线性代数3-4
线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。
线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.
取
k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6
线性代数3-4分块矩阵

B21
E
B22
B11
A1 B11
B21
E
A1
B22
.
又A1B11
B21
1
1
2 1 1 1
0 1 2 1
0 1
2 4
1
1 ,
1 2 4 1 3 3
A1
B22
1
1 2 0 3 1 ,
1
1 0 1
1 1 2 0
则
E
AB
A1
O B11
E
B21
E
B22
B11 A1B11
B21
E
A1
B22
.
4、转置
设分块矩阵
A
A11 A21
A12 A22
Ap1
Ap2
A1t
A2t
,
则
Apt
22 , 31,52 22 ,43,52 20 1,3 ,2 20 1,2 ,3
20 A 100.
解法二:
1 3 0 1 3 0
B 1,2 ,3 2 0 5 A2 0 5
0 4 0 0 4 0
说明: 1.当左边分块矩阵的列的分块方法和右边分块矩阵的分 块方法相同时, 两个分块矩阵才可以相乘.
2.两个分块矩阵的乘积仍是分块矩阵,并且乘积分块矩 阵的行数等于左边分块矩阵的行数, 乘积分块矩阵的列 数等于右边分块矩阵的列数.
线性代数第三 四章答案

解:由3(α1 − α) + 2(α2 + α) = 5(α3 + α) 可得6α = −5α3 + 2α2 + 3α1, 即α = (−5α3 + 2α2 + 3α1)/6 = (1, 2, 3, 4).
3-4. 设β1 = α1 + α2, β2 = α2 + α3, β3 = α3 + α4, β4 = α4 + α1, 证明向量组β1, β2, β3, β4线 性相关.
3v1 + 2v2 − v3 = 3(1, 1, 0) + 2(0, 1, 1) − (3, 4, 0) = (3, 3, 0) + (0, 2, 2) − (3, 4, 0) = (0, 1, 2).
3-2. 设3(α1 − α) + 2(α2 + α) = 5(α3 + α), 其中,α1 = (2, 5, 1, 3), α2 = (10, 1, 5, 10), α3 = (4, 1, −1, 1),求α.
证明:因为β1−β2 = α1−α3, β4−β3 = α1−α3. 所以β1−β2 = β4−β3, 即β1−β2+β3−β4 = 0,向量组β1, β2, β3, β4线性相关。
3-5. 设β1 = α1, β2 = α1 + α2, · · · , βr = α1 + α2 + · · · αr, 且向量组α1, α2, · · · , αr线性无
4-11.
若方程组
x1 + 2x2 + x3 = 0 2x1 + x2 + λx3 = 0
存在基础解系,则λ等于【5】
4-12. 设A为m × n矩阵,则齐次线性方程组AX = 0有结论【若A有n阶子式不为0,则
线性代数(含全部课后题详细答案)4-3PPT课件

目
CONTENCT
录
• 课程介绍与教学目标 • 向量空间与线性变换 • 行列式与矩阵运算 • 特征值与特征向量 • 课后习题详解 • 课程总结与拓展延伸
01
课程介绍与教学目标
线性代数课程简介
线性代数是数学的一个分支, 研究线性方程组、向量空间、 矩阵等概念和性质。
简要介绍数值计算中常用的迭代法、插值 法、逼近法等基本方法,培养学生运用计 算机解决实际问题的能力。
简要介绍数学建模的基本思想和方法,通 过实例展示数学建模在解决实际问题中的 应用和价值。
THANK YOU
感谢聆听
05
课后习题详解
习题类型及解题思路
计算题
主要针对线性代数中的基本运算,如矩阵的加减、数乘和乘法等。解题思路通常是按照运算规则逐步进行,注意保持 矩阵的维度一致。
证明题
主要考察学生对线性代数基本定理和性质的理解和掌握。解题思路一般是从已知条件出发,结合相关定理和性质进行 推导,最终得出结论。
应用题
行列式性质
行列式具有线性性、交换性、倍加性 等基本性质,这些性质在行列式的计 算和证明中起到重要作用。
矩阵运算规则
矩阵加法
两个矩阵相加,要求它们具有相同的行数和列数, 对应元素相加。
矩阵数乘
一个数与矩阵相乘,将该数与矩阵中的每一个元素 相乘。
矩阵乘法
两个矩阵相乘,要求第一个矩阵的列数等于第二个 矩阵的行数,结果矩阵的行数等于第一个矩阵的行 数,列数等于第二个矩阵的列数。
将线性代数的知识应用于实际问题中,如求解线性方程组、矩阵的特征值和特征向量等。解题思路是首 先建立数学模型,将实际问题转化为线性代数问题,然后利用相关知识进行求解。
《线性代数》知识点-归纳整理-大学线代基础知识

