推荐高中数学第一章计数原理1.2.2组合第一课时组合与组合数公式学案含解析新人教A版选修2_3
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时组合与组合数公式讲义新人教A版选修2_3

第1课时组合与组合数公式知识点组合的定义从n个不同元素中取出m(m≤n)个元素□01合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点组合与组合数公式组合的定义包含两个基本内容:一是“取出元素”;二是“合成一组”,表示与元素的顺序无关,排列与组合的相同点是从n 个不同元素中任取m 个元素,不同点是组合是“不管元素的顺序合成一组”,而排列是要求元素按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的元素有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m n +1=C m n +C m -1n 要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的元素中任取两个元素的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)1,2,3与3,2,1是同一个组合.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)√ (4)×2.做一做(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700解析 (1)由组合数公式知C 36=6×5×43×2×1=20.(2)C 1820=C 220=20×192×1=190. (3)C 399+C 299=C 3100=100×99×983×2×1=161700.探究1 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题. 拓展提升判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个元素先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1] 判断下列问题是排列问题,还是组合问题.(1)从集合A ={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个? (2)从集合A ={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a ,b ,c ,d 这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法? (4)四个人互发一个电子邮件,共写了多少个电子邮件?解 (1)从集合A 中取出两个数后,改变两个数的顺序,其和不变.因此此问题,只与取出的元素有关,与元素的顺序无关,故是组合问题.(2)从集合A 中取出两个数相除,若改变其分子、分母的位置,其结果就不同,因此其商的值与元素的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题. (4)四人互发电子邮件,由于发信人与收信人是有区别的,与顺序有关,是排列问题. 探究2 组合数及组合数性质的运用 例2 (1)计算:C 410-C 37·A 33; (2)已知1C m 5-1C m 6=710C m 7,求C m8;(3)求C 38-n3n +C 3n21+n 的值; (4)证明:m C m n =n C m -1n -1. [解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21(不符合题意,舍去).∴C m 8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5,∵n ∈N *,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.拓展提升(1)像排列数公式一样,公式C mn=n (n -1)(n -2)…(n -m +1)m !一般用于计算;而公式C m n =n !m !(n -m )!及C mn =A mn A m m 一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N *”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-nn +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100·C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C n n +1·C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =n !m !(n -m )!,m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)!=n !m !(n -m )!,所以C mn =m +1n -mC m +1n . (2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. ③原式=C 1n +1·C 1n =(n +1)n =n 2+n . 探究3 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法? (3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26·C 24=6×52×1×4×32×1=90种不同的选法. 拓展提升解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.解 (1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.1.下列问题不是组合问题的是 ( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a1,a2,a3,…,a n}的含有三个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析组合问题与次序无关,排列问题与次序有关,D项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合的综合应用导学案 新人教A版选修2

湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.2 组合的综合应用导学案新人教A版选修2-3的全部内容。
1.2。
2组合的综合应用【学习目标】 明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决实际问题。
【重点难点】重点:能正确认识组合与排列的联系与区别。
难点:理解组合的意义,正确地解决实际问题.。
【使用说明与学法指导】1。
