《代数式》全章复习与巩固(基础)巩固练习
沪教版八年级下册数学 第二十一章 《代数方程》全章复习与巩固 知识讲解(提高)

《代数方程》全章复习与巩固知识讲解(提高)【学习目标】1.知道一元整式方程与高次方程的有关概念,知道一元整式方程的一般形式. 理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法.2.理解和掌握二项方程的意义以及二项方程的解法,理解双二次方程的意义,了解高次方程求解的基本方法是降次,会用换元法把双二次方程转化为一元二次方程;学会判断双二次方程的根的个数.3.会用“换元法”解特殊的分式方程(组).4.理解无理方程的概念,会识别无理方程,知道有理方程及代数方程的概念,领会无理方程“有理化”的化归思想. 会解简单的无理方程(方程中只含一个或两个关于未知数的二次根式).5.知道二元二次方程的概念和二元二次方程组的概念.6.掌握由“代入法”解由一个二元一次方程和二元二次方程组成的方程组;掌握用“因式分解法”解由两个二元二次方程组成的方程组.7.能熟练地列出方程组解应用题.并能根据具体问题的实际意义,检查结果是否合理.通过将实际生活中的问题抽象为方程模型,让学生形成良好思维习惯,学会从数学角度提出问题、理解问题.运用所学知识解决问题,发展应用意识,体会数学的情感与价值.【知识网络】【要点梳理】要点一、整式方程1. 一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程;2.一元n次方程:一元整式方程中含未知数的项的最高次数是n(n是正整数),这个方程叫做一元n次方程.3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n,若次数n是大于2的正整数,这样的方程统称为一元高次方程.要点诠释:一元高次方程应具备:整式方程;只含一个未知数;含未知数的项最高次数大于2次.4.二项方程概念:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.要点诠释:注:①nax=0(a≠0)是非常特殊的n次方程,它的根是0.②这里所涉及的二项方程的次数不超过6次.5.解的情况:当n为奇数时,方程有且只有一个实数根,x=;当n为偶数时,如果ab<0,那么方程有两个实数根,且这两个根互为相反数;如果ab>0,那么方程没有实数根.6.双二次方程概念:只含有偶数次项的一元四次方程.要点诠释:当常数项不是0时,规定它的次数为0.7.解双二次方程的常用方法:因式分解法与换元法(目的是降次,使它转化为一元一次方程或一元二次方程)通过换元,把双二次方程转化为一元方程体现了“降次”的策略.要点诠释:解高于一次的方程,基本思想就是“降次”,对有些高次方程,可以用因式分解的方法降次.用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解.要点二、分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程看联系:分式方程可以转化为整式方程.2.分式方程的解法1、解分式的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点诠释:1、熟练掌握用“去分母”法求解分式方程的方法.2、了解用“换元法”解特殊的分式方程(组).3、领会分式方程“整式化”的化归思想和方法.3.解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点三、无理方程1.无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.要点诠释:简单说,根号下含有未知数的方程,就是无理方程.2.有理方程:整式方程和分式方程统称为有理方程.3.代数方程:有理方程和无理方程统称为代数方程.要点诠释:代数方程的共同点是:其中对未知数所涉及的运算是加、减、乘、除、乘方、开方等基本运算.4.含有一个根式(根式内有未知数的)的无理方程的解题步骤:①移项,使方程左边是含未知数的根式,其余都移到另一边;②两边同时乘方(若二次根式就平方,三次根式就立方)得整式方程;③解整式方程;④验根;⑤写答案.要点诠释:解简单无理方程的一般步骤,用流程图表示为:5.含有两个根式(根式内含有未知数)的无理方程的解题步骤:①移项,使方程等式的左边只含一个根式,其余移到另一边;②两边同时平方,得到只含有一个根式的无理方程;以下与1步骤相同.要点诠释:解无理方程的关键在于把它转化为有理方程,转化的基本方法是对方程两边同时乘方从而去掉根号,对于简单的无理方程,可通过“方程两边平方”来实施.要点四、二元二次方程组1. 二元二次方程定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点诠释:22ax bxy cy dx ey f o +++++=(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中22,,ax bxy cy 叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,,dx ey 叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点诠释:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.3.二元二次方程组概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点诠释:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.4. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.1. 代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示;②把这个代数式代入二元二次方程,得到一个一元二次方程;③解这个一元二次方程,求得未知数的值;④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值;⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解; ⑥写出原方程组的解.要点诠释:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2. 因式分解法(1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解.(2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.5.方程(组)的应用应用二元二次方程组解应用题的一般步骤:(1)审题;(2)设未知数(2个);(3)列二元二次方程组;(4)解方程组;(5)检验是否是方程的解以及是否符合实际;(6)写出答案.要点诠释:一定要检验一下结果是否符合实际问题的要求.【典型例题】类型一、方程的判断1.下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.2222(1) 1 ; (2)320;1(3)20 ; (4)3 1.x y y y y x x y xy+=-+=+-=++= 【思路点拨】该题主要依据二元二次方程的定义.