机械毕业英语论文翻译车床
机械毕业设计英文外文翻译71车床夹具设计分析

附录ALathe fixture design and analysisMa Feiyue(School of Mechanical Engineering, Hefei, Anhui Hefei 230022,China)Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points.Keywords: lathe fixture; design; pointsLathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle.THE MAIN TYPES OF LATHE FIXTUREInstalled on the lathe spindle on the lathe fixtureInstalled in the fixture on the lathe spindle in addition to three-jaw chuck, four jaw chuck, faceplate, front and rear dial with heart-shaped thimble and a combination of general-purpose lathe fixture folder outside (as these fixtures have been standardized and machine tool accessories, can be purchased when needed do not have to re-design), usually need to design special lathe fixture. Common special lathe folder with the following types.Fixture took disc latheThis process is to find the generic is installed on the faceplate is difficult to ensure the accuracy of the workpiece, so the need to design special lathe fixture. The lathe fixture design process, first select the cylindrical workpieceand the end cylinder B, the semi-circular surface finishing (finishing second circularsurface when the car has been good with circular surface) ispositioned datum, limit of six degrees of freedom, in line with the principle of base overlap.The work piece fixture to ensure the accuracy of measures:The workpiece fixture to ensure the accuracy of measures:(1) tool by the workpiece machining position relative to the guarantee. (2) symmetry of size 0.02. Rely on sets of holes5.56h Φ22.5Φ0.023023+Φ0.023023+Φ180.02±and positioning theworkpiece with the precision of andlocate the position of dimensional accuracy and process specification requirements to ensure that the same parts of the four circular surface must be processed on the same pins.(3) all fixtures and clip bushing hole axis vertical concrete face A tolerance of .because the A side is the fixture with the lathe when the transition assembly base plate installed.(4) specific folder on the-hole plate with the transition to the benchmarks pin design requires processing each batch of parts to be sold in the transitional disk with a coat made of a tight match, and the local processing of the face plate to reduce the transition fixture on the set of small errors.The angle iron fixtureIf the processing technology for the and, drilling, boring, reaming process scheme. Boring is required in the face A face of finishing B ( range) and the A, B sides and the holeaxis face runout does not exceed . In addition, the processing of -hole, you should also ensure that its axis with the axis of thedegree of tolerance for the uranium ; size 5.56h Φ0.0100.00220.5++Φ0.005mm 207H Φ20Φ0.0102.5+Φ0.0110.00510++Φ12Φ10Φ0.02mm 2.5Φ0.0110.00510++Φ0.01mm Φ10Φand the location of ; and and of the axis of the axis of displacement tolerance not more than .Based on the above analysis on the part of process size, choose the -hole on the workpiece surface and M, N two planes to locate the benchmark.Installed on the lathe pallet fixtureLimited equipment in the factory, similar to the shape of the parts box, its small size, designed for easy installation without turning the main pumping in the fixture, you can drag the panel removal tool holder, fixture and workpiece mounted on the pallet. Processing, mounted on the lathe tool on the main primary uranium movement, feed the work piece for movement, so you can expand the scope of application of lathe.LATHE FIXTURE DESIGN POINTSThe design features of the positioning deviceLathe fixture positioning device in the design, in addition to considering the limited degrees of freedom, the most important thing is to make the surface of the workpiece axis coincides with the 15.50.1±80.1mm ± 2.5Φ10Φ17.5Φ0.02mm 17.5Φaxis of spindle rotation. This is described in the previous two sets of lathe fixture when special emphasis. In addition, the positioning device components in the specific folder location on the workpiece surface accuracy and dimensional accuracy of the location has a direct relationship, so the total figure on the fixture, be sure to mark the location positioning device dimensions and tolerances, and acceptance as a fixture conditions.Jig weight design requirementsProcessing in the lathe, the workpiece rotation together with the fixture will be a great centrifugal force and the centrifugal force increases sharply with increasing