课前用20分钟预习课本P 26内容并完成书本上练、习题及导学案上的问题导学.2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑.【问题导学】1.下列问题中是组合问题的个数是( 2 ) ( )①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长,副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取出两个数求积;④从1,2,3,…,9中任取出两个数求差或商.2。
求值:173213nnn n C C -++.解 由错误!,解得错误!≤n ≤错误!.又n ∈N *,∴n =6,故原式=C 错误!+C 错误!=C 错误!+C 错误!=313。
要从12人中选出5人去参加一项活动,下列要求,有多少种不同选法?(1)A ,B ,C ,3人都参加;(2)A ,B ,C,3人都不参加;(3)A ,B ,C ,3人中只有一个参加.解 (1)只需再从A ,B ,C 之外的9人中选择2人,所以有方法C 错误!=36(种).(2)由于A ,B ,C 三人都不能入选,所以只能从余下的9人中选择5人,即有选法C 错误!=126(种).(3)可分两步:先从A ,B ,C 三人中选出一人,有C 错误!种选法;再从其余的9人中选择4人,有C 错误!种选法.所以共有选法C 错误!C 错误!=378(种).4.从5名男生和4名女生中选出4人去参加辩论比赛.(1)如果4人中男生和女生各选2人,有多少种选法?(2)如果男生中的甲与女生中的乙必须在内,有多少种选法?(3)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(4)如果4人中必须既有男生又有女生,有多少种选法?解 (1)从男生中选2人,从女生中选2人,共有C 错误!C 错误!=60(种)选法;(2)男生中的甲与女生中的乙必须在内,只需从除2人外的其余7人中再选2人,有C 2,7=21(种)选法;(3)从反面考虑,只要9人中选4人,减去不含男生甲和女生乙的情况,有C 错误!-C 错误!=91(种)选法;(4)从反面考虑,只要所有情况减去全是男生和全是女生的情况,有C 4,9-C 44-C 错误!=120(种)选法.【合作探究】问题1:四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?解:(1)根据分步计数原理:一共有 种方法;问题2:四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素,有 种方法;第二步:从四个不同的盒中任取三个将球放入有 种方法,所以, 一共有 =144种方法4425624C 34A 24C 34A问题3:(3)马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯. 故 所求方法总数为 种方法【深化提高】5.(1) 以AB 为直径的半圆上,除A 、B 两点外,另有6个点,直径AB 上另有4个点,共12个点,以这12个点为顶点共能组成多少个四边形?(2) 在角A 的一边上有五个点(不含A ),另一边上有四个点(不含A ),由这十个点(含A )可构成多少个三角形?解 (1)分类讨论:A 、B 只含有一个点时,共有2(C 错误!+C 错误!C 错误!)=160(个);既含A 又含B 时,共有C 26=15(个);既不含A 也不含B 时,共有C 错误!-1-C 错误!C 错误!=185(个).所以共有160+15+185=360(个).(2)含A 点时,可构成C 错误!C 错误!=20(个)三角形;不含A 点时,可构成C 错误!C 错误!+C 错误!C 错误!=70(个)三角形.故 共有20+70=90(个)三角形.【学习评价】●自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差3620C●当堂检测(3选2填或2选2填1解答)A组(你一定行):1。
高中数学第一章计数原理1.2排列与组合1.2.2组合1学案无答案新人教A版选修2_3

1.2.2组合(1)【学习目标】1.理解组合的定义,正确认识组合与排列的区别与联系.2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.3.会解决一些简单的组合问题.【重点难点】重 点: 理解组合的定义,正确认识组合与排列的区别与联系;理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算.难 点: 会用组合数解决一些简单的问题.【学法指导】区分组合与排列的异同点,并加以应用.【学习过程】一.复习巩固1、组合定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2、组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号________表示.3、组合数公式:0(1)(2)(1)!!!()! 1.m m n nm m m n n A n n n n m C m A n C m n m C ---===+=- 我们规定:二.课堂学习与研讨探究 组合数 1: mn m n n C C -=性质731010C C 练习:计算两个组合数 ;问题1:为何上面两个不同的组合数其结果相同?怎样对这一结果进行解释?问题2:上述情况加以推广可得组合数怎样的性质?探究2.组合数性质2:11m m m n n n C C C -+=+一个口袋内装有大小相同的7个白球和1个黑球(1)口袋里取出3个球,共有多少种取法?(2)从口袋里取出3个球,使其中含有一个黑球,有多少种取法?(3)从口袋里取出3个球,使其中不含黑球,有多少种取法?从引例中可以发现一个结论:323877C C C =+对上面的发现(等式)作怎样解释?1211,,,1m n n a a a n m C +++ 一般地,从这个不同的元素中取出个元素的组合数是,组合数性质2:11m m m n n n C C C -+=+ 试用代数法证明性质2?11123111,,,1m n n a a a a a a n m a C -+- 这些组合可分成两类:一类含有,一类不含有,含有的组合是从这个元素中取出个元素与组成的,共有个; 1231,,,m n n a a a a n m C + 不含的组合是从这个元素中取出个元素组成的,共有个 由分类计数原理,得例1 计算例2. 一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。
2017-2018年度高中数学 第一章 计数原理 1.2 排列与组合 1.2.2.1 组合及组合数公式讲义 新人教B版选修2-3

12
知识拓展 (1)如果两个组合中的元素完全相同,不管它们的顺序 如何,都是相同的组合.
(2)当两个组合中的元素不完全相同(即使只有一个元素不同)时, 就是不同的组合.例如从a,b,c三个不同的元
素中取出两个元素的所有组合有3个,它们分别是ab,ac,bc.要注意 ba,ab是相同的组合.