【答案与解析】(1)是,二次项2x 、一次项y ,常数项-1.(2)不是,因为只含一个未知数.(3)不是,因为不是整式方程.(4)不是,因为不含二次项.【总结升华】对于二元二次方程的定义要加深全面的理解.举一反三:【变式】(2015秋•黄浦区期中)在方程2x 2﹣3x=4,xy=1,x 2﹣4y 2=9,中,是二元二次方程的共有( ) A .1个 B .2个 C .3个 D .4个【答案】B.解:2x 2﹣3x=4是一元二次方程;xy=1,x 2﹣4y 2=9是二元二次方程;是分式方程.故是二元二次方程的只有:xy=1,x 2﹣4y 2=9.故选B .2.(2016春•上海校级月考)下列关于x 的方程中,无理方程是( )A .B .C .D .+2x=7 【思路点拨】根号下含有未知数的方程是无理方程,依据定义即可作出判断.【答案】C .【解析】解:A 、x 2+x+1=0是一元二次方程,选项错误;B 、x+1=0是一元一次方程,选项错误;C 、+=0是无理方程,选项正确;D 、+2x=7是关于x 的一元一次方程,选项错误.故选C .【总结升华】本题考查了无理方程的定义,无理方程与整式方程的区别在于被开方数中是否含有未知数,理解定义是关键.举一反三:【变式】(2015春•闵行区期末)已知下列关于x 的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.其中,是无理方程的有()A.2个 B.3个 C.4个 D.5个【答案】B.解:①根号内不含未知数,所以,不是无理方程;故本项不符合题意;②根号内含未知数,所以,是无理方程;故本项符合题意;③根号内不含未知数,所以,不是无理方程;故本项不符合题意;④根号内含未知数,所以,是无理方程;故本项符合题意;⑤根号内含未知数,所以,是无理方程;故本项符合题意;⑥根号内不含未知数,所以,不是无理方程;故本项不符合题意;所以,②④⑤是无理方程;故选B.类型二、判断方程解的情况3.(2016春•上海校级月考)下列关于x的方程中,一定有实数根的是()A. B.x2+x+1=0 C. D.【思路点拨】根据表示a的算术平方根,一定是非负数,以及一元二次方程根的判别式即可作出判断.【答案】C.【解析】解:A、≥0,4>0,则原式一定不成立,则方程没有实数根,选项错误;B、a=1,b=1,c=1,则△=b2﹣4ac=1﹣4=﹣3<0,则方程无实数根,选项错误;C、当x=0时,=﹣x一定成立,即方程有实数根0,选项正确;D、≥0,≥0,则+≥0,因而+=﹣1一定不成立,没有实数根,选项错误.故选C.【总结升华】本题考查了算术平方根的定义以及一元二次方程根的判别式,理解任何非负数的算术平方根是非负数是关键.举一反三:【变式】(2016春•南京校级月考)下列方程中,有实数根的是()A.x2﹣3x+5=0 B.C. D.【答案】C.解:A、△=9﹣20=﹣11<0,方程没有实数解,所以A选项错误;B、方程=﹣1没有实数解,所以B选项错误;C 、解得x=﹣1,正确;D 、去分母得x=1,经检验x=1是不是原方程的解,所以D 选项错误;故选C .类型三、解方程4. 解关于x 的方程:1mx nx -=【思路点拨】解含字母系数的方程时,先化为最简形式ax b =,再考虑有解、无解、无穷多解的模式.然后进行分类讨论.【答案与解析】原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论. 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:64x k =-为正整数,∴4k -应为6的正约数,即4k -可为:1,2,3,6 ∴k 为:5,6,7,10答:自然数k 的值为:5,6,7,105.(2016春•长宁区期末)解方程:2220383x x x x +-=+. 【思路点拨】根据换元法,设213u x x=+,可得关于u 的分式方程,根据解方程,可得答案. 【答案与解析】解:设213u x x =+,则原方程化为:1208u u-=, 解得:1211102u ,u ==-, 当110u =时,2310x x +=,解得:1252x ,x =-=,经检验1252x ,x =-=是原分式方程的解; 当12u =-时,232x x +=-,解得:12317317x -+--==,经检验12317317x ,x -+--==是原分式方程的解; 所以原方程的解为:1252x ,x =-=,3431731722x ,x -+-==.【总结升华】本题考查了解分式方程的应用,能正确换元是解此题的关键,难度适中.6. 解方程 223152512x x x x ++++=【答案与解析】 251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=,即23250y y +-=,解得:1y =或53y =-.(1)当1y =225115010x x x x x x ++=⇒+=⇒=-=或;(2)当53y =-2510x x y ++=≥,所以方程无解.检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.【总结升华】本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,251x x y ++=,这样就可将原方程先转化为关于y 的一元二次方程进行处理.举一反三: 【变式】解方程()223323532x x x x +-+=+ 【答案】解:原方程变形为,22352354022x x x x -++-+=, 2235x x -+,则23522x x -+=22y , 则方程可化为,22y +y-4=0, 整理得,2280y y +-=,解得,122,4,y y ==-当y=22235x x -+,解得,1211,2x x ==; 当y=-42235x x -+=-4,无解. 经检验,1211,2x x ==都是原方程的解,所以原方程的解为1211,2x x ==. 7、解方程49324492x x x x +-=+. 【答案与解析】解:设494x y x +=,则214+9x x y=, 原方程可化为,y-1y =32, 整理得,22320y y --=,解得,12,y =21,2y =-当y=2时,492,4x x +=解得,x=34; 当y=-12时,491,42x x +=-无解; 经检验,x=34是原方程的解, 所以原方程的解为x=34. 【总结升华】本题中494x x +与24+9x x 之间互为倒数,采用倒数换元法是本题的最佳选择. 举一反三:【变式】(杨浦区校级期中)解方程:4x 2﹣10x+=17. 【答案】解:方程变形为2(2x 2﹣5x+2)﹣﹣21=0 设=t ,则原方程转化为2t 2+t ﹣21=0,(t ﹣3)(2t+7)=0,解得t 1=3,t2=﹣,当t=3时,=3,则2x 2﹣5x+2=9, 整理得2x 2﹣5x ﹣7=0,解得x 1=,x 2=﹣1;当t=﹣时,=﹣,则方程无解,经检验原方程的解为x 1=,x 2=﹣1.类型四、解方程组 8. 解方程组【答案与解析】解:设1=+u x y ,1=-v x y,则原方程组可化为 80+42=7,40+70=7.u v u v ⎧⎨⎩解得 1=,201=.14u v ⎧⎪⎪⎨⎪⎪⎩ 于是,得 11=,+2011=.