speed. This precision machining, processing, and the vibration would affect the surface quality of parts. Therefore, the lathe fixture between devices should pay attention to the layout of equipment necessary to balance the design weights.Dlamping device design requirementsLathe fixture in the course of their work should be the role of centrifugal force and cutting force, the size of its force and direction of the workpiece position relative to the base is changing. Therefore, a sufficient clamping device clamping force and a good self-locking.To ensure safe and reliable clamping. However, the clamping force can not be too large, and require a reasonable layout of the force, and will not undermine the accuracy of the location positioning device.Llathe fixture connection with the machine tool spindle design Lathe fixture connected with the spindle directly affects the accuracy of the rotary fixture accuracy, resulting in errors in the workpiece. Therefore, the required fixture rotation axis lathe spindle axis with high concentricity.Lathe fixture connected with the spindle structure, depending on the spindle when turning the front of the structure model is confirmed, by machine instructions or the manual check on. Lathe spindle nose are generally outside the car with cone and cone, or a journal and other structures with the flange end connections to the fixture base. Note, however, check the manual should be used with caution, because many manufacturers of machine tools, machine tools of similar size may differ. The most reliable method for determining, or to field measurements in order to avoid errors or losses. Determine the fixture and the spindle connecting structure, generally based on fixture size of the size of the radial: radialdimension less than , or small lathe fixture. Pairs of fixture requirements of the overall structureLathe fixture generally work in the state of the cantilever in order to ensure process stability, compact fixture structure should be simple, lightweight and safe, overhang length to as small as possible, the center of gravity close to the front spindle bearing. Fixture overhang length L and the ratio of outer diameter D profile can refer to the following values used:Less than the diameter D in fixture, ;Diameter D between the fixture in ,; Fixture diameter D is greater than , .To ensure security, installed in the specific folder on the components of the folder is not allowed out beyond the specific diameter, should also consider cutting the wound and coolant splash and other issues affecting safe operation.References140mm (23)D d <-150mm 1.25L D ≤150300mm :0.9L D ≤300mm 0.6L D ≤[1] Chen Guofu. Lathe fixture [J]. Mechanical workers. Cold, 2000 (12)[2] Dong Yuming. Yang Hongyu. Fixture design in the common problems [J]. Mechanical workers. Cold, 2005 (1)[3] Liu Juncheng The machine clamps the clamping force in the design process calculations [J]. tool technology, 2007 (6)附录B车床夹具设计分析(合肥学院机械工程系,安徽合肥230022)摘要:从车床夹具的主要类型着手,对花盘式车床夹具和角铁式夹具进行了介绍,并在此基础上分析了车床夹具设计要点。
车床描述的英语作文

车床描述的英语作文In the world of machining and precision engineering, the lathe stands tall as a testament to human ingenuity and craftsmanship. This versatile tool has been a staple of workshops and factories for centuries, and its impact on the industrial revolution cannot be overstated. The lathe is not just a machine; it's an artist's canvas, asculptor's block of marble, and a mechanic's toolbox, all rolled into one.The lathe's design is both elegant and efficient. Its basic structure consists of a bed, which supports the workpiece, a headstock that holds the spindle and drives the workpiece, and a tailstock that supports the workpiece from the other end. The spindle, driven by a motor, rotates the workpiece, while the cutting tool, held by a toolpost, is fed manually or automatically against the workpiece to shape it.The beauty of the lathe lies in its adaptability. Whether it's turning a metal rod into a precision shaft, shaping a wooden block into a delicate sculpture, ormilling a complex part for a machine, the lathe can handleit with ease. This versatility is made possible by the wide range of cutting tools and attachments that can be used with it, each designed for a specific task.But the true magic of the lathe lies in the skilled hands of the operator. A skilled machinist can read a blueprint, understand the intricacies of the design, and then translate that vision into reality