(3)组合问题与排列问题的共同点是:都要“从n个不同元素中,任 取m个元素”,不同点是:前者是“不管顺序并成一组”,而后者要“按照 一定顺序排成一列”.
题型一 题型二 题型三 题型四
题型四 易错辨析
【例 4】
已知C15������
−
1 C6������
=
107C7������,求
m.
错解:由已知得������!(55!-������)!
−
������!(6-������)! 6!
=
7(170-������)7!!������!,
即 60-10(6-m)=(7-m)(6-m),
1234 5
4.已知C������2������-1
=
C������������ 3
=
C���������4���+1,则
m
与
n
的值分别为
.
解析:
由C������������-1
2
=
C������������可得
3
5m=2n+2,①
由C������������
3
=
C������������+1可得
=
������! ������!(������-������)!
=
������(������-1)(������-2���)���…! (������-������+1),这里
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第1课时)教案 新人教A版选修23

1.2.2 组合整体设计教材分析排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以在学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.课时分配3课时第一课时教学目标知识与技能理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法通过具体实例,体会组合数的意义,总结排列数A m n与组合数C m n之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合的概念和组合数公式.教学难点:组合的概念和组合数公式.教学过程引入新课提出问题1:回顾分类加法计数原理和分步乘法计数原理,排列的概念和排列数公式.活动设计:教师提问.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.排列的概念:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数的定义:从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.5.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N,m≤n).6.阶乘:n!表示正整数1到n的连乘积,叫做n的阶乘.规定0!=1.7.排列数的另一个计算公式:A m n=n!(n-m)!.设计意图:检查学生的掌握情况,为新知识的学习奠定基础.提出问题2:分析下列两个问题是不是排列问题,为什么?问题(1):从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题(2):从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?活动设计:学生自己分析,教师提问.活动成果:问题(1)中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题(2)只要求选出2名同学,是与顺序无关的,不是排列.我们把这样的问题称为组合问题.设计意图:引导学生通过具体实例找出排列与组合问题的不同,引出组合的概念.探索新知提出问题1:结合上述问题(2),试总结组合和组合数的概念.活动设计:学生小组讨论,总结概念.活动成果:1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合数的概念:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.设计意图:培养学生的类比和概括能力.理解新知提出问题1:判断下列问题是组合问题还是排列问题?(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:小组交流,共同分析.活动成果:(1)(3)(4)是排列;(2)(5)是组合.设计意图:通过具体实例比较排列和组合,加深对组合的理解.提出问题2:试找出排列和组合的区别和联系.活动设计:小组交流,教师提问,学生补充. 活动成果:1.区别:(1)排列有顺序,组合无顺序.(2)相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.2.联系:(1)都是从n 个不同的元素中选出m(m≤n)个元素; (2)排列可以看成先组合再全排列.设计意图:加深对排列组合的理解,为推导组合数公式奠定基础. 提出问题2:你能类比排列数的推导过程和排列与组合的联系推导出从4个不同元素a ,b ,c ,d 中取出3个元素的组合数C 34是多少吗?活动设计:小组交流,共同推导. 活动成果:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数A 34可以求得,故我们可以考察一下C 34和A 34的关系,如下:组合 排列abc→abc,bac ,cab ,acb ,bca ,cba abd→abd,bad ,dab ,adb ,bda ,dba acd→acd,cad ,dac ,adc ,cda ,dca bcd→bcd,cbd ,dbc ,bdc ,cdb ,dcb由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步乘法计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33.设计意图:从具体实例出发,探索组合数的求法.提出问题3:你能想出求C mn 的方法吗? 活动设计:小组交流,共同推导. 