-14x y x y ⎧⎪⎪⎨⎪⎪⎩ 因此 +=20,-=14.x y x y ⎧⎨⎩解得 =17,=3.x y ⎧⎨⎩检验:把x=17,y=3代入原方程组中所含各分式的分母,各分母的值都不为零. 所以,原方程组的解是=17,=3.x y ⎧⎨⎩【总结升华】本题中直接去分母解比较麻烦,通过观察发现两个方程所含的分式的分母分别是x+y 和x-y ,所以想到“换元”,设1=+u x y ,1=-v x y,则原方程得以简化. 【变式】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩【答案与解析】根据一元二次方程的根与系数的关系,把x 、y 看成是方程211280z z -+=的两根,解方程得:4z =或z=7.∴ 原方程组的解是:1147x y =⎧⎨=⎩或2274x y =⎧⎨=⎩.【总结升华】本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解. (1) 对于这种对称性的方程组x y a xy b+=⎧⎨=⎩,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x 、y 的字母,如z . (2) 对称形方程组的解也应是对称的,即有解47x y =⎧⎨=⎩,则必有解74x y =⎧⎨=⎩. 9.(2016•黄浦区二模)解方程式:.【答案与解析】解:由②可得,(x+y )(x ﹣5y )=0,即x+y=0或x ﹣5y=0,∴x=﹣y 或x=5y ,当x=﹣y 时,把x=﹣y 代入①,得:2y 2=26, 解得:y=±, 故方程组的解为:或; 当x=5y 时,把x=5y 代入①,得:25y 2+y 2=26,解得:y=±1, 故方程组的解为:或; 综上,该方程组的解为:或或或.【总结升华】本题主要考查解高次方程的能力,解高次方程的根本思想是化归思想,次数较高可通过因式分解再代入等方法降幂求解即可.类型五、应用10.(2016•黄埔区模拟)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.【思路点拨】设甲乙两人原来每小时各加工零件分别为x 个、y 个,根据各加工30个零件甲比乙少用1小时完成任务,改进操作方法之后,乙完成30个零件的时间比甲完成24个零件所用的时间少1小时,列方程组求解.【答案与解析】解:设甲乙两人原来每小时各加工零件分别为x个、y个,由题意得,,解得:.经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.【总结升华】本题考查了二元一次方程组和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解,注意检验.举一反三:【变式】甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?【答案与解析】解:设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得去分母,整理,得 x2+x-30=0.解这个方程,得 x1=5,x2=-6.经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.答:甲每小时走6千米,乙每小时走5千米.【总结升华】本题当中要特别注意理解“甲结果比乙早到半小时”这句话,说明乙用的时间长,要在乙的时间上减去12小时,才和甲所用的时间相等.11.k为何值时,方程组.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案与解析】解:将(2)代入(1),整理得k2x2+(2k-4)x+1=0 (3)(1)当时,方程(3)有两个相等的实数根.即解得:,∴k=1.∴当k=1时,原方程组有两组相等的实数根.(2)当时,方程(3)有两个不相等的实数根.即解得:,∴k<1且k ≠0.∴当k<1且k ≠0时,原方程组有两组不等实根.(3)①若方程(3)是一元二次方程,无解条件是 ,即解得:, ∴k >1.②若方程(3)不是二次方程,则k=0,此时方程(3)为-4x+1=0,它有实数根x=. 综合①和②两种情况可知,当k>1时,原方程组没有实数根.【总结升华】因为在(1)、(2)中已知方程组有两组解,可以确定方程(3)是一元二次方程,但在(3)问中不能确定方程(3)是否是二次方程,所以需要分两种情况讨论.使用判别式“Δ”的前提条件是能确定方程为一元二次方程,不是一元二次方程不能使用Δ.12. 求直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标.【答案与解析】解:设满足题意的点为A(x,y),由题意得,2222(15)15(9)15x y x y ⎧+-=⎪⎨++=⎪⎩, 解得,93x y =⎧⎨=⎩或93x y =-⎧⎨=⎩, 经检验,两组都是方程组的解,所以A (9,3)或A (-9,3).答:直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标为(9,3)或(-9,3).。
《代数式复习教案》

《代数式复习教案》一、教学目标1. 知识与技能:(1)理解代数式的概念,掌握代数式的基本形式;(2)熟练运用代数式进行表达和计算;(3)掌握代数式的化简、变形和求值方法。
2. 过程与方法:(1)通过复习,巩固代数式的基本概念和性质;(2)运用举例、归纳、总结等方法,提高解题能力;(3)培养学生的逻辑思维能力和创新思维能力。
3. 情感态度与价值观:(2)培养学生合作交流、解决问题的能力;(3)体验数学在实际生活中的运用,提高学生对数学的认识。
二、教学内容1. 代数式的概念与基本形式(1)代数式的定义;(2)代数式的基本形式:数字、字母和运算符号的组合。
2. 代数式的化简(1)合并同类项;(2)简化代数式。
3. 代数式的变形(1)代数式的加减变形;(2)代数式的乘除变形。
4. 代数式的求值(1)代数式求值的方法;(2)常见求值问题举例。
5. 代数式在实际生活中的应用(1)利率问题;(2)折扣问题;(3)其他实际问题。
三、教学重点与难点1. 教学重点:(1)代数式的概念与基本形式;(2)代数式的化简、变形和求值方法;(3)代数式在实际生活中的应用。
2. 教学难点:(1)代数式的化简与变形;(2)代数式的求值;(3)代数式在实际生活中的应用。
四、教学方法1. 讲解法:讲解代数式的概念、性质、方法和技巧;2. 举例法:通过典型例题,引导学生理解和掌握代数式的解题方法;3. 练习法:布置适量练习题,巩固所学知识;4. 讨论法:组织学生分组讨论,培养学生的合作交流能力。
1. 引入新课:通过复习问题,引发学生对代数式的思考;2. 讲解与示范:讲解代数式的概念与基本形式,示范化简、变形和求值的方法;3. 练习与讨论:学生独立完成练习题,分组讨论解题方法;4. 总结与拓展:总结代数式的解题技巧,拓展代数式在实际生活中的应用;5. 布置作业:布置适量作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对代数式概念的理解程度,以及对化简、变形和求值方法的掌握情况。
第三章代数式章末复习+课件2024-2025学年人教版(2024)数学七年级上册

600-2 512=7 088(cm2).
