亮审题人:黄立凡一、选择题:(共10小题,每小题3分,共30分)1. 武汉市某天的气温:-1~8℃,则当天最高温与最低温之差是()(A)9 (B)7 (C)-9 (D)-72. 若代数式23x+在实数范围内有意义,则实数x的取值范围是()(A)3x>-(B)3x=-(C)1x≠(D)3x≠-3. 计算3343m m-的结果是()(A)1 (B)m(C)3m(D)37m4. 为了估计鱼塘中的鱼的数量,养鱼者首先从鱼塘中打捞100条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,一段时间后再从鱼塘中打捞50条鱼,如果在这50条鱼中有2条是有记号的,那么估计鱼塘中鱼的条数是( )(A)200 (B)2500 (C)2000 (D)50005. 计算()()12b b+-的结果是()(A)22b-(B)22b b+-(C)22b b--(D)22b b++6. 点A(-3,5)关于原点对称的点的坐标是()(A)(3,5)(B)(-3,-5)(C)(3,-5)(D)(5,-3)7. 一个几何体的三视图如图所示,那么这个几何体是()(A)(B)(C)(D)8.如果每件夹克的利润相同,你认为该店主最关注的销售数据是下列统计量中的()(A)平均数(B)方差(C)众数(D)中位数9. 计算机中常用的16进制是逢16进1记数制,采用数字0~9和字母A~F共16个记数符号,这些记数符号与10进制的数之间的对应关系如下表:例如:10进制中的26=16+10,可用16进制表示为1A;在16进制中E+D=1B.由上可知,在16进制中,3×F=()(A)45 (B)2D(C)32 (D)1C10. 如图,AB和CD是⊙O的两条互相垂直的直径,点E为弧BC上一点,连接EC、ED,若EC=2,ED=ABE的内切圆的直径为()(A)1 (B)2(C(D)二、填空题:(共6小题,每小题3分,共18分)11. 计算的结果是.12. 计算1111x x--+的结果是.13. 经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么三辆汽车经过这个十字路口时,两辆车向右转,一辆车向左转的概率是.14. 如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,边AD′与线段CE交于点F,若∠B=48°,∠DAE=20°,则∠FED′的度数为.第14题图第15题图15. 如图, 在Rt△ABC中, ∠ACB=90°, AB=12cm, ∠BAC=60°, 动点M从点B出发, 在BA边上以每秒2cm的速度向点A匀速运动, 同时动点N从点C出发, 在CB边上以每秒3cm的速度向B匀速运动, 设运动时间为t秒(06t<<) , 连接MN. 若△BMN是等腰三角形, 则t的值为.16. 抛物线223y x x=--交x轴于A、B两点(A在B右侧),交y轴于点C,连接AC,将△AOC绕点Q(m,-1.5)旋转180°后得到△A O C'''(A、O、C的对应点分别是,,A O C'''),当抛物线与△A O C'''三边共有两个公共点时,m的取值范围是.三、解答题:(共8小题,共72分)17.(本小题满分8分)解方程组:510314x yx y+=⎧⎨-=⎩.18.(本小题满分8分)如图,在平行四边形ABCD中,点E、F是对角线BD上的两点,且BF=DE,连接AE、CF. 求证:AE∥CF.19.(本小题满分8分)学校为了了解九年级学生的身体素质测试情况,随机抽取了该校九年级部分学生的身体素质测试成绩作为样本,按A (优秀),B (良好),C (合格),D (不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A ”部分所对应的圆心角的度数为_______ º.(3)我校九年级共有1000名学生参加了身体素质测试, 估计测试成绩在良好以上(含良好)的人数.20.(本小题满分8分)为全力助推武汉建设,大力发展长江新城,某公司拟派A 、B 两个工程队共同建设某区域的绿化带.已知A 工程队的1人每天完成80米绿化带,但A 工程队的5人与B 工程队的6人合作每天共完成700米绿化带.(注:假设同一个工程队的工人的工作效率相同) (1)列方程求B 队每人每天各完成多少米绿化带?(2)该公司决定派A 、B 工程队共20人参与建设绿化带,若每天完成绿化带总量不少于1510米,且B 工程队至少派出1人,则有哪几种人事安排方案?21.(本小题满分8分)如图,AB 是⊙O 的一条弦,点C 是半径OA 上一点(不与点A 、O 重合),过点C 作CD ⊥OA 于点C ,交弦AB 于点E ,交过点B 的⊙O 的切线于点D . (1)求证:BD =DE .(2)若OC =CA ,BE =2AE ,求BD AO的值.22.(本小题满分10分)如图,直角坐标系中,直线12y x =-与反比例函数k y x =的图象交于A 、B 两点.已知A 点的纵坐标为2. (1)求反比例函数的解析式.(2) 将直线12y x =-沿x 轴向右平移6个单位后,与该双曲线在第二象限内交于点C . 动点P 在y 轴正半轴上运动,当PA +PC 达到最小时,求APB S ∆. (3) 直接写出不等式02k xx +>的解集 .23.(本小题满分10分)如图,正方形ABCD 中,点E 是AB 边上一点,点F 是BC 边上一点,连接EF ,设EDF α∠=,(1)如图1,若45o α=,E 为AB 的中点,则CF BF的值为 .(2)如图2,若30o α=,过点E 作EM ∥BC 交DF 于M 点,问AE +CF 与EM 有何数量关系?请说明理由. (3)如图3,若60o α=,AD =4,直接写出DEF S ∆的最大值: .(图1) (图2) (图3)24.(本小题满分12分)如图,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为(3,0),顶点坐标为(1,4),连接BC . (1)求二次函数的解析式的解析式;(2)如图1,点M 是直线BC 上的一个动点(不与B 、C 重合),过点M 作x 轴的垂线,交抛物线于点N , 点C 、O 、M 、N 四个点能否围成一个平行四边形?如果能,请求出点M 的坐标;如果不能,说明理由;(3)如图2,直线43y x =交第一象限抛物线于一点E ,点F 是点C 和点E 之间抛物线上一点(不与点C 和点E 重合),过F 作x 轴垂线,垂足为H ,过F 作OE 垂线,垂足为G ,求FH +FG 的最大值.(图1) (图2)。