活动成果:一般地,求从n 个不同元素中取出m 个元素的组合数C mn ,可以分如下两步:①先求从n 个不同元素中取出m 个元素的排列数A mn ;②求每一个组合中m 个元素的全排列数A m m ,根据分步乘法计数原理得:A m n =C m n ·A mm . 得到组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).规定:C 0n =1.设计意图:引导学生逐步利用分步乘法计数原理推导出组合数公式. 运用新知类型一:组合数公式的应用1计算:(1)C 47; (2)C 710. 解:(1)C 47=7×6×5×44!=35;(2)解法1:C 710=10×9×8×7×6×5×47!=120.解法2:C 710=10!7!3!=10×9×83!=120.【巩固练习】 求证:C mn =m +1n -m·C m +1n . 证明:∵C mn =n !m !(n -m)!,m +1n -m·C m +1n=m +1n -m ·n !(m +1)!(n -m -1)!=m +1(m +1)!·n !(n -m)(n -m -1)!=n !m !(n -m)!,∴C mn =m +1n -m·C m +1n . 【变练演编】设x∈N *,求C x -12x -3+C 2x -3x +1的值.解:由题意可得:⎩⎪⎨⎪⎧2x -3≥x-1,x +1≥2x-3,解得2≤x≤4,∵x∈N *,∴x=2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7;当x =4时原式的值为11. ∴所求的值为4或7或11.类型二:简单的组合问题例2一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?思路分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案种数为C 1117=12 376. (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中选出1名守门员,共有C 111种选法. 所以教练员做这件事情的方式种数为 C 1117×C 111=136 136. 【巩固练习】(1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段条数为C 210=10×91×2=45.(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段条数为A 210=10×9=90. 【变练演编】(1)凸五边形有多少条对角线?(2)凸n(n>3)边形有多少条对角线?解答:(1)凸五边形的五个顶点中,任意两个顶点的连线是凸五边形的一条对角线或是一条边,所以,凸五边形的对角线条数为C 25-5=5.(2)凸n 边形的n 个顶点中,任意两个顶点的连线是凸n 边形的一条对角线或是一条边,所以,凸n 边形的对角线条数为C 2n -n =n(n -3)2.【达标检测】1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( ) A .42 B .21 C .7 D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )A .15对B .25对C .30对D .20对 答案:1.(1)是组合问题 (2)是排列问题 2.B 3.A 课堂小结1.知识收获:组合概念、组合数公式. 2.方法收获:化归.3.思维收获:分类讨论、化归思想. 补充练习 【基础练习】1.A ,B ,C ,D ,E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?2.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?3.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值? 4.写出从a ,b ,c ,d ,e 这5个元素中每次取出4个的所有不同的组合.答案:1.(1)10 (2)20 2.(1)C 310=120 (2)C 410=210 3.C 14+C 24+C 34+C 44=24-1=15. 4.a ,b ,c ,d a ,b ,c ,e a ,b ,d ,e a ,c ,d ,e b ,c ,d ,e. 【拓展练习】5.第19届世界杯足球赛于2010年夏季在南非举办,共32支球队有幸参加,他们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三名、第四名,问这次世界杯总共将进行多少场比赛?解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,共有8C24+8+4+2+2=64场比赛.设计说明本节课是组合的第一课时,主要目标是学习组合的概念,探究组合数公式,并利用组合数公式解决简单的计数问题.主要特点是:类比排列数公式的推导方法,抓住排列和组合的区别和联系,利用排列数公式推导出组合数公式.本节课的设计充分体现教师所提问题的主导作用和学生根据问题自主探究的主体地位,学生在与教师和与同学的思维碰撞中自主学习、自主探究.备课资料在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有A88种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:C38=56种排法.。
新人教版高中数学第一章计数原理1.2.2组合与组合数公式说课稿新人教A版选修2_3

1.2.2组合与组合数公式一、教材分析1、教材的地位和作用(1)本节课主要学习组合概念,组合数,组合数公式;(2)它是在学习排列的基础进行学习的,同时又为概率的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(3)它是历年高考的热点、难点问题2、教材重、难点重点:理解组合的意义难点:掌握组合数的计算公式重难点突破:在学生已有知识的基础上,通过小组合作探究的办法来实现重难点突破。