《线性代数》知识点-归纳整理-大学线代基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 ............................................................................................................................................. - 3 -02、主对角线 ................................................................................................................................................................. - 3 -03、转置行列式 ............................................................................................................................................................. - 3 -04、行列式的性质 ......................................................................................................................................................... - 4 -05、计算行列式 ............................................................................................................................................................. - 4 -06、矩阵中未写出的元素 ............................................................................................................................................. - 5 -07、几类特殊的方阵 ..................................................................................................................................................... - 5 -08、矩阵的运算规则 ..................................................................................................................................................... - 5 -09、矩阵多项式 ............................................................................................................................................................. - 7 -10、对称矩阵 ................................................................................................................................................................. - 7 -11、矩阵的分块 ............................................................................................................................................................. - 8 -12、矩阵的初等变换 ..................................................................................................................................................... - 8 -13、矩阵等价 ................................................................................................................................................................. - 8 -14、初等矩阵 ................................................................................................................................................................. - 8 -15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 8 -16、逆矩阵 ..................................................................................................................................................................... - 9 -17、充分性与必要性的证明题 ................................................................................................................................... - 10 -18、伴随矩阵 ............................................................................................................................................................... - 10 -19、矩阵的标准形: ................................................................................................................................................... - 11 -20、矩阵的秩: ........................................................................................................................................................... - 11 -21、矩阵的秩的一些定理、推论 ............................................................................................................................... - 11 -22、线性方程组概念 ................................................................................................................................................... - 11 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 11 -24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 13 -25、线性方程组的向量形式 ....................................................................................................................................... - 13 -26、线性相关与线性无关的概念 ......................................................................................................................... - 13 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 14 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 14 -29、线性表示与线性组合的概念 ......................................................................................................................... - 14 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 14 -31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 14 -32、最大线性无关组与向量组的秩 ........................................................................................................................... - 14 -33、线性方程组解的结构 ........................................................................................................................................... - 14 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。
《线性代数》课后习题答案