答:窗户的透光面积约是7 088 cm2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
第三章
代数式章末复习
分层检测
16. 某商场销售一种大米,售价为每千克8元,如果买50千克以上,超过
50千克的部分售价为每千克7元,小明买这种大米 a 千克.
(1)小明应付款多少元?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
第三章
代数式章末复习
分层检测
B提升
11. 如果代数式3 x +4 y =5,则代数式9 x +12 y -3的值是( D
A. 9
B. 10
C. 11
D. 12
)
12. 根据流程图中的运算程序,当输入数据 x =-5时,输出结果 y 为
(
C
)
A. 1
B. 9
a +2 b =-2+2×
当 a =-2, b = 时,
2
2
2
2
a + ab + b =(-2) +(-2)× +( )
=4+(-1)+ = .
=-2+1
=-1;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。
二次根式(巩固篇)(专项练习)

专题1.12 二次根式(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.若3x =时,2x a -当5x =时,2x a -则a 的值可能是( )A .4B .8C .12D .162.下列二次根式中,是最简二次根式的是( )A 2B 12C 8D 123.若0xy <,则2x y ) A .xy B .x y -C .x y --D .x y -42243 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间5371115,,,…,则311 )A .第23项B .第24项C .第19项D .第25项625x -1x -+x 值是( )A .3-B .2C .3-或2D .不存在7.下列计算正确的是( )A .3553=B 236=C 235=D 12348.已知a b 、为实数,m n 、分别表示574am bn +=,则37a -+=( ) A .1 B .32 C .52 D .2 9.当12022x +=3420252022x x --的值为( ) A .3B .3-C .1D .1-10.观察下列二次根式的化简( )1221111111212S =+++-; 2222211111111111112231223S ⎛⎫⎛⎫+++++-++- ⎪ ⎪⎝⎭⎝⎭; 3222222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 则20222022S =( ) A .20222021 B .20242023 C .12022 D .12024二、填空题11.已知1()2f x x=+,那么(3)f =_____. 12.求值:()(202220232332⋅+=______.132b +152b --a b -=________. 14.已知a 10b 是它的小数部分,则210a b +=______.15.若两不等实数a ,b 满足38a b +=,38b a +=,a b ab _____. 16.已知整数x ,y 满足2022202220222022x y x x y xy ,7x y --的最小值为 _____.17.已知等腰ABC 的两边长分别为37,则等腰ABC 的周长是______.18.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→……”的路线运动.设第n 秒运动到点n P (n 为正整数),则点2023P 的坐标是_______________.三、解答题19.当2022a =时,求221a a a -+(1) 的解法是错误的;(2) 错误的原因在于未能正确地运用二次根式的性质: ;(3) 当3a >2691a a a -+-的值.20.计算: (1)148318243 (2) 03(51)(51)(2)27+-21.计算及解方程组: (1)1324126-() (2) )26221532+22.已知32x =32y =,求下列各式的值:(1) 22x y -: (2) 222x xy y ++.23.小明在解决问题:已知23a =+2281a a -+的值.他是这样分析与解的:∵()()2323232323a -=++- ∵23a -=-∵()2223,443a a a -=-+=,∵241a a -=-,∵()()222812412111a a a a -+=-+=⨯-+=-. 请你根据小明的分析过程,解决如下问题: (1) 1315375121119+++++ (2) 若121a , ∵求2481a a -+的值;∵直接写出代数式的值3231a a a ++-=___________.24.探究题(1) 用“=”、“>”、“<”填空: 4+3 243⨯1+16 2116⨯,5+5 255. (2) 由(1)中各式猜想m +n 与mn m ≥0,n ≥0)的大小,并说明理由.(3) 请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m 2的花圃,所用的篱笆至少需要 m .参考答案1.B【分析】二次根式有意义的条件是被开方数是非负数,根据这个条件列不等式即可. 解:∵当3x =2x a -∵230a ⨯-<,解得6a >,∵当5x =2x a -∵250a ⨯-≥,解得10a ≤,∵610a <≤,∵a 的值可能是8,故选:B .)0a a ≥叫二次根式.关键是掌握二次根式中的被开方数必须是非负数,否则二次根式无意义.2.A【分析】根据二次根式化简方法和最简二次根式的概念进行化简辨别即可.解:A 2B 12434323⨯=12不是最简二次根式,该选项不符合题意;C 8424222⨯8D 1122212不是最简二次根式,该选项不符合题意; 故选:A .【点拨】本题考查二次根式的化简,对于最简二次根式要满足两个条件:被开方数不含开的尽方得因数,被开方数不含分母,准确理解最简二次根式的概念,并能对二次根式进行正确的化简是解决问题的关键.3.D【分析】根据0xy <2x y 0,0x y <>,进而即可求解.解:∵0xy <2x y∵0,0x y <>, 2x y y x y ==-故选:D .【点拨】本题考查了二次根式有意义的条件,根据二次根式的性质化简,得出0,0x y <>是解题的关键.4.B【分析】利用二次根式的混合运算将原式化简,再进行无理数的估算即可. 2243263=433=33=∵252736<<,∵5276<,即5336<, 22435和6之间,故选:B【点拨】本题考查了二次根式的混合运算以及估算无理数的大小,27的范围是解此题的关键.5.D【分析】通过观察,得出第n 项为:41n -再根据31199得出方程4199n -=,解出即可得出答案.解:∵371115,,,…, ∵通过观察,可得:第n 41n - ∵31191191199⨯∵4199n -=,解得:25n =,∵31125项.故选:D【点拨】本题考查了数字规律问题、二次根式的乘法,解本题的关键在正确找出已知数列的规律.6.A【分析】根据同类最简二次根式的定义求解即可解:根据题意得:215x x --+250x -≥,10x -+≥, 215x x --+∵215x x --+=,解得:3x =-或2x =(舍),∵3x =-,故选:A【点拨】本题考查了同类最简二次根式的定义,掌握同类最简二次根式的定义是解决问题的关键7.B【分析】根据二次根式的加减乘除运算法则求解判断即可.解:A 、35525B 236=C 23D 12312342=÷=,计算错误,不符合题意,选项错误,故选B .【点拨】本题考查二次根式的加减乘除运算,熟练掌握相关运算法则是解题关键.8.D7m n 、的值,再代入计算即可.解:∵72<<3,∵372-<<-,∵72<5<3,∵57-2m =,小数部分57237n ==∵4am bn +=,∵(2374a b +=,∵372a -=, 故选:D .