【中小学资料】2018版高考数学大一轮复习 第八章 立体几何与空间向量 8.3 空间图形的基本关系与公理试题 理
2018版高考数学一轮复习 第八章 立体几何 8.6 空间向量及其运算和空间位置关系真题演练集训 理 新人教A版

2018版高考数学一轮复习 第八章 立体几何 8.6 空间向量及其运算
和空间位置关系真题演练集训 理 新人教A 版
“两向量同向”意义不清致误分析
[典例] 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.
[错因分析] 将a ,b 同向和a∥b 混淆,没有搞清a∥b 的意义:a ,b 方向相同或相反.
[解析] 由题意知,a∥b ,
所以x 1=x 2+y -22=y 3
, 即⎩⎪⎨⎪⎧ y =3x ,①x 2+y -2=2x .②
把①代入②,得
x 2+x -2=0,(x +2)(x -1)=0,
解得x =-2或x =1.
当x =-2时,y =-6;
当x =1,y =3.
当⎩⎪⎨⎪⎧ x =-2,y =-6时,b =(-2,-4,-6)=-2a ,
两向量a ,b 反向,不符合题意,所以舍去.
当⎩⎪⎨⎪
⎧ x =1,y =3时,b =(1,2,3)=a ,
a 与
b 同向,所以⎩⎪⎨⎪⎧ x =1,y =3.
[答案] 1,3
温馨提醒
1.两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.
2.若两向量a ,b 满足a =λb (b ≠0)且λ>0,则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例且比值为正值.。
高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
2018版高考数学理北师大版大一轮复习讲义教师版文档

1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台和球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × )1.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2 cm.2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2答案 D解析 该几何体如图所示,长方体的长,宽,高分别为6 cm,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm ,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+(5×3+4×3+2×12×4×3)=99+39=138(cm 2).3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺 答案 B解析 设圆柱底面半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.5.(2016·成都一诊)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案 1∶1解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V 圆锥=13×π×23=83π,V 半球=12×43π×23=163π,所以V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为1∶1.题型一 求空间几何体的表面积例1 (1)(2016·淮北模拟)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)A (2)12解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为 6×(4-12)+2×34×(2)2=21+ 3.故选A.(2)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.答案 26解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1, 所以表面积为S =S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 命题点2 求简单几何体的体积例3 (2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______________________________________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32答案 (1)33(2)A 解析 (1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由主视图可得俯视图(如图),且三棱锥高为h =1,则体积V =13Sh =13×(12×23×1)×1=33.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG , CH ,容易求得EG =HF =12,AG=GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a=612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.已知侧棱和底面边长都是32的正四棱锥,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.(2016·全国丙卷)在封闭的直三棱柱ABCA 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.15.巧用补形法解决立体几何问题典例 (2016·青岛模拟)如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5,则此几何体的体积为________.思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ×AA ′=12×24×8=96.答案 961.已知某几何体的三视图如图所示,则该几何体的体积为( )A .4+π2B .4+3π2C .4+5π2D .4+π答案 C解析 由题意可知,几何体的体积为圆柱的体积加长方体的体积再减去与长方体等高的圆柱的体积的12,即π·12·3+2·2·1-12π·12·1=4+5π2.2.(2016·大同模拟)一个几何体的三视图如图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A.(4+π)33B.(8+π)36C.(8+π)33D .(4+π) 3答案 B解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为 3.则V =13·⎝⎛⎭⎫12π+4·3=(8+π)36.故选B.3.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3 D .2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3,故选C.4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2答案 B解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.5.(2016·广东东莞一中、松山湖学校联考)某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B .6π C.103π D.163π 答案 C解析 该几何体是由半个圆柱和半个圆锥构成的组合体,所以V =12×π×4×1+12×13×π×4×2=103π.故选C.6.(2016·福建三明一中第二次月考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A. 2B.22C .2D .1 答案 A解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为 2.∵ABC —A 1B 1C 1为直三棱柱,∴平面ABC ⊥平面BCC 1B 1,∴BC 为截面圆的直径,∴∠BAC =90°.∵AB =AC ,∴AB =1.∴侧面ABB 1A 1的面积为2×1= 2.故选A.7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和为________.答案 56π解析 由题意,图中弧为过球心的平面与球面相交所得大圆的一段弧,因为∠A 1AE =∠BAF =π6,所以∠EAF =π6,由弧长公式知弧EF 的长为2×π6=π3.