using the lathe. The precision with which they control the cutting tool, the care with which they select the right tool for the job, and the attention to detail they exhibit throughout the process are what truly set the lathe apart.In today's world of automation and robotics, the role of the lathe might seem outdated. However, the truth isthat no machine can replicate the finesse and precisionthat a skilled machinist can achieve using a lathe. The lathe, with its combination of old-world craftsmanship and modern technology, remains an essential tool for any serious engineer or machinist.From its humble beginnings as a simple wood-turning device, the lathe has come a long way. Today, it's a highly specialized machine, capable of producing parts withtolerances that are measured in microns. Its impact on various industries, from automotive to aerospace, is immeasurable. And with the advent of new materials and technologies, the lathe's future looks even more promising. In conclusion, the lathe is not just a machine; it's a symbol of human ingenuity and craftsmanship. Its precision, adaptability, and the skill required to operate it make it a cherished tool for engineers and machinists alike. As we move into the future, the lathe will continue to play a crucial role in the world of machining and precision engineering, and it will undoubtedly inspire generations of craftsmen to push the boundaries of what's possible.**车床的精密:工匠的最佳拍档**在机械加工和精密工程领域,车床以其卓越的性能证明了人类的智慧与匠心。
【机械类文献翻译】车床与铣削加工

附件1:外文资料翻译译文车床与铣削加工车床用与车外圆、端面和镗孔等加工的机床叫车床。
车削很少在其他种类的机床上进行,某些机床不能像车床那样方便地进行车削加工。
由于车床除了用于车外圆外还能用于镗孔、车端面、钻孔和铰孔,车床的多功能性可以使工件在一次定位安装中完成多种加工。
这就是在生产中普遍使用各种车床比其他种类的机床都要多的原因。
很早就已经有了车床。
现代车床可以追溯到大约17世纪,那时亨利·莫德斯利发明了一种具有丝杠的车床。
这种车床可以控制工具的机械进给。
聪明的英国人还发明了一种把主轴和丝杠相连接的变速装置,这样就可以切削螺纹。
车床的主要部件:床身、主轴箱组件、尾架组件、拖板组件、变速齿轮箱、丝杠和光杠床身是车床的基础件。
它通常是由经过正火处理的灰铸铁或者球墨铸铁制成,它是一个坚固的刚性框架,所有其他主要部件都安装在床身上。
通常在床身上面有内外两组平行的导轨。
一些制造厂生产的四个条导轨都采用倒“V”形,而另一些制造厂则将倒“V”形导轨和平面导轨相结合。
由于其他的部件要安装在导轨上或在导轨上移动,导轨要经过精密加工,以保证其装配精度。
同样地,在操作中应该小心,以避免损伤导轨。
导轨上的任何误差,常常会使整个机床的精度破坏。
大多数现代车床的导轨要进行表面淬火处理,以减小磨损和擦伤,具有更大的耐磨性。
主轴箱安装在床身一端内导轨的固定位置上。
它提供动力,使工件在各种速度下旋转。
它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮,通过变速齿轮,主轴可以在许多种转速下旋转。
大多数车床有8—18种转速,一般按等比级数排列。
在现代车床上只需扳动2~4个手柄,就能得到全部挡位的转速。
目前发展的趋势是通过电气的或机械的装置进行无级变速。
由于车床的精度在很大程度上取决于主轴,因此主轴的结构尺寸较大,通常安装在紧密配合的重型圆锥滚子轴承或球轴承中。
主轴中有一个贯穿全长的通孔。
主轴孔的大小是车床的一个重要尺寸,因为当工件通过主轴孔供料时,它确定了能够加工棒料毛坯的最大外径尺寸。
外文翻译--车床和车削(8000多字)

附录翻译部分Lathe and TurningThe Lathe and Its ConstructionA lathe is a machine tool used primarily for producing surfaces of revolution flat edges. Based on their purpose,construction,number of tools that can simultaneously be mounted,and degree of automation,lathes or,more accurately,lathe-type machine tools can be classified as follows:(1)Engine lathes(2)Toolroom lathes(3)Turret lathes(4)Vertical turning and boring mills(5)Automatic lathes(6)Special-purpose lathesIn spite of that diversity of lathe-type machine tools,they all have all have common features with respect to construction and principle of operation.These features can best be illustrated by considering the commonly used representative type,the engine lathe.Following is a description of each of the main elements of an engine lathe,which is shown in Fig.11.1.Lathe bed.The lathe bed is the main frame,involving a horizontal beam on two vertical supporis.It is usually made of grey or nodular cast iron to damp vibrations and is made by casting.It has guideways to allow the carriage to slide easily lengthwise.The height of the lathe bed should be appropriate to enable the technician to do his or her jib easily and comfortably.Headstock.The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways(the silde surface of the bed).The spindle is driven through the gearbox,which is housed within the headstock.The function of the gearbox is to provide a number of different spindle speeds(usually6up to18speeds).Some modern lathes have headstocks with infinitely variable spindle speeds,which employ frictional, electrical,or hydraulic drives.The spindle is always hollow,I.e,it has a through hole extending lengthwise.Bar stocks can be fed througth that hole if continous production is adopted.A lso,that hole has a taperedsurface to allow mounting a plain lathe center.The outer surface of the spindle is threaded to allow mounting of a chuck,a face plate,or the like.Tailstock.The tailstock assembly consists basically of three parts,its lower base,an