【点拨】本题考查估算无理数的大小,二次根式的混合运算,掌握算术平方根的定义是正确解答的前提.9.D【分析】根据12022x +=2442021x x -=,然后将多项式3420252022x x --转化为22(442021)(442022)x x x x x --+--,然后代入计算即可.解:12022x += 2(21)2022x ∴-=,24412022x x ∴-+=,2442021x x ∴-=,∴多项式3420252022x x --22(442021)(442022)x x x x x =--+--(20212021)20212022x =-+-020212022=+-1=-,故选:D .【点拨】本题难度较大,需要对要求的式子进行变形,同学们要学会转化的思想,这是数学中一种很重要的思想.10.B【分析】根据题目中给定的计算方法求出2022S ,再进行求解即可. 解:221111111212++=+-221111112323++=+-221111113434++=+-,…∵221111112022202320222023++=+-, ∵1221111111212S =++=+-, 2222211111111111112231223S ⎛⎫⎛⎫=++++=+-++- ⎪ ⎪⎝⎭⎝⎭, 322222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, …∵20221111111111111111223342021202220222023S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++-++-+++-++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1202220221202220232023=+-=+, ∵则20222022202212024202312022202220232023S +==+=. 故选B . 【点拨】本题考查二次根式化简中的简便运算.熟练掌握题目中给定的计算方法是解题的关键.11.23【分析】根据1()2f x x =+代入计算即可; 解:∵1()2f x x =+, ∵()()23(3)23232323f -==++- 故答案是:23.【点拨】本题主要考查了代数式求值和分母有理化,准确利用平方差公式计算是解题的关键.12.322+ 【分析】先根据积的乘方得到原式=20222022322322322-++()()(),然后利用平方差公式计算. 解:原式=20222023322322-+()()=20222022322322322-++()()()=(202298322-⨯+() =322+故答案为:322+【点拨】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和积的乘方与幂的乘方是解决问题的关键.13.2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a和b 的值代入到代数式,通过计算即可得到答案.解:根据题意得:12a -=∵3a =∵2b +152b --∵252b b +=-∵1b =∵312a b -=-=故答案为:2.【点拨】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.3【分析】由于34a <<,则3a =,103b =,然后代入所求代数式进行计算即可. 解:3104<<,3a ∴=,103b =,2106103103a b ∴+=.故答案为:3.【点拨】本题考查了估算无理数的大小,二次根式的加减,解题的关键是利用完全平方数和算术平方根对无理数的大小进行估算.15.4【分析】3a b =1ab ,然后代入原式即可求出答案.解:∵38a b +,38b a +, ∴33a a b b ++1633a b b a ++, ∴330b a b a +-, ∴30a ba b a b =-, ∵a b , 0a b , 3a b =,∵1633a b b a =++,∴7a b +=, ∵22a b a b ab =++()212a b a b ab -+=∴原式=314+=.故答案为:4. 【点拨】本题考查二次根式的混合运算,解题的关键是a b a b a b -=,本题属于基础题型.16.18 2()2022()202220220xy x y x y xy =,然后因式分解为(2022)(2022)0x y xy =,20220xy =,进而分析得出337x =,6y =,则答案可得. 解:2022202220222022x y y x x y xy =, 2()2022()202220220xy x y x y xy , ∵(2022)(2022)0x y xy =, 20220xy =,∵202223337xy ==⨯⨯,∵x ,y 均为整数,70x y -->,7x y --337x =,6y =,7x y --3376732418--==.故答案为:18. 20220xy . 17.1423+2314 【分析】分两种情况:当等腰ABC 的腰长为37时,当等腰ABC 的腰长为7,底边长为23解:分两种情况:当等腰ABC的腰长为237时,233437+,∴不能组成三角形;当等腰ABC的腰长为7,底边长为3∴等腰ABC的周长773143=++=+综上所述:等腰ABC的周长是1423+故答案为:143+【点拨】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况进行计算是解题的关键.18.3⎛⎝⎭【分析】每630,30,3,0,点的横坐标规律:12,1,32,2,52,3,…,2n,即可求解.解:如图,过1A作1A H x⊥轴于H,则130OA H∠=︒,而11OA=,∵12OH=,2211312A H⎛⎫=-=⎪⎝⎭,∵每630,30,3,0,∵20236337÷=余1,∵点2023P3由题意可知动点P 每秒的横坐标规律:12,1,32,2, 52 ,3,…,2n , ∵点2023P 的横坐标为1011.5, ∵点2023P 的坐标3⎛ ⎝⎭, 故答案为3⎛ ⎝⎭. 【点拨】本题考查点的规律;理解题意,根据所给图形的特点,结合平面直角坐标系中点的特点及正三角形边的特点,确定点的坐标规律是解题的关键.19.(1)小亮 2||a a (3)-2【分析】(1)根据二次根式的性质化简即可求出答案.(2)根据二次根式的性质化简即可求出答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据二次根式的性质以及绝对值的性质进行化简即可求出答案. 解:(1)原式2(1)a a =-1a a =+-,∵2022a =,∵10<-a ,∵原式1212202214043a a a =+-=-=⨯-=,故小亮的解法错误,故答案为:小亮. (22a a ,2a a .(3)∵3a >,30a ∴->,10a -<, ∵原式2(3)1a a =--,31a a =---()31a a =-+-31a a =-+-2=-.【点拨】本题考查二次根式的化简求值,解题的关键是熟练运用二次根式的性质,本题属于基础题型.20.(1)46 (2)2【分析】(1)直接利用二次根式的乘除运算法则、二次根式的性质化简,进而得出答案;(2)将原式用平方差公式化简,再求值即可(1148318243148318263=÷⨯16626=46=(2)03(51)(51)(2)27+-25113=-+-53=-2=【点拨】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和混合运算法则. 21.(1)71210 (2)3107-【分析】(1)先计算括号,再计算除法,最后计算加减.(2)按照完全平方公式,二次根式的乘法计算即可. 解:(113242126-() 63621(2 32156 3221==71210(2)26221532+ =331073-=3107-.【点拨】本题考查了二次根式的乘法,除法,完全平方公式,绝对值的化简,熟练掌握二次根式的乘除运算是解题的关键.22.