弧为不过球心的平面与球面相交所得小圆的一段弧,其圆心为B ,因为球心到平面BCC 1B 1的距离d =3,球的半径R =2,所以小圆的半径r =R 2-d 2=1,又∠GBF =π2,所以弧的长为1×π2=π2.故两段弧长之和为5π6.8.(2016·新疆乌鲁木齐地区二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________. 答案 7π解析 (图略)在四面体ABCD 中, 取线段CD 的中点为E ,连接AE ,BE . ∵AC =AD =BC =BD =2, ∴AE ⊥CD ,BE ⊥CD . 在Rt △AED 中,CD =6, ∴AE =102.同理BE =102. EFFG FG取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中, ∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA , 则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD , ∴该四面体的外接球的半径是72, ∴外接球的表面积是7π.9. (2016·三门峡陕州中学对抗赛)如图所示,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.则三棱锥P -ABC 体积的最大值为________.答案 13解析 V P -ABC =13PO ·S △ABC ,当△ABC 的面积最大时,三棱锥P -ABC 体积达到最大值.当CO ⊥AB 时,△ABC 的面积最大,最大值为12×2×1=1,此时V P -ABC =13PO ·S △ABC =13.10.(2016·浙江)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.答案 12解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ·sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD 的最大值为16×3=12.11.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE . 因为BE ∩BD =B ,所以AC ⊥平面BED . 又AC 平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形, 可得BE =22x . 由已知得,三棱锥EACD 的体积V EACD =13·12AC ·GD ·BE =624x 3=63.故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥EACD 的侧面积为3+2 5.12.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ADC ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值. (1)证明 ∵四边形DCBE 为平行四边形, ∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC 平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C , ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2), ∴S △ABC =12AC ·BC =12x ·4-x 2,∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号,∴x =2时,体积有最大值33.。
2018版高考数学(理)(人教)大一轮复习讲义第八章立体几何与空间向量8.3

内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.四个公理 公理1:如果一条直线上的 两点 在一个平面内,那么这条直线在此平面内. 公理2:过 不在一条直线上 的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们 有且只有一条 过 该点的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
(2) 如图,在正方体 ABCD - A1B1C1D1 中, M , N 分别是
BC1,CD1的中点,则下列判断错误的是 A.MN与CC1垂直
B.MN与AC垂直
答案
解析
几何画板展示
C.MN与BD平行
D.MN与A1B1平行
(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱) 的顶点或所在棱的中点 ,则表示直线 GH 、 MN 是异面直线的图形有
思想方法指导 答案 解析
课时作业
1.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则
“α∥β”是“a⊥b”的
A.充分不必要条件 √
答案
解析
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
若a⊂α,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α, 又a⊂α,所以a⊥b;若a⊥b,a⊂α,b⊥β, 则b⊥α或b∥α或b⊂α,此时α∥β或α与β相交, 所以“α∥β”是“a⊥b”的充分不必要条件,故选A.
1 2 3 4 5 6 7 8 9 10 11 12 13
2.(2016· 福州质检 ) 在三棱柱 ABC- A1B1C1 中, E、 F分别为棱 AA1 、 CC1 的中点,则在空间中与直线A1B1、EF、BC都相交的直线 答案 A.不存在 C.有且只有三条 B.有且只有两条 D.有无数条 √
2018版高考数学大一轮复习第八章立体几何与空间向量.

第•八章.立体几何与空间向虽第1讲空间几何体的结构、三视图和直观图最新考纲I•认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3•会用平行投影方法画岀简单空间图形的三视图与直观图,了解空间图形的不同表示形式.椅理自测,理绥记忆知识梳理1•简单多面体的结构特征(1) 棱柱的侧棱都丫巾II相等,上、下底面是全等一且平行的多边形:(2) 棱锥的底面足任总多边形,侧面足有•个公共顶点的三角形:(3) 棱台可由JliLT-底面的平面截棱锥得到,其上、卜•底面是相似多边形.2.旋转体的形成3•三视图(1) 几何体的三视图包括正视图、侧视图、俯视图,分别足从儿何体的也方、生生方、生上方观察几何体画出的轮廓线.(2) 三视图的画法①基木要求:长对正,髙丫齐,宽相等.②在画三视图时,重叠的线只训一条,挡住的线要画成虚线.4. 直观图空间儿何体的直观图常用红二割画法來画,氏规则是:(I)原图形屮x轴、y轴、z轴两两垂fl,ft观图中,疋轴、轴的夹角为45°(或135°), z'轴与f轴、y,轴所在平面逢鱼.(2) 原图形中卩行J:坐标轴的线段,直观图中仍分别V仃「坐标轴.平行厲轴和2轴的线段在直观图中保持原长度不变, 平行于曲II的线段长度在直观图中变为原来的一半.诊断自测1 •判断正课(在括号内打“ J ”或“ X ”)斫精彩PPT展示(1) 有两个面平行,其余各面都是平行四边形的几何体是棱柱・()(2) 自一个面是多边形,其余各面都是三角形的儿何体是棱锥・()(3) 用斜二测画法画水平放置的ZA时,若Z4的两边分别平行于x轴和y轴,且ZA = 90° ,则在直观图中,ZA = 45° .()(4) 正方体、球、圆锥各自的三视图屮,三视图均相同・()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的Z人时,把川y轴画成相交成45。
2018版高考数学大一轮复习第八章立体几何与空间向量.

由此还原为原图形如图 2 所示,是直角梯形A′B′C′D′. 2 在梯形A′B′C′D′中,A′D′=1,B′C′= 2 +1,A′B′=∴这块菜地的面积 S=2(A′D′+
B′C′·A′B′=+1+=2+ 2 . 2 答案 2+ 2
[思想方法] 1.画三视图的三个原则: (1画法规则:“长对正,宽相等,高平齐”. (2摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方. (3实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和
圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.