intermediate part,and the quill.The lower base is a casting that can slide on the lathe bed along the guidewayes,and it has a clamping device to enable locking the entire tailstock at any desired location,depending upon the length of the workpiece.The intermediate parte is a casting that can be moved transversely to enable alignment of the axis of the the tailstock with that of the headstock.The third part,the quill,is a hardened steel tube,which can be moved longitudinally in and out of the intermediate part as required.This is achieved through the use of a handwheel and a screw,around which a nut fixed to the quill is can be locked at any point along its travel path by means of a clamping device.The carriage.The main function of the carriage is mounting of the cutting tools and generating longitudinal and/or cross feeds.It is actually an H-shaped block that slides on the lathe bed between the headstock and tailstock while being guided by the V-shaped guideways of the bed.The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.When cutting screw threads,power is provided to the gearbox of the apron by the lead screw.In all other turning operations,it is the feed rod that drives the carriage.The lead screw goes through a pair o half nuts,which are fixed to the rear of the apron.When actuating a certain lever,the half nuts are clamped together and engage with the rotating lead screw as a single nut,which is fed,together with carriage,along the bed.when the lever is disengaged, the half nuts are released and the carriage stops.On the other hand,when the feed rod is used,it supplies power to the apron through a wrom gear.The latter is keyed to feed rod and travels with the apron along the feed rod,which has a keyway extending to cover its whole length.A modern lathe usually has a quick-change gearbox located under the headstock and driven from the spindle through a train of gears.It is connected to both the feed rod and the lead screw and enables selecting a variety of feeds easily and rapidly by simply shifting the appropriate levers, the quick-change gearbox is employed in plain turning,facing and thread cutting operations. Since that gearbox is linked to spindle,the distance that the apron(and the cutting tool)travels for each revolution of the spindle can be controlled and is referred to as the feed.Lathe Cutting ToolsThe shape and geometry of the lathe tools depend upon the purpose for which they are employed.Turning tools can be classified into tow main groups,namely,external cutting tools andinternal cutting tools,Each of these groups include the following types of tools: Turning tools.Turing tools can be either finishing or rough turning tools.Rough turning tools have small nose radii and are used for obtaining the final required dimensions with good surface finish by marking slight depth of cut.Rough turning tools can be right–hand or left-hand types,depending upon the direction of feed.They can have straight,bent,or offset shanks.Facing tools.Facing tools are employed in facing operations for machining plane side or end surfaces.There are tools for machining left-hand-side surfaces and tools for right-hand-side surfaces.Those side surfaces are generated through the use of the cross feed,contrary to turning operations,where the usual longitudinal feed is used.Cutoff tools.Cutoff tools,which are sometimes called parting tools,serve to separate the workpiece into parts and/or machine external annual grooves.Thread-cutting tools.Thread-cutting tools have either triangular,square,or tranpezoidal cutting edges,depending upon the cross section of the desired thread.Also,the plane angles of these tools must always be identical to those of the thread forms.Thread-cutting tools have straight shanks for external thread cutting and are of the bent-shank type when cutting internal threads.Form tools.Form tools have edges especially manufactured to take a certain form,which is opposite to the desired shape of the machined workpiece.An HSS tools is usually made in the form of a single piece,contrary to cemented carbides or ceramic,which are made in the form of tipes.The latter are brazed or mechanically fastened to steel shanks.Fig.1indicates an arrangement of this latter type,which includes the carbide tip,the chip breaker,the pad,the clamping screw(with a washer and a nut),and the shank..As the name suggests,the function of the chip breaker is to break long chips every now and