(1)6 (2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算. (1)解:32x =+32y =,23x y ∴+=22x y -=()()22232246x y x y x y -=+-==(2)由(1)知3x y +=∵22222()(23)12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.23.(1)5 (2)∵5,∵0【分析】(1)原式各项分母有理化,计算即可求出值;(2)∵先把a 分母有理化可得到21a ,从而得到221a a -=,再把式子进行整理,将221a a -=代入计算即可求出值;∵将式子整理成()2221a a a a a --++,再代入221a a -=,即可求解. (11315375121119++++++ 13153751211192=+- ()112112= 1102=⨯5=;(2)解:∵∵()()122122211a -+-,∵12a -= ∵()2212,212a a a --=+=,∵221a a -=,∵()224814214115a a a a -+=-+=⨯+=; ∵∵221a a -=,∵3231a a a -++()2221a a a a a =--++21a a a =-++()221a a =--+=11-+0=.故答案为:0【点拨】本题考查了分母有理化,二次根式的化简求值,正确读懂例题,对二次根式进行化简是关键.24.(1)>,>,=, (2)m +n mn (3)40【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m +n mn 比较大小,可以作差,m +n -mn(3)设花圃的长为a 米,宽为b 米,需要篱笆的长度为(a +2b )米,利用第(2)问的公式即可求得最小值.(1)解:∵4+3=7,43⨯3∵2749=,2(43)48=,∵49>48,∵4+3>43⨯∵1+16=76>1,116⨯61,∵1+16>116⨯;∵5+5=10,55⨯,55⨯故答案为:>,>,=;(2)解:m+n mn m≥0,n≥0).理由如下:当m≥0,n≥0时,∵2()0m n≥,∵22()2()0m m n n-≥,∵m-mn n≥0,∵m+n mn(3)解:设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:222222220022040a b a b ab+≥⋅==⨯⨯=,∵篱笆至少需要40米.故答案为:40.【点拨】本题主要考查了二次根式的应用,体现了由特殊到一般的思想方法,解题的关键是联想到完全平方公式,利用平方的非负性求证.。
人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
初中数学一元二次方程全章复习与巩固(基础)

《一元二次方程》全章复习与巩固(基础)【学习目标】1.了解一元二次方程及有关概念2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程3.掌握依据实际问题建立一元二次方程的数学模型的方法【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想一元二次方程⎯⎯⎯→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42−叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42−=∆(1)当△>0时,一元二次方程有2个不相等的实数根. (2)当△=0时,一元二次方程有2个相等的实数根. (3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x −=+21,a cx x =21.注意它的使用条件为a ≠0, Δ≥0. 要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况. (2)根据参系数的性质确定根的范围. (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数.(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数. (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节:一是整体地、系统地审题. 二是把握问题中的等量关系. 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等). 设 (设未知数,有时会用未知数表示相关的量). 列 (根据题目中的等量关系,列出方程).解 (解方程,注意分式方程需检验,将所求量表示清晰). 验 (检验方程的解能否保证实际问题有意义). 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等. 要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x −+=D .223250x xy y −−=【答案】C【解析】A :不是整式方程,故本选项错误.B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程,故本选项错误.C :由原方程,得x 2+x-3=0,符号一元二次方程的要求;故本选项正确.D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2 (2)二次项系数不为0 (3)是整式方程(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【变式】关于x 的方程22(28)(2)10a a x a x −−++−=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程 (1) 0.5x 2-=0 (2) (x+a)2=(3) 2x 2-4x-1=0 (4) (1-)x 2=(1+)x【答案与解析】 (1)原方程可化为0.5x 2=∴x 2=用直接开平方法,得方程的根为 ∴x 1=,x 2=-(2)原方程可化为x 2+2ax+a 2=4x 2+2ax+∴x 2=a 2用直接开平方法,得原方程的根为 ∴ x 1=a ,x 2=-a .(3) a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0 (2)2(t-1)2+t=1【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0∴ 3x-2=0或3x-3=0,∴12 3x=,21x= (2)原方程可化为:2(t-1)2+(t-1)=0∴ (t-1)[2(t-1)+1]=0∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0∴11t=,21 2t=类型三、一元二次方程根的判别式的应用3.(2020•荆门)若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【答案】A【解析】∵关于x的一元二次方程x2﹣4x+5﹣a=0有实数根∴△=(﹣4)2﹣4(5﹣a )≥0 ∴a ≥1 故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t −++=的两个不相等的实数根,(1)求t 的取值范围;(2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1. (2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+−222(2)2t t =−+=−,即2(1)s t t =−<−.【总结升华】利用根与系数关系求函数解析式综合题. 