[易错防范] 1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.空间几何体不同放置时其三视图不一定相同. 3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽
视实虚线的画法.。
2018版高考数学一轮复习第八章立体几何8.6空间向量及其运算理

第八章立体几何8.6空间向量及其运算理基础知识自主学习ET知识梳理-----------------------------i. 空间向量的有关概念2. 空间向量中的有关定理(1) 共线向量定理空间两个向量a与b(b^0)共线的充要条件是存在实数入,使得a=入b.(2) 共面向量定理共面向量定理的向量表达式:p= xa+ yb,其中x, y€ R, a, b为不共线向量.(3) 空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p=xa+ yb+ zc, {a, b, c}叫做空间的一个基底.3 •空间向量的数量积及运算律(1) 数量积及相关概念①两向量的夹角已知两个非零向量a, b,在空间任取一点0,作6*a, OB= b,则/ A0B叫做向量a, b的夹角,记作〈a, b〉,其范围是0w〈a, b〉w n,若〈a, b〉= 专,则称a与b互相垂直,记作a丄b.②两向量的数量积已知空间两个非零向量a, b,则I a ll b lcos 〈a, b〉叫做向量a, b的数量积,记作a • b,即a • b= I a ll b lcos 〈 a, b〉.2424(2)空间向量数量积的运算律 ①结合律: (入 a ) - b =入(a • b ); ②交换律: a - b = b - a ; ③分配律: a •( b + c ) = a - b + a - c . 4 .空间向量的坐标表示及其应用 设 a = (a i , a 2, a 3), b = (b i ,b 2, b 3).向量表示坐标表小数量积 a •bab 1+ a 2b 2 + a 3b 3共线 a =入 b (b ^0,入 € R)a 1=入 bi , a 2=入b 2, a 3=入 b 3垂直 a - b = 0(a *0,0)a 1b + a 2b 2 + a 3b 3= 0模|a |寸 a 1+ a ;+ a 2 夹角〈a , b > (a *0, b *0) cos 〈 a , b > =ab + a 2b 2 + a 3b 3 寸 a 1 + a 2 + a 3 •寸 b + b 2 + b【知识拓展】 1. 向量三点共线定理:在平面中A B C 三点共线的充要条件是:0A= x O B^ y &C 其中x +y=1) , 0为平面内任意一点. 2.向量四点共面定理: 在空间中P 、A 、B C 四点共面的充要条件是: O P= xOAb y O B^ zOC 其中x + y + z = 1), O 为空间中任意一点. 【思考辨析】判断下列结论是否正确(请在括号中打“V”或“ x”) (1)空间中任意两非零向量 a , b 共面.( V )⑵ 在向量的数量积运算中(a • b ) • c = a •( b • c ) . ( x ) ⑶对于非零向量b ,由a • b = b • c ,则a = c .( x )(4) 两向量夹角的范围与两异面直线所成角的范围相同.(X )⑸若A 、B C D 是空间任意四点,则有 鯨詁DA= 0.( V )考点自测1.已知正四面体ABCD勺棱长为a,点E, F分别是BC AD的中点,贝U Afe- AF勺值为(A. a2B.新C. 4a2D.答案C24解析如图,设AB= a, A C= b, AD= c,则| a| = | b| = | c| = a,且a, b, c三向量两两夹角为60°. AE= 2(a+ b) , AF= j c,—A —A 1 11 1 2 2 1 2••• AE- AF= 2(a + b) • j c= &(a • c + b • c) = 4( a cos 60 ° + a cos 60 ° ) = -a .2 . (2016 •大连模拟)向量a= ( —2, - 3,1) , b= (2,0,4) , c = ( —4,—6,2),下列结论正确的是()A. a〃b, a H cB. a〃b, a丄cC. a// c, a丄bD.以上都不对答案C解析因为c = ( —4,—6,2) = 2( —2, —3,1) = 2a,所以a/ c.又a • b= ( —2) x 2+ ( —3) x o+ 1X 4= 0,所以a丄b.故选C.3 .与向量(一3,—4,5)共线的单位向量是 ____________________________ .答案嚅,罕-弓和-器,-警鳥解析因为与向量a共线的单位向量是土吕,又因为向量(一3 , —4,5)的模为| a|P - 3 2+——4 2+ 52= 5迄,所以与向量(一3,—4,5)共线的单位向量是土立(—3,—4, 5)= ± 10(—3,— 4,5).4.如图,在四面体O—ABC中, OA= a, OB= b, A(= c, D为BC的中点,E为AD的中点,贝U S E = _________ .(用a, b, c表示)1 1 1答案尹+ :b+4c解析A E= 1陥扌张中酣4-O B^4A C1 1 1 =2a + 4b +4c .5.(教材改编)正四面体ABCD 勺棱长为2, E , F 分别为BC AD 中点,贝U EF 的长为 ___________ 答案 、2解析 |EF 2= E F = (E C +D F 2=EC +CD + 評+ 2( EC-亦 E C- DK 2D- DF2 2 2=1 + 2 + 1 + 2(1 X 2X cos 120 ° + 0 + 2X 1X cos 120 ° ) =2,•••|曲=2,A EF 的长为,2.题型分类深度剖析题型一 空间向量的线性运算用AB AD AA 表示OC,则OC =答案2画2*+ AA解析 O C = 2A C = 2(A B + AD ,• OC = S C + CC = 2(A B + AD + AA=1AB + 2AD + AA .⑵ 三棱锥O-ABC 中 , M N 分别是OA BC 的中点,6是厶ABC 勺重心,用基向量 OA O B O C表示M G O G2 2 2 1 2 2 2 解 MG= M/+ A G= ;O/+ 3AN23例1 (1)如图所示,在长方体ABC D ABGD 中,O 为AC 的中点.=2OA + 3(A N - O A=2oA + 訥囱 AC - OA1 A 1 A 1 A=-占。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.直线与平面垂直 (1)定义如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理2.直线和平面所成的角 (1)定义平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线与平面平行或在平面内,它们所成的角是0°的角. (2)范围:[0,π2].3.平面与平面垂直 (1)二面角的有关概念①二面角:一条直线和由这条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角. (2)平面和平面垂直的定义如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理【知识拓展】 重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β⇒a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )1.