二、教学目标知识目标:(1)理解组合的意义(2)掌握组合数的计算公式能力目标:培养学生类比分析的能力,由特殊到一般的思想方法。
情感目标:培养学生辩证唯物主义观点和勇于探索的精神和善于合作的意识三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、反馈式评价法2、学法分析学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
四、教学过程1、以旧引新,导入新知通过复习上一节排列的相关知识及课前问题发现他们的区别与联系引入组合的定义2、创设问题,探索新知学生阅读课本,并小组讨论完成导学案中的相应问题可分为两个阶段:第一阶段是通过解决问题发现他们的共同特征,抽象概括出组合的定义,在解决问题的过程中,仍然使用加法,乘法计数原理和枚举法计算组合数;第二阶段引入组合数符号,利用排列与组合的关系及乘法计数原理,探索计算组合数的一般方法,得出组合数公式。
进而利用组合数公式计算组合的种数。
这样安排为了突出的意义和组合数公式的原理,使学生更多地体验组合的过程及排列与组合的关系,掌握处理组合问题的一般方法。
3、例题讲解,学以致用例1主要让学生熟练计算组合数,并配套完成课后练习1变式题目较有难度,是组合数公式的应用。
高中数学 第一章 计数原理 1.2.2 组合(2)学案(含解析)新人教A版选修2-3(2021年整

河北省承德市高中数学第一章计数原理1.2.2 组合(2)学案(含解析)新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第一章计数原理1.2.2 组合(2)学案(含解析)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第一章计数原理1.2.2 组合(2)学案(含解析)新人教A版选修2-3的全部内容。
1.2.2 组合(二)答案小试牛刀1 D2 A3 B4 105 1 260 806 185例一 (1)即从7名学生中选出三名代表,共有选法C错误!=35种.(2)至少有一名女生的不同选法共有C错误!C错误!+C错误!C错误!+C错误!=31种,或C错误!-C错误!=31种.(3)男、女生都要有的不同的选法共有C37-C错误!-C错误!=30种,或C错误!C错误!+C错误! C错误!=30种.跟踪1 (1)记?°从袋中任意摸出2个球,至少得到1个黑球?±为事件A,设袋中黑球的个数为x,则P(A)=1-P(A)=1-错误!=错误!,解得x=3或者x=20(舍去),故黑球为3个.(2)记?°从袋中任意摸出3个球,至少得到2个黑球?±为事件B,则P(B)=错误!=错误!。
例二 (1)至少有一名队长含有两种情况:有一名队长和两名队长,故共有C1,2·C错误!+C错误!·C错误!=825(种).或采用排除法有C错误!-C错误!=825(种).(2)至多有两名女生含有三种情况:有两名女生、只有一名女生、没有女生,故共有C错误!·C错误!+C错误!·C错误!+C错误!=966(种).(3)分两种情况:第一类:女队长当选,有C错误!种;第二类:女队长不当选,有(C错误!·C错误!+C错误!·C错误!+C错误!·C错误!+C错误!)种.故共有C错误!+C错误!·C错误!+C错误!·C错误!+C错误!·C错误!+C错误!=790(种).跟踪2 B例三我们把从共线的4个点取点的多少作为分类的标准.第1类:共线的4个点中有2个点作为三角形的顶点,共有C错误!·C错误!=48个不同的三角形;第2类:共线的4个点中有1个点作为三角形的顶点,共有C1,4·C错误!=112个不同的三角形;第3类:共线的4个点中没有点作为三角形的顶点,共有C错误!=56个不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).跟踪3这个问题可分四类加以考虑.①5个共面点确定1个平面;②5个共面点中任何2个点和其余7个点中任意一点确定7C错误!个平面;③5个共面点中任一点和其余7个点中任意2个点确定5C错误!个平面;④7个点中任何3个点确定C错误!个平面.∴总共确定平面的个数为1+7C错误!+5C错误!+C错误!=211(个).例4解法1:(直接法):把从5个偶数中任取2个分为两类(1)不含0的:由3个奇数数字和2个偶数数字组成的五位数,可分两步进行:第1步,选出3奇2偶的数字,方法有C错误!C错误!种;第2步,对选出的5个数字全排列有A错误!种方法.故所有适合条件的五位数有C错误!C错误!A错误!个.(2)含有0的:这时0只能排在除首位(万位)以外的四个位置中的一个,有A错误!种排法;再从2,4,6,8中任取一个,有C错误!种取法,从5个奇数数字中任取3个,有C错误!种取法,再把取出的4个数全排列有A错误!种方法,故有A错误!C错误!C错误!A错误!种排法.根据分类加法计数原理,共有C错误!C错误!A错误!+A错误!A错误!C错误!A错误!=11040个符合要求的数.解法2:(间接法):如果对0不限制,共有C错误!C错误!A错误!种,其中0居首位的有C错误! C1,4A错误!种.故共有C错误!C错误!A错误!-C错误!C错误!A错误!=11040个符合条件的数.跟踪4 240课堂检测1 D2 C3 B4 A5 B6 A课后作业1 B2 A3 A4 D5 106 367 20 630 8 1260 1680。
2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3

含组合数的化简、证明或解方程、不
(1)对于含组合数的化简、证明或解方程、不等式等问题多利 ①组合数公式,即: Cnm=m!nn!-m!=nn-1…m!n-m+1; ②组合数的性质,即 Cnm=Cnn-m和 Cnm+1=Cmn +Cmn -1; ③排列数与组合数的关系,即 Anm=Cmn Amm. (2)当含有字母的组合数的式子要进行变形论证时,利用阶乘 便.