湖北省武汉市七一中学2018-2019学年度10月考九年级数学试题

湖北省武汉市七一中学2018-2019学年度10月考九年级数学试题

七一华源中学2018~2019学年度上学期九年级数学十月检测试题一、选择题(共10小题,每小题3分,共30分)1.下列交通标志中,是中心对称图形的是()2.方程4x2-1=0的根是()A.21=x B.212121-==xx,C.x=2 D.x1=2,x2=-23.方程x2-4x+5=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.如图所示,△ABC中,∠BAC=30°,将△ABC绕点A顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为()A.30°B.50°C.20°D.40°5.二次函数y=ax2+bx+2的图象经过点(-1,0),则代数式a-b的值为()A.0 B.-2 C.-1 D.26.函数y=-x2-4x-3图象的顶点坐标是()A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)7.一元二次方程0432=--yy配方后可化为()A.1)21(2=+y B.1)21(2=-y C.43)21(2=+y D.43)21(2=-y8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x ,则根据题意可列方程为( )A .2000(1+x )2=4500B .2000(1+2x )=4500C .2000(1-x )2=4500D .2000x 2=45009.如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,……,如此进行下去,直至得到C 10.若点P (28,m )在第10段抛物线C 10上,则m 的值为( )A .1B .-1C .2D .-2 10.已知直线PQ 过y 轴的正半轴上一个定点M ,交抛物线241x y =于P 、Q .若对过点M 的任意直线PQ ,都有2211MQ MP+为定值,则点M 的坐标是( ) A .(0,1)B .(0,2)C .(0,3)D .(0,4)二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (-5,3)关于原点对称点P ′的坐标是___________12.已知a 、b 是一元二次方程x 2-6x +5=0的两个实数根,则ab 的值是___________13.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为___________14.二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0有实数根,则m 的取值范围是___________15.若(a 2+b 2)(a 2+b 2-1)=12,则a 2+b 2的值为___________16.抛物线y =2x 2-ax +m -a 与x 轴相交于不同两点A (x 1,0)、B (x 2,0).若存在整数a 及m ,使得1<x 1<3和1<x 2<3同时成立,则m =___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+4x -1=018.(本题8分)如图,在平面直角坐标系中,A (1,1)、B (4,2)、C (2,3)(1) 请画出将△ABC 向下平移3个单位得到的△A 1B 1C 1(2) 请画出以点O 为旋转中心,将△ABC 逆时针旋转90°得到的△A 1B 2C 2(3) 请直接写出A 1A 2的距离19.(本题8分)已知抛物线y 1=x 2与直线3212+-=x y 相交于A 、B 两点 (1) 求A 、B 两点的坐标(2) 点O 为坐标原点,△AOB 的面积等于___________(3) 当y 1<y 2时,x 的取值范围是________________20.(本题8分)关于x 的一元二次方程x 2-(k +3)x +2k +2=0(1) 若方程有一个根是3,求k的值(2) 若方程有一根小于1,求k的取值范围21.(本题8分)为了迎接“军运会”,江岸区永清街道决定对一块矩形空地进行改造.如图,已知该矩形空地长为90m、宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等(1) 求各通道的宽度(2) 现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,则该工程队原计划每天完成___________平方米的绿化任务(直接写出答案)22.(本题10分)彬彬童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件(1) 求y与x之间的函数关系式(不求自变量的取值范围)(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3) ①当每件童装售价定为________元时,该店一星期可获得3910元的利润(请直接写出答案)②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装________件(请直接写出答案23.(本题10分)如图1,在△ABC中,AC=7,∠ACB=45°.将△ABC绕点B按顺时针方向旋转,得到△DBE(其中A与D对应)(1) 如图2,当点C在线段ED的延长线上时,△CDB的面积为2①求证:CB平分∠ACE;②求BC的长(2) 如图3,在(1)的条件下,点F为线段AB的中点,点P是线段DE上的动点,在旋转过程中,线段FP长度的最大值与最小值之和等于__________(请直接写出答案)24.(本题12分)如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c与直线l:y=kx+m (k<0)交于A(-1,-1)、B两点,与y轴交于C(0,2)(1) 求抛物线的函数表达式(2) 若y轴平分∠ACB,求k的值(3) 若在x轴上有且仅有一点P,使∠APB=90°,求k的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档