(教材改编)下列命题中正确的是________.①如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面β; ②如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β;③如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;④如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ.答案②③④解析根据面面垂直的性质,知①不正确,直线l可能平行平面β,也可能在平面β内,②③④正确.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的____________条件.答案充分不必要解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.(2016·宿迁质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是________.答案①④解析①如图,取BC的中点M,连结AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连结BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.4.(2016·徐州模拟)α、β是两个不同的平面,m、n是平面α及平面β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题:_______________________________.答案可填①③④⇒②与②③④⇒①中的一个5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连结OA,OB,OC,OP,在Rt △POA 、Rt △POB 和Rt △POC 中,P A =PC =PB , 所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图2,延长AO ,BO ,CO ,分别交BC ,AC ,AB 于H ,D ,G . ∵PC ⊥P A ,PB ⊥PC ,P A ∩PB =P ,∴PC ⊥平面P AB ,AB ⊂平面P AB ,∴PC ⊥AB , 又AB ⊥PO ,PO ∩PC =P , ∴AB ⊥平面PGC , 又CG ⊂平面PGC ,∴AB ⊥CG ,即CG 为△ABC 边AB 的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.证明:D ′H ⊥平面ABCD .证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF ⊂平面ABCD , 所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2015·江苏)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.证明 (1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2)因为棱柱ABC-A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC . 因为AC ⊂平面ABC , 所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1,BC ∩CC 1=C , 所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1, 所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C .因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C , 所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.题型二 平面与平面垂直的判定与性质例2 如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面P AD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取P A 的中点H ,连结EH ,DH .又E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面P AD ,CE ⊄平面P AD . 所以CE ∥平面P AD . 方法二 连结CF .因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,P A ⊂平面P AD , 所以EF ∥平面P AD .因为CF ∩EF =F ,故平面CEF ∥平面P AD . 又CE ⊂平面CEF ,所以CE ∥平面P AD .(2)因为E 、F 分别为PB 、AB 的中点,所以EF ∥P A . 又因为AB ⊥P A ,所以EF ⊥AB ,同理可证AB ⊥FG .又因为EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . 所以AB ⊥平面EFG .又因为M ,N 分别为PD ,PC 的中点, 所以MN ∥CD ,又AB ∥CD ,所以MN ∥AB , 所以MN ⊥平面EFG .又因为MN ⊂平面EMN ,所以平面EFG ⊥平面EMN . 引申探究1.在本例条件下,证明:平面EMN ⊥平面P AC . 证明 因为AB ⊥P A ,AB ⊥AC ,且P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以AB ⊥平面P AC .又MN ∥CD ,CD ∥AB ,所以MN ∥AB , 所以MN ⊥平面P AC . 又MN ⊂平面EMN , 所以平面EMN ⊥平面P AC .2.在本例条件下,证明:平面EFG ∥平面P AC . 证明 因为E ,F ,G 分别为PB ,AB ,BC 的中点, 所以EF ∥P A ,FG ∥AC ,又EF⊄平面P AC,P A⊂平面P AC,所以EF∥平面P AC.同理,FG∥平面P AC.又EF∩FG=F,所以平面EFG∥平面P AC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,A1B1,AA1⊂平面ABB1A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,A1F,A1C1⊂平面A1C1F,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B 1DE ⊥平面A 1C 1F .题型三 垂直关系中的探索性问题例3 如图,在三棱台ABC -DEF 中,CF ⊥平面DEF ,AB ⊥BC .(1)设平面ACE ∩平面DEF =a ,求证:DF ∥a ;(2)若EF =CF =2BC ,试问在线段BE 上是否存在点G ,使得平面DFG ⊥平面CDE ?若存在,请确定G 点的位置;若不存在,请说明理由.(1)证明 在三棱台ABC -DEF 中,AC ∥DF ,AC ⊂平面ACE ,DF ⊄平面ACE ,∴DF ∥平面ACE .