then,thus preventing the formation of very long twisted ribbons that may cause problems during the machining operations.The carbide tips(or ceramic tips)can have different shapes,depending upon the machining operations for which they are to be employed.The tips can either be solid or with a central through hole,depending on whether brazing or mechanical clamping is employed for mounting the tip on the shank.Fig.1Lathe OperationsIn the following section,we discuss the various machining operations that can be performed on a conventional engine lathe.It must be borne in mind,however,that modern computerized numerically controlled lathes have more capabiblities and do other operations,such as contouring,for example.Following are conventional lathe operations.Cylindrical turning.Cylindrical turning is the the simplest and the most common of all lathe operations.A single full turn of the workpiece generate a circle whose center falls on the lathe axis;this motion is then reproduced numerous times as a result of the axial feed motion of the tool.The resulting machining marks are,therefore,a helix having a very small pitch,which is equal to the feed.Consequently,the machined surface is always cylindrical.The axial feed is provided by the carriage or the compound rest,either manually or automatically,whereas the depths of cuts is controlled by the cross slide.In roughing cuts,it is recommended that large depths of cuts(up to0.25in.or6mm,depending upon the workpiece material)and smaller feeds would be used.On the other hand,very fine feeds,smaller depth of cut(less than0.05in.,or0.4mm),and high cutting speeds are preferred for finishing cuts.Facing.The result of a facing operation is a flat surface that is either the whole end surface of the workpiece or an annular intermediate surface like a shoulder.During a facing operation,feed is provided by the cross slide,whereas the depth of cut is controlled by the carriage or compound rest.Facing can be carried out either from the periphery in ward or from the center of the workpiece outward.It is obvious that the machining marks in both cases tack the form of a ually,it is preferred to clamp the carriage during a facing operation,since the cutting force tends to push the tool(and,of course,the whole carriage)away from the workpiece.In most facing operations,the workpiece is held in a chuck or on a face plate.Groove cutting.In cut-off and groove-cutting operations,only cross feed of the tool isemployed.The cut-off and grooving tools,which were previously discussed,are employed.Boring and internal turning.Boring and internal are performed on the internal surfaces by a boring bar or suitable internal workpiece is solid,a drilling operation must be performed first.The drilling tool is held in the tailstock,and latter is then fed against the workpiece.Taper turning.Taper turning is achieved by driving the tool in a direction that is not paralled to the lathe axis but inclined to it with an angle that is equal to the desired angle of the taper.Following are the different methods used in taper-turning practice:(1)Rotating the disc of the compound rest with an angle to half the apex angle of the cone. Feed is manually provided by cranking the handle of the compound rest.This method is recommended for taper turning of external and internal surfaces when the taper angle is relatively large.(2)Employing special form tools for external,very short,conical surfaces.The width of the workpiece must be slightly smaller than that of the tool,and the workpiece is usually held in a chuck or clamped on a face plate.I n this case,only the cross feed is used during the machining process and the carriage is clamped to the machine bed.(3)Offsetting the tailstock center.This method is employed for esternal tamper turning of long workpiece that are required to have small tamper angles(less than8).The workpiece is mounted between the two centers;then the tailstock center is shifted a distance S in the direction normal to the lathe axis.