举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =−−的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +−+=. ∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =−−=−+≥△,∴ 12m ≤. (2) 1222y x x m =+=−+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2020春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300解得:x1=10,x2=15当x=10,BC=50﹣10﹣10=30>25故x1=10(不合题意舍去)50﹣2x=50﹣30=20答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0解得,x1=2,x2=3∴当x=2时,2x=4当x=3时,2x=6答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.【巩固练习】 一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .83.(2020•濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( ) A .2%B . 5%C . 10%D . 20%4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+2)2+45.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ). A .k <0 B .k ≤0 C .k ≠1且k ≠0 D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A.64 cm 2B.100 cm 2C.121 cm 2D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定 8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( ) A . B . C .且 D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .10.(2020秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 . 11.关于x 的一元二次方程22(1)10a x x a −++−=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12bx x a+=−,12c x x a=,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________. 15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m 的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 . 16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2020•十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x =2代入关于x 的方程x 2+mx ﹣6=0,然后解关于m 的一元一次方程;再根据根与系数的关系x 1+x 2=﹣b a解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×,整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5,∵20﹣2x >0,∴x<10,∴x=2.5, ∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m .11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a −≠,所以1a =−.12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系, 然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++−=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3.而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++−−−⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解.14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x −−=的两实数根,∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211221212123(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+−=15.【答案】2011;-2;m=-1或3;m=34.【解析】由于a,b是方程x2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a2+a-2012=0,然后把a2+2a+b可以变为a2+a+a+b,把前面的值代入即可求出结果.16.【答案】50%;【解析】设该校捐款的平均年增长率是x,则,整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y=-10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。
第三章代数式复习课件人教版数学七年级上册

巩固练习4.代数式的值及应用
3
2.已知a=12,b=-18,求下表中代数式的值:
代数式
a+b
a-b
ab
代数式的值 -6
30
-216
巩固练习4.代数式的值及应用
3.已知方程x-2y=5,则整式x-2y-1的值为 4 .
解:∵x-2y=5, ∴x-2y-1=5-1=4.
4.已知x2-2x-1=0,则代数式2x2-4x+3的值是 5 . 解:∵x2-2x-1=0, ∴x2-2x=1, ∴2x2-4x+3=2(x2-2x)+3=2×1+3=5.
代数式的意义 列代数式 代数式的值
48a+48×6=(48a+288)元
巩固练习2.列代数式表示数量关系
4.用代数式表示: (1)棱长为a的正方体的表面积. 棱长为a的正方体的表面积为6a2. (2)位于江苏省常州市金坛区的华罗庚纪念馆目前累计接待中外参观 者a万人,预计今后每年平均接待参观者6万人,c年后累计接待的 总人数为多少万人? c年后累计接待的总人数为(a+6c)万人.
巩固练习3.列代数式表示反比例关系
2.下列几个关系中,成反比例关系的是( C ) A.正三角形的面积与周长 B.人的身高与年龄 C.三角形面积一定时,一边与这边上的高 D.矩形的长与宽 A.正三角形的面积与其周长不成比例,故A不符合题意; B.人的身高与年龄不成比例,故B不符合题意; C.三角形面积一定时,一边与这边上的高成反比例,故C符合题意; D.矩形的长与宽不成比例,故D不符合题意;
知识点3.列代数式表示反比例关系
正比例关系:
两个相关联的量,一个量变化,另一个量也随着变化,且这两 个量的比值或商一定,所以它们是成正比例的量,它们的关系是成 正比例关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《代数式》全章复习与巩固
【巩固练习】
一、选择题
1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).