又∵DF ⊂平面DEF ,平面ACE ∩平面DEF =a , ∴DF ∥a .(2)解 线段BE 上存在点G ,且BG =13BE ,使得平面DFG ⊥平面CDE .证明如下:取CE 的中点O ,连结FO 并延长交BE 于点G , 连结GD ,GF ∵CF =EF ,∴GF ⊥CE . 在三棱台ABC -DEF 中,AB ⊥BC ⇒DE ⊥EF . 由CF ⊥平面DEF ⇒CF ⊥DE .又CF ∩EF =F ,∴DE ⊥平面CBEF ,∴DE ⊥GF .⎭⎪⎬⎪⎫GF ⊥CEGF ⊥DE CE ∩DE =E ⇒GF ⊥平面CDE .又GF ⊂平面DFG , ∴平面DFG ⊥平面CDE .此时,如平面图所示,延长CB ,FG 交于点H , ∵O 为CE 的中点,EF =CF =2BC , 由平面几何知识易证△HOC ≌△FOE , ∴HB =BC =12EF .由△HGB ∽△FGE 可知BG GE =12,即BG =13BE .思维升华 同“平行关系中的探索性问题”的规律方法一样,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.(2016·北京东城区模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,M 为棱AC 的中点.AB =BC ,AC =2,AA 1= 2.(1)求证:B 1C ∥平面A 1BM ; (2)求证:AC 1⊥平面A 1BM ;(3)在棱BB 1上是否存在点N ,使得平面AC 1N ⊥平面AA 1C 1C ?如果存在,求此时BNBB 1的值;如果不存在,请说明理由.(1)证明 连结AB 1与A 1B ,两线交于O 点,连结OM ,在△B 1AC 中,∵M ,O 分别为AC ,AB 1中点, ∴OM ∥B 1C ,又∵OM ⊂平面A 1BM ,B 1C ⊄平面A 1BM , ∴B 1C ∥平面A 1BM .(2)证明 ∵侧棱AA 1⊥底面ABC ,BM ⊂平面ABC , ∴AA 1⊥BM ,又∵M 为棱AC 中点,AB =BC ,∴BM ⊥AC . ∵AA 1∩AC =A ,∴BM ⊥平面ACC 1A 1, ∴BM ⊥AC 1. ∵AC =2,∴AM =1.又∵AA 1=2,∴在Rt △ACC 1和Rt △A 1AM 中, tan ∠AC 1C =tan ∠A 1MA = 2. ∴∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°, ∴A 1M ⊥AC 1.∵BM ∩A 1M =M ,∴AC 1⊥平面A 1BM . (3)解 当点N 为BB 1中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C . 证明如下:设AC 1中点为D ,连结DM ,DN .∵D ,M 分别为AC 1,AC 中点, ∴DM ∥CC 1,且DM =12CC 1.又∵N 为BB 1中点,∴DM ∥BN ,且DM =BN , ∴MBND 为平行四边形,∴BM ∥DN , ∵BM ⊥平面ACC 1A 1,∴DN ⊥平面ACC 1A 1. 又∵DN ⊂平面AC 1N ,∴平面AC 1N ⊥平面AA 1C 1C .17.立体几何证明问题中的转化思想典例(14分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1)如图所示,连结NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD. [2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K. [4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK. [6分](2)如图所示,连结BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1. [8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.∴MK⊥B1C. [12分]∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK. [14分]1.若平面α⊥平面β,平面α∩平面β=直线l,则下列命题正确的有________.①垂直于平面β的平面一定平行于平面α;②垂直于直线l的直线一定垂直于平面α;③垂直于平面β的平面一定平行于直线l;④垂直于直线l的平面一定与平面α,β都垂直.答案④解析对于①,垂直于平面β的平面与平面α平行或相交,故①错误;对于②,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故②错误;对于③,垂直于平面β的平面与直线l平行或相交,故③错误;易知④正确.2.(2016·常州模拟)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是________.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③解析①中,由m⊥n, n∥α,可得m⊂α或m∥α或m与α相交,错误;②中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;③中,由m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;④中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.3.(2016·无锡模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线________上.答案AB解析由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面交线AB上.4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是________.①CC1与B1E是异面直线;②AC⊥平面ABB1A1;③AE与B1C1是异面直线,且AE⊥B1C1;④A1C1∥平面AB1E.答案③解析①不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;②不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;③正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;④不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确.5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是________.答案①②③解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA =DB=DC,又由②知③正确;由①知④错.6.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是________.答案①②③解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.7.(2016·镇江模拟)已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,则l⊥α.