(4)Using the taper-turning attachment.This method is used for turning very long workpoece, when the length is larger than the whole stroke of the compound rest.The procedure followed in such cases involves complete disengagement of the cross slide from the carriage,which is then guided by the taper-turning attachment.During this process,the automatic axial feed can be used as usual.This method is recommend for very long workpiece with a small cone angle,i.e., 8through10.Thread cutting.When performing thread cutting,the axial feed must be kept at a constant rate,which is dependent upon the rotational speed(rpm)of the workpiece.The relationship between both is determined primarily by the desired pitch of the thread to be cut.As previously mentioned,the axial feed is automatically generated when cutting a thread by means of the lead screw,which drives the carriage.When the lead screw rotates a single revolution,the carriage travels a distance equal to the pitch of the lead screw rotates a single revolutional speed of the lead screw is equal to that of the spindle(i.e.,that of the workpiece),the pitch of the resulting cut thread is exactly to that of the lead screw .The pitch of the resulting thread being cut therefore always depends upon the ratio of the rotational speeds of the lead scew and the spindle :workpiece of pitch screwlead the of Pitch Desired =screw lead of workpiece the of rpm rpm =spindle-to-carriage gearing ratioThis equation is usefully in determining the kinematic linkage between the lathe spindle and the lead screw and enables proper selection of the gear train between them .In thread cutting operations ,the workpiece can either be held in the chuck or mounted between the two lathe centers for relatively long workpiece .The form of the tool used must exactly coincide with the profile the thread to be cut ,I .e .,triangular tools must be used for triangular threads ,and so on .Knurling .knurling is mainly a forming operation in which no chips are prodyced .Tt involves pressing two hardened rolls with rough filelike surfaces against the rotating workpiece to cause plastic deformation of the workpiece metal.Knurling is carried out to produce rough ,cylindrical (or concile )surfaces ,which are usually used as handles .Sometimes ,surfaces are knurled just for the sake of decoration ;there are different types of patterns of knurls from which to choose .Cutting Speeds and FeedsThe cutting speed ,which is usually given in surface feet per minute (SFM),is the number of feet traveled in circumferential direction by a given point on the surface (being cut )of the workpiece in one minute .The relationship between the surface speed and rpm can be given by the following equation :SMF=πDNWhereD=the diameter of the workpiece in feetN=the rpmThe surface cutting speed is dependent primarily upon the machined as well as the material of the cutting and can be obtained from handbooks ,information provided by cutting tool manufacturera ,and the like .generally ,the SFM is taken as 100when machining cold-rolled or mild steel ,as 50when machining tougher metals ,and as 200when machining sofer materials .For aluminum ,the SFMis usually taken as 400or above .There are also other variables that affect the optimal value of the surface cutting speed .These include the tool geometry,the typeof lubricant or coolant ,the feed ,and the depth of cut .As soon as the cutting sped is decided upon ,the rotational speed (rpm)of the spindle can be obtained as follows :N =DSFWπThe selection of a suitable feed depends upon many factors ,such as the required surface finish ,the depth of cut ,and the geometry of the tool used .Finer feeds produce better surface finish ,whereas higher feeds reduce the machining time during which the tool is in direct contact with the workpiece .Therefore ,it is generally recommended to use high feeds for roughing operations and finer feeds for finishing operations.Again,recommend values for feeds ,which can be taken as guidelines ,are found in handbooks and information booklets provided by cutting tool manufacturers.Here I want to introduce the drilling:Drilling involves producing through or blind holes in a workpiece by forcing a tool ,which rotates around its axis ,against the workpiece .Consequently ,the range of cutting from that axis of rotation is equal to the radius of the required hole .In practice ,two symmetrical cutting edges that rotate about the same axis are employed .Drilling operations can be carried out by using either hand drills or drilling machines .The latter differ in size and construction .nevertheless ,the tool always rotates around its axis while the workpiece is kept firmly fixed .this is contrary to drilling on a lathe .Cutting Tool for Drilling OperationsIn drilling operations ,a cylindrical rotary-end cutting ,called a drill ,is employed .The drill can have