A .2
B .-2
C .-1
D .无法确定
2.(优质试题•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )
A .3,3
B .3,2
C .2,3
D .2,2
3.(优质试题•富顺县校级模拟)在-3,π2-1,-22x -,21x y π-,12
a --,
) A .2个 B .3个 C .4个 D .5个
4.对于式子421.210x y -⨯,下列说法正确的是( ).
A .不是单项式
B .是单项式,系数为-1.2×10,次数是7
C .是单项式,系数为-1.2×104,次数是3
D .是单项式,系数为-1.2,次数是3
5.下面计算正确的是( )
A .32x -2x =3
B .32a +23a =55a
C .3+x =3x
D .-0.25ab +4
1ba =0
6.2a-(5b-c+3d-e)=2a □5b □c □3d □e ,方格内所填的符号依次是
( ).
A .+,-,+,-
B .-,-,+,-
C .-,+,-,+
D .-,+,-,-
7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).
A .135%a +
B .(1+35%)a
C .135%
a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).
A .2
B .-17
C .-7
D .7
二、填空题
9.(优质试题•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a 元,则粽子的原价卖_______元.
10.单项式243
ab c -的系数是 ,次数是 . 11.22372
x y x -++是________次________项式,最高次项的系数是________.
12.化简:2a-(2a-1)=________.
13.如果24a ab +=,21ab b +=-,那么22a b -=________.
14.一个多项式减去3x 等于2535x x --,则这个多项式为________.
15.(优质试题春•永春县校级月考)若
与﹣3ab 3n -的和为
单项式,则m+n= .
16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.
三、解答题
17.化简:
(1)
57859m n p n m p --+--
(2)2223(32)(541)3a a a a a a ⎡⎤---+-+-⎣⎦ 18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32
x =-时,求代数式32A B C -+的值.
19.(优质试题春•潜江期中)列式计算:一个多项式加上2x 2﹣x+5等于4x 2﹣6x ﹣3,求这个多项式?
20.某农场有耕地1000亩,种粮食、棉花和蔬菜. 其中蔬菜用地a 亩,粮食用地比蔬菜用地的6倍还多b 亩,求棉花用地多少亩?当a=120,b=4时,棉花用地多少亩?
【答案与解析】
一、选择题
1. 【答案】B
【解析】根据已知条件,a 与b 互为相反数,即a+b =0,x 与y 互为倒数,即xy =1,所以|a+b|-2xy =0-2×1=-2,故选B .
2.【答案】A
【解析】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.
3. 【答案】A
【解析】解:﹣3,﹣
x 2y 是单项式.注意-22x -是分式, 根式.故选:A .
4.【答案】 C
【解析】此单项式的系数是以科学记数法形式出现的数,所以系数
为-1.2×104,次数应为x 与y 的指数之和,不包括10的指数4,故次数为3.不要犯“见指数就相加”的错误.所以正确答案为C .
5. 【答案】D
6.【答案】 C
【解析】因为括号前是“-”号,所以去括号时,括号里各项都变号,故选C .
7. 【答案】C
【解析】把减少前的工人数看作整体“1”,已知一个数的(1-35%)是a ,求这个数,则是
135%a -,注意列式时不能用“÷”号,要写成分数形式.
8.【答案】C
【解析】22378y y ++=,2231y y +=,22462(23)212y y y y +=+=⨯=,故24697y y +-=-.
二、填空题
9.【答案】.
10. 【答案】1
,73-;
11.【答案】三, 三 , 12
-;
【解析】多项式的次数取决于次数最高项的次数,确定系数时不要忽视前面的“-”号.
12.【答案】1;
【解析】先根据去括号法则去括号,然后合并同类项即可,2a-(2a-1)=2a-2a+1=1.
13.【答案】5;
【解析】用前式减去后式可得225a b -=.
14.【答案】255x -;
【解析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.
15.【答案】4; 【解析】解:∵与﹣3ab 3n -的和为单项式, ∴2m ﹣5=1,n+1=3﹣n ,
解得:m=3,n=1.
故m+n=4.
故答案为:4.
16.【答案】22(16)R r πππ--;
【解析】阴影部分的面积=大圆面积-最中间的圆的面积-4个小圆的面积.
三、解答题
17. 【解析】
解:(1)原式=(59)(75)(8)m m n n p p -+-++--=p n m 924---.
(2)222222296(541)396541368 1.
a a a a a a a a a a a a
a a =-----++=----+-+=---原式
18.【解析】
解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩
∴2321358A B C x x -+=+- 当32
x =-时, 32A B C -+33915117303213()5()81388132242444
=⨯-+⨯--=⨯--=--=. 19.【解析】
解:根据题意得:(4x 2﹣6x ﹣3)﹣(2x 2﹣x+5)=4x 2﹣6x ﹣3﹣2x 2+x ﹣5=2x 2﹣5x ﹣8.
20.【解析】
解:棉花用地:1000-a -(6a +b)=(1000-7a -b)亩. 当a =120,b =4时,原式=1000-7×120-4
=156(亩).
答:棉花用地(1000-7a-b)亩.当a=120,b=4时,棉花用地为156亩.。