其中正确命题的序号是________.答案②③解析在三棱柱中,三条侧棱互相平行,但三个侧面所在平面两两相交,故①错误;因为a、b相交,假设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α,同理可得γ∥β,因此α∥β,②正确;由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确;当且仅当a、b相交时结论正确,④错误.8.如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF . 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h , 则DE =12h .又2×2=h 22+(2)2, 所以h =233,DE =33.在Rt △DB 1E 中, B 1E =(22)2-(33)2=66. 由面积相等得66× x 2+(22)2=22x , 得x =12.9.如图,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC . 其中正确结论的序号是________. 答案 ①②③解析 由题意知P A ⊥平面ABC ,∴P A ⊥BC . 又AC ⊥BC ,且P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥AF . ∵AF ⊥PC ,且BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB ,又AE ⊥PB ,AE ∩AF =A , ∴PB ⊥平面AEF ,∴PB ⊥EF . 故①②③正确.10.如图,在直二面角α-MN -β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值为64,则AB 与β所成的角是________.答案 π3解析 如图所示,作BH ⊥MN 于点H,连结AH ,则BH ⊥β,∠BCH 为BC 与β所成的角. ∵sin ∠BCH =64=BH BC, 设BC =1,则BH =64. ∵△ABC 为等腰直角三角形,∴AC =AB =22, ∴AB 与β所成的角为∠BAH . ∴sin ∠BAH =BH AB =6422=32,∴∠BAH =π3.11.(2016·四川)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:连结BM ,CM .因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面P AB ,CM ⊄平面P AB . 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,P A ⊥AB ,P A ⊥CD . 因为AD ∥BC ,BC =CD =12AD ,所以直线AB 与CD 相交, 所以P A ⊥平面ABCD , 从而P A ⊥BD .又BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD , 所以平面P AB ⊥平面PBD .12.如图所示,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC =EF =1,AE =6,DE =3,∠BAD =60°,G 为BC 的中点.(1)求证:FG ∥平面BED ; (2)求证:平面BED ⊥平面AED ; (3)求直线EF 与平面BED 所成角的正弦值. (1)证明 如图,取BD 的中点O ,连结OE ,OG .在△BCD 中,因为G 是BC 的中点, 所以OG ∥DC 且OG =12DC =1.又因为EF ∥AB ,AB ∥DC , 所以EF ∥OG 且EF =OG ,所以四边形OGFE 是平行四边形,所以FG ∥OE . 又FG ⊄平面BED ,OE ⊂平面BED , 所以FG ∥平面BED .(2)证明 在△ABD 中,AD =1,AB =2,∠BAD =60°, 由余弦定理可得BD =3,进而∠ADB =90°, 即BD ⊥AD .又因为平面AED ⊥平面ABCD ,BD ⊂平面ABCD , 平面AED ∩平面ABCD =AD , 所以BD ⊥平面AED . 又因为BD ⊂平面BED , 所以平面BED ⊥平面AED .(3)解 因为EF ∥AB ,所以直线EF 与平面BED 所成的角即为直线AB 与平面BED 所成的角.过点A 作AH ⊥DE 于点H ,连结BH . 又平面BED ∩平面AED =ED , 由(2)知AH ⊥平面BED ,所以直线AB 与平面BED 所成的角即为∠ABH . 在△ADE 中,AD =1,DE =3,AE =6,由余弦定理得cos ∠ADE =23,所以sin ∠ADE =53,因此,AH =AD ·sin ∠ADE =53. 在Rt △AHB 中,sin ∠ABH =AH AB =56. 所以直线EF 与平面BED 所成角的正弦值为56. 13.在直角梯形SBCD 中,∠D =∠C =π2,BC =CD =2,SD =4,A 为SD 的中点,如图(1)所示,将△SAB 沿AB 折起,使SA ⊥AD ,点E 在SD 上,且SE =13SD ,如图(2)所示.(1)求证:SA ⊥平面ABCD ; (2)求二面角E -AC -D 的正切值. (1)证明 由题意,知SA ⊥AB , 又SA ⊥AD ,AB ∩AD =A , 所以SA ⊥平面ABCD .(2)解 在AD 上取一点O ,使AO =13AD ,连结EO ,如图所示.又SE =13SD ,所以EO ∥SA .所以EO ⊥平面ABCD .过O 作OH ⊥AC 交AC 于H ,连结EH ,则AC ⊥平面EOH , 所以AC ⊥EH ,所以∠EHO 为二面角E -AC -D 的平面角.已知EO =23SA =43. 在Rt △AHO 中,∠HAO =45°,OH =AO ·sin 45°=23×22=23. tan ∠EHO =EO OH =22,即二面角E -AC -D 的正切值为2 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 立体几何与空间向量 8.3 空间图形的基本关系与公理试题理 北师大版1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面). 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)叫作异面直线a ,b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.【知识拓展】 1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ×)(3)两个平面ABC与DBC相交于线段BC.( ×)(4)经过两条相交直线,有且只有一个平面.( √)(5)没有公共点的两条直线是异面直线.( ×)1.下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案 C解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析 由已知,α∩β=l ,∴l β,又∵n ⊥β,∴n ⊥l ,C 正确.3.(2016·合肥质检)已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ∥β,α⊥β,则m ⊥nC .