第一章 行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。
(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
如果0=a ,则2qb p =,这与q p ,是互异素数矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 V ( 1 , ..., s ) 为向量空间,他是 R n 的子空间,称为由 向量 1 , ..., s 生成的子空间。
二.
R
n
R
n
中的基变换和坐标变换
n 中任意n个线性无关向量 1 , ..., n 都构成 R 的一 个基底。根据基底定义,它是 R n 中的最大无关组,
(1)
把这个关系写成矩阵等式为
( 1 , ..., n ) ( 1 , ..., n ) A
(2)
其中
a 11 a 21 A ... a n1 a 12 a 22 ... an2 ... ... ... ... a1n a2n ... a nn
为空间V的基底,简称基。 例1. 全体n维向量组成的集合 R n ,显然关于加法 及数乘是封闭的,故它是向量空间。由§3例2可知,它 的维数为n,任意n个线性无关的向量都是它的一个基 底。
例2. 考虑 R 3 中第三个分量为零的所有三维向量所 组成的集合V,即
V ( k 1 , k 2 , 0 )| k 1 , k 2 ( , )
对V中任意两个向量 有 可见
及 k
( k 1 , k 2 , 0 ), ( k 1 , k 2 , 0 ) ,k为数, k ( k k1 , k k 2 , 0 )
( k 1 k 1 , k 2 k 2 , 0 ),
2 3 4
3 0 4 1 2 1 3 2
1 0 1
0 1 1 2 2 1 1 2
2 3 4
3 4 3
2 0 1
3 1 0
4 0 1
解: 1 , ..., n 到 1 , ..., n 的过渡矩阵为
1 1 1
1 2 1 1 0 1 1 0 1
应填(1,1,-1)。
1 0 A 0 ... 0 1 1 0 ... 0 1 1 1 ... 0 ... ... ... ... ... 1 1 1 ... 1
T
设
在后一个基的坐标为 y ( y 1 , ..., y n ) ,
y1 n y2 n1 A ... ... 1 yn
例3. 考虑 R 3 中第三个分量为1的所有三维向量所 组成的集合M,即
M ( k 1 , k 2 , 1 ) | k 1 , k 2 ( , )
对于M中向量 ( k 1 , k 2 , 1 ) ,数乘 2 ( 2 k 1 , 2 k 2 , 2 ) M , 可见M关于数乘不封闭(实际上关于加法也不封闭), 故M不是向量空间。 例4. 只由零向量组成的集合 V 0 ( 0 , ..., 0 ) ,显 然有0+0=0,0=0,故V是向量空间,称为零空间。因为 只含零向量的向量组的秩为0,它没有最大无关组。因 此,零空间的维数为0,它没有基底。零空间是唯一没 有基底的向量空间。
线性代数
昆明理工大学数学系 2009.12
2
第四节
向量空间
向量空间和子空间
n
R
中的基变换和坐标变换
一. 向量空间和子空间 定义1. 设V是由n维向量组成的非空集合,如果对 V中任意两个向量 , , 它们的和 及数乘 k 仍然 是V中的向量(称V关于加法及数乘封闭),则称V为向 量空间。V的秩称为空间V的维数,V中的最大无关组称
对于 V ( 1 , ..., s ) 中任意两个向量
k 1 1 ... k s s , k 1 1 k s s
有
( k 1 k 1 ) 1 ... ( k s k s ) s V ( 1 , ..., s ) k k k 1 1 ... k k s s V ( 1 , ..., s )
又已知向量 关于前一个基的坐标为 ( n , n 1, ..., 2 , 1),
求它关于后一个基的坐标。 解:
例8.(填空)已知三维向量空间的一个基为
1 (1, 1, 0 )
2 (1, 0 , 1) 3 ( 0 , 1, 1)
则向量 解:
( 2 , 0 , 0 ) 在上述基下的坐标为
例6. 已知 R 3 的两个基为
1 1 1 1 1 , 2 0 , 3 0 ; 1 1 1 1 2 3 1 2 , 2 3 , 3 4 1 4 3
A称为由基 1 , ..., n 到基 1 , ..., n 的过渡矩阵。由§3 定理8可知 A 0 ,故过渡矩阵是可逆矩阵。应当注意, 过渡矩阵A是关系式(1)的系数矩阵的转置矩阵。 设 在新基 1 , ..., n 下表示成
y1 y 1 1 ... y n n ( 1 , ..., n ) ... ( 1 , ..., n ) y yn T y ( y 1 , ..., y n ) 是 在新基 1 , ..., n 下的坐标向量。 其中
0 0 ... 1 0
0 0 ... 1 1
n 1 1 n1 ... ... 1 1
在后一个基的坐标为
y 1 y 2 ... y n 1
解: 设所求坐标向量为 x
仍然是V中的向量,故V是向量空间。
( k 1 , k 2 , 0 ) ,有 k 1 1 k 2 2 ,
又 1
(1, 0 , 0 ), 2 ( 0 , 1, 0 ) 是V中两个线性无关向量,
且对于V中任意向量
因此, 1 , 2 是V的一个最大无关组,V的秩为2。换句话 说,向量空间V是二维的, 1 , 2 是V的一个基底。
T T
( x1 , x 2 , x 3 )
T T
T
,则有
[ 1 , 2 , 3 ] x
故有
x [ 1 , 2 , 3 ]
T T T 1
1 1 0
1 0 1
0 1 1
1
2 1 1 0 1 2 0 1
因此,R n 中的任意向量 ,都可由基底 1 , ..., n 唯一线
性表示:(以下向量都是列向量)
x1 x 1 1 ... x n n ( 1 , ..., s ) ... ( 1 , ..., s ) x xn
其中 x
( x 1 , ..., x n )
T
称为 在基 1 , ..., n 中的坐标向量。
设 1 , ..., n 是 R n 的另一组新基,它与旧基的关系为
1 a 1 1 1 a 2 1 2 ... a n 1 n 2 a 1 2 1 a 2 2 2 ... a n 2 n ... n a 1 n 1 a 2 n 2 ... a n n n
则有
故有
y1 y2 A 1 ... yn
1 n 0 n1 ... ... 0 1 0
1 1 ... 0 0
0 1 ... 0 0
... ... ... ... ...
定义2. 设V是向量空间,V 1 是V的非空子集,若 V 1 也是向量空间,则称 V 1 是V的子空间。
例如,例2的向量空间V是 R 3 的二维子空间。 又如,任意向量空间V都非空,设 V ,因为V关 于线性运算封闭,故 0
0 V
,即任何向量空间都含
有零向量。因此,零空间{0}是任何向量空间的子空间。 n n n n R 也是 R 的子空间, R 及零空间称为 R 中的平凡子
求基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵。
解:
例7. 设n维向量空间 R n 有一个基为 1 , ..., n ,另一 个基为
1 1
2 1 2
3 1 2 3
...
n 1 2 ... n
利用(2 1 , ..., n ) A y
又 在旧基下的表达式为
( 1 , ..., n ) x
,因为
在一个基下的表达式唯一,故得 x A y
总之,我们得到以下三个公式: (1)新旧基变换公式: ( 1 , ..., n ) ( 1 , ..., n ) A (2)向量 基中的坐标表示式:
( 1 , ..., n ) x ( 1 , ..., n ) y
(3)新旧坐标变换公式:x= Ay 其中A是由基 1 , ..., n 到基 1 , ..., n 的过渡矩阵,公式中 所有向量 i , i , x , y 都是列向量。因此,三个公式都可看 作是矩阵等式。
空间。
例5. 设 1 , ..., s 是s个n维向量,它的一切线性组合 组成的集合记作 V ( 1 , ..., s ) ,即
V ( 1 , ..., s ) k 1 1 ... k s s | k 1 , ..., k s ( , )
。
解:设过渡矩阵为A,则
( 1 , 2 , 3 ) ( 1 , 2 , 3 ) A
故有
A ( 1 , 2 , 3 ) ( 1 , 2 , 3 )