1.由 Cx1+0 1+C1170-x可得不相同的值的个数是
A.1
B.2
C.3
D.4
[解析]
x+1≤10 ∵x1+7-1≥x≤010,∴7≤x≤9,
17-x≥0
又 x∈Z,∴x=7,8,9.
当 x=7 时,C810+C1100=46
当 x=8 时,C910+C910=20 当 x=9 时,C1100+C810=46.
规律总结』 1.性质“Cnm=Cnn-m”的意义及作用. 反映的是组合数的对称性,即从n个不
意义 → 同的元素中取m个元素的一个组合与 剩下的n-m个元素的组合相对应
作用 → 当m>n2时,计算Cnm通常转化为计算Cnn-m
2.与排列组合有关的方程或不等式问题要用到排列数、组 组合数的性质,求解时,要注意由 Cnm中的 m∈N+,n∈N+,且 的范围,因此求解后要验证所得结果是否适合题意.
序写出,即
• ∴所有组合为ABC,ABD,ABE,ACD,ACE BCD,BCE,BDE,CDE.
解法二:画出树形图,如图所示.
∴所有组合为 ABC,ABD,ABE,ACD,ACE,ADE,BCD CDE.
命题方向2 ⇨组合数公式
典例 2 (2018·江西玉山一中检测)若 20C5n+5=4(n+4)Cnn+- 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时组合与组合数公式
从1,3,5,7
问题1:所得商和积的个数相同吗?
提示:不相同.
问题2:它们是排列吗?
提示:从1,3,5,7中任取两个数相除是排列,而相乘不是排列.
1.组合
一般地,从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.
2.组合数
从n个不同的元素中取出m(m≤n)个元素的所有不同组合的个数叫做从n个不同元素中取出m 个元素的组合数,用符号C m n表示.
组合定义的理解
(1)组合要求n个元素是不同的,被取出的m个元素也是不同的.
(2)无序性是组合的特点,取出的m个元素是不讲顺序的,也就是说元素没有位置的要求.
(3)只要两个组合中的元素完全相同,则无论元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.
从1,3,5,7中任取两个数相除.
问题1:可以得到多少个不同的商?
提示:A24=4×3=12个不同的商.
问题2:如何用分步法求商的个数?
提示:第1步,从这四个数中任取两个数,有C24种方法;第2步,将每个组合中的两个数排列,有A22种排法.由分步乘法计数原理,可得商的个数为C24A22.
问题3:由问题1、问题2你能得出计算C24的公式吗?
提示:能.因为A 24
=C 24A 22
,所以C 24
=A 2
4
A 22
=6.
问题4:你能把问题3的结论推广到一般吗?
提示:可以,从n 个不同元素中取出m 个元素的排列数可由以下两个步骤得到: 第1步,从这n 个不同元素中取出m 个元素,共有C m
n 种不同的取法; 第2步,将取出的m 个元素全排列,共有A m
m 种不同的排法. 由分步乘法计数原理知,A m n
=C m n
·A m m
,故C m n
=A m n
A m m
.
组合数公式
乘积形式C m n
=A m
n A m m
=
n n -
n -n -m +
m !
阶乘形式C m
n =
n !
m !n -m !
组合数公式C m
n =
n n -
n -n -m +
m !
的分子是连续m 个正整数n ,n -1,n -2,…,
(n -m +1)的乘积,即从n 开始减小的连续m 个自然数的积,而分母是1,2,3,…,m 的乘积.当含有字母的组合式要进行变形论证时,利用此公式较为方便.
判断下列各事件是排列问题还是组合问题. (1)10个人相互各写一封信,共写多少封信? (2)10个人相互通一次电话,共通了多少次电话? (3)从10个人中选3个代表去开会,有多少种选法? (4)从10个人里选出3个不同学科的代表,有多少种选法? (1)是排列问题.因为发信人与收信人是有区别的.。