若α∩β=l ,m ∥α,m ∥β,则m ∥lD .若α∩β=m ,α∩γ=n ,l ⊥m ,l ⊥n ,则l ⊥α 答案 C解析 m ,n 可能的位置关系为平行,相交,异面,故A 错误;根据面面垂直与线面平行的性质可知B 错误;根据线面平行的性质可知C 正确;若m ∥n ,根据线面垂直的判定可知D 错误,故选C.4.(教材改编)如图所示,已知在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是______,AE 和BG 所成角的大小是________.答案 45° 60°解析 ∵BC 与EG 所成的角等于EG 与FG 所成的角即∠EGF ,tan∠EGF =EF FG =2323=1,∴∠EGF=45°,∵AE 与BG 所成的角等于BF 与BG 所成的角即∠GBF ,tan∠GBF =GF BF =232=3,∴∠GBF =60°.5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,则直线EF 与正方体的六个面所在的平面相交的平面个数为________.答案 4解析 EF 与正方体左、右两侧面均平行.所以与EF 相交的侧面有4个.题型一 平面基本性质的应用例1 (1)(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.(2)已知空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:①E 、F 、G 、H 四点共面; ②三直线FH 、EG 、AC 共点. 证明 ①连接EF 、GH ,如图所示,∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD ,∴EF ∥GH , ∴E 、F 、G 、H 四点共面.②易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.思维升华 共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (1)证明 由已知FG =GA ,FH =HD , 可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC .∴四边形BCHG 为平行四边形.(2)解 ∵BE 綊12AF ,G 是FA 的中点,∴BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C 、D 、F 、E 四点共面. 题型二 判断空间两直线的位置关系例2 (1)(2015·广东)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交(2)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(3)在图中,G 、N 、M 、H 分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)答案 (1)D (2)D (3)②④解析 (1)若l 与l 1,l 2都不相交,则l ∥l 1,l ∥l 2,∴l 1∥l 2,这与l 1和l 2异面矛盾, ∴l 至少与l 1,l 2中的一条相交. (2)连接B 1C ,B 1D 1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,又BD∥B1D1,∴MN∥BD.∵CC1⊥B1D1,AC⊥B1D1,∴MN⊥CC1,MN⊥AC.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(3)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )A.0 B.1 C.2 D.3(2)(2016·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )A.a与b异面,b与c异面⇒a与c异面B.a与b相交,b与c相交⇒a与c相交C.α∥β,β∥γ⇒α∥γD.aα,bβ,α与β相交⇒a与b相交答案(1)B (2)C解析 (1)在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.(2)如图(1),在正方体中,a 、b 、c 是三条棱所在直线,满足a 与b 异面,b 与c 异面,但a ∩c =A ,故A 错误;在图(2)的正方体中,满足a 与b 相交,b 与c 相交,但a 与c 不相交,故B 错误;如图(3),α∩β=c ,a ∥c ,则a 与b 不相交,故D 错误.题型三 求两条异面直线所成的角例3 (2016·重庆模拟)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.答案π3解析 如图,将原图补成正方体ABCD -QGHP ,连接GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角, 在△AGP 中,AG =GP =AP , 所以∠APG =π3.引申探究在本例条件下,若E ,F ,M 分别是AB ,BC ,PQ 的中点,异面直线EM 与AF 所成的角为θ,求cos θ的值.解 设N 为BF 的中点,连接EN ,MN ,则∠MEN 是异面直线EM 与AF 所成的角或其补角. 不妨设正方形ABCD 和ADPQ 的边长为4, 则EN =5,EM =26,MN =33.在△MEN 中,由余弦定理得cos∠MEN =EM 2+EN 2-MN 22EM ·EN=24+5-332×26×5=-130=-3030. 即cos θ=3030. 思维升华 用平移法求异面直线所成的角的三步法 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16 B.36 C.13 D.33答案 B解析 画出正四面体ABCD 的直观图,如图所示.设其棱长为2,取AD 的中点F , 连接EF ,设EF 的中点为O ,连接CO , 则EF ∥BD ,则∠FEC 就是异面直线CE 与BD 所成的角. △ABC 为等边三角形, 则CE ⊥AB , 易得CE =3, 同理可得CF =3, 故CE =CF .因为OE =OF ,所以CO ⊥EF . 又EO =12EF =14BD =12,所以cos∠FEC =EOCE=123=36.16.构造模型判断空间线面位置关系典例 已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,m ⊥n ,则α∥β; ③若m ⊥α,n ∥β,m ⊥n ,则α∥β; ④若m ⊥α,n ∥β,α∥β,则m ⊥n . 其中所有正确的命题是________.思想方法指导 本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.设a,b是两条不同的直线,α,β是两个不同的平面,aα,b⊥β,则“α∥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若aα,b⊥β,α∥β,则由α∥β,b⊥β⇒b⊥α,又aα,所以a⊥b;若a⊥b,aα,b⊥β,则b⊥α或b∥α或bα,此时α∥β或α与β相交,所以“α∥β”是“a⊥b”的充分不必要条件,故选A.2.(2016·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC分别有交点P、M、N,如图,故有无数条直线与直线A1B1、EF、BC都相交.3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )A.平行B.相交C.垂直D.互为异面直线答案 C解析不论l∥α,lα,还是l与α相交,α内都有直线m使得m⊥l.4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M既不在AC上,也不在BD上答案 A解析由于EF∩HG=M,且EF平面ABC,HG 平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,所以点M一定在直线AC上,故选A.5.四棱锥P-ABCD的所有侧棱长都为5,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为( )A.255B.55C.45D.35答案 B解析因为四边形ABCD为正方形,故CD∥AB,则CD与PA所成的角即为AB与PA所成的角,即为∠PAB.在△PAB 内,PB =PA =5,AB =2,利用余弦定理可知cos∠PAB =PA 2+AB 2-PB 22×PA ×AB =5+4-52×5×2=55,故选B. 6.下列命题中,正确的是( )A .若a ,b 是两条直线,α,β是两个平面,且a α,b β,则a ,b 是异面直线B .若a ,b 是两条直线,且a ∥b ,则直线a 平行于经过直线b 的所有平面C .若直线a 与平面α不平行,则此直线与平面内的所有直线都不平行D .若直线a ∥平面α,点P ∈α,则平面α内经过点P 且与直线a 平行的直线有且只有一条 答案 D解析 对于A ,当α∥β,a ,b 分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a ∥b ,故A 错误.对于B ,设a ,b 确定的平面为α,显然a α,故B 错误.对于C ,当a α时,直线a 与平面α内的无数条直线都平行,故C 错误.易知D 正确.故选D.7.(2016·南昌高三期末)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形.∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值为________.答案 5 2解析 连接A 1B ,将△A 1BC 1与△CBC 1同时展平形成一个平面四边形A 1BCC 1,则此时对角线CP +PA 1=A 1C 达到最小,在等腰直角三角形△BCC 1中,BC 1=2,∠CC 1B =45°,在△A 1BC 1中,A 1B =40=210,A 1C 1=6,BC 1=2,∴A 1C 21+BC 21=A 1B 2,即∠A 1C 1B =90°.对于展开形成的四边形A 1BCC 1,在△A 1C 1C 中,C 1C =2,A 1C 1=6,∠A 1C 1C =135°,由余弦定理有,CP +PA 1=A 1C =2+36-122cos 135°=50=5 2.8.如图是正四面体(各面均为正三角形)的平面展开图,G 、H 、M 、N 分别为DE 、BE 、EF 、EC 的中点,在这个正四面体中,①GH 与EF 平行; ②BD 与MN 为异面直线; ③GH 与MN 成60°角; ④DE 与MN 垂直.以上四个命题中,正确命题的序号是________. 答案 ②③④解析 把正四面体的平面展开图还原,如图所示,GH 与EF 为异面直线,BD 与MN 为异面直线,GH 与MN 成60°角,DE ⊥MN .9.(2015·浙江)如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 78解析 如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点, ∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角. ∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =22, ∴MK = 2. 在Rt△CKN 中,CK =22+12= 3.在△CKM 中,由余弦定理,得cos∠KMC =CM 2+MK 2-CK 22CM ×MK=22+22-322×22×2=78. 10.(2016·郑州质检)如图,矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是________.①BM 是定值;②点M 在某个球面上运动; ③存在某个位置,使DE ⊥A 1C ; ④存在某个位置,使MB ∥平面A 1DE . 答案 ③解析 取DC 中点F ,连接MF ,BF ,MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos∠MFB 是定值,所以M 是在以B 为圆心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的投影与AC 重合,AC 与DE 不垂直,可得③不正确.11.如图,在正方体ABCD —A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明 如图,连接BD ,B 1D 1, 则BD ∩AC =O , ∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形,又H ∈B 1D ,B 1D 平面BB 1D 1D ,则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1. 即D 1、H 、O 三点共线.12.如图所示,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.解 如图所示,取AC 的中点F ,连接EF ,BF ,在△ACD 中,E 、F 分别是AD 、AC 的中点, ∴EF ∥CD .∴∠BEF 或其补角即为异面直线BE 与CD 所成的角. 在Rt△EAB 中,AB =AC =1,AE =12AD =12,∴BE =52. 在Rt△EAF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt△BAF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos∠FEB =12EF BE =2452=1010.∴异面直线BE与CD 所成角的余弦值为1010. 13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D 、B 、F 、E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明 (1)如图所示,因为EF 是△D 1B 1C 1的中位线, 所以EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD , 所以EF ∥BD .所以EF ,BD 确定一个平面. 即D 、B 、F 、E 四点共面. (2)在正方体ABCD -A 1B 1C 1D 1中, 设平面A 1ACC 1确定的平面为α, 又设平面BDEF 为β. 因为Q ∈A 1C 1,所以Q ∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且R∈β. 则R∈PQ,故P,Q,R三点共线.。