either one or more cutting edges and corresponding flutes ,which can be straight or helical .the function of the flutes is to provide outlet passages for the chips generated during the drilling operation and to allow lubricants and coolants to reach the cutting edges and the surface being machined .Following is a survey of the commonly used drills.Twist drill .The twist drill is the most common type of drill .It has two cutting edges and two helical flutes that continue over the length of the drill body ,The drill also consist of a neck and a shake that can be either straight or tapered .In the latter case ,the shank is fitted by the wedge action into the tapered socket of the spindle and has a tang ,which goes into a slot in the spindle socket ,thus acting as a solid means for transmitting rotation .On the other hand ,straight –shank drills are held in a drill chuck that is ,in turn ,fitted into the spindle socket in the same way as tapered shank drills.The two cutting edges are referred to as the lips,and are connected together by a wedge, which is a chisel-like edge.The twist drill also has two margins,which enable proper guidance and locating of the drill while it is in operation.The tool point angle(TPA)is formed by the lips and is chosen based on the properties of the material to be cut.The usual TAP for commercial drills is118,which is appropriate for drilling low-carbon steels and cast irons.For harder and tougher metals,such as hardened steel,brasss and bronze,larger TPAs(130OR140)give better performance.The helix angle of the flutes of the commonly used twist drills ranges between24and30.When drilling copper or soft plastics,higher values for the helix angle are recommended(between35and45).Twist drills are usually made of high speed steel,although carbide tipped drills are also available.The size of twist drills used in industrial range from0.01up to3.25in.(i.e.0.25up to 80mm).Core drills.A core drill consists of the chamfer,body,neck,and shank.This type of drill may be have either three or four flutes and an equal number of margins,which ensure superior guidance,thus resulting in high machining accuracy.It can also be seen in Fig12.2 that a core drill has flat end.The chamfer can have three or four cutting edges or lips,and the lip angle may vary between90and120.Core drills are employed for enlarging previously made holes and not for originating holes.This type of drill is characterized by greater productivity, high machining accuracy,and superior quality of the drilled surfaces.Gun drills.Gun drills are used for drilling deep holes.All gun drills are straight fluted, and each has a single cutting edge.A hole in the body acts as a conduit to transmit coolant under considerable pressure to the tip of the drill.There are two kinds of gun drills,namely,the center cut gun drill used for drilling blind holes and the trepanning drill.The latter has a cylindrical groove at its center,thus generating a solid core,which guides the tool as it proceeds during the drilling operation.Spade drills.Spade drills are used for drilling large holes of3.5in.(90mm)or more. Their design results in a marked saving in cost of the tool as well as a tangible reduction in its weight,which facilitates its handling.moreover,this type of drill is easy to be ground.[13]车床和车削车床及它的结构车床是一个主要用来生产旋转表面和端面的机床。
本科毕业论文中英文翻译车床精品

本科毕业论文中英文翻译学生姓名:所在院系:机电学院所学专业:机械设计制造及其自动化学习参考车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。
车削很少在其他种类的机床上进行,而且任何一种其他机床都不想车床那样方便地进行车削加工。
由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次装夹中进行几种加工。
因此,在生产中使用的各种车床比任何种类的机床都多。
普通车床:普通车床作为最早的金属切削机床中的一种,目前仍然有许多有用的和人们所需要的特性。
现在,这些机床主要用在规模较小的工厂中,进行小批量的生产,而不是进行大批量的生产。
普通车床的加工偏差主要取决于操作者的技术熟练程度。
设计工程师应该认真的确定由熟练工人在普通车床上加工的试验零件的公差。
在把试验零件重新设计为生产零件时,应该选用经济的公差。
转塔车床:对生产加工设备来说,目前比过去更着重评价是否具有精确的和快速的重复加工能力。
应用这个标准来评价具体的加工方法,转塔车床可以获得较高的质量评定。
在为小批量的零件(100—200 件)设计加工方法时,采用转塔车床是经济的。
为了在转塔车床上获得极可能小的公差值,设计人员应该尽量将加工工序的数目减至最少。
自动螺丝车床:自动螺丝车床通常被分为以下几种类型:单轴自动、多轴自动和自动夹紧车床。
自动螺丝车床最初是用来对螺钉和类似的带有螺纹的零件进行自动化和快速加工的。
但是。
这种车床的用途早就超过了这个狭窄的范围。
现在,它在许多类型的精密零件的大批量生产中起着重要的作用。
车床的基本部件有:床身、主轴箱部件、尾架部件、溜板部件丝杠和光杠。
床身是车床的基础件。
它通常是由于经过充分正火或时效处理的灰铸铁或者球墨铸铁之城。
它是一个兼顾的刚性框架,所有其他基本部件都安装在车床身上。
通常在床身上有内外讲足平行的导轨。
有些制造厂对全部四条导轨都采用导轨尖学习参考顶朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。
车床介绍的英文作文

车床介绍的英文作文英文:As a professional machinist, I have extensiveexperience with lathes. Lathes are a type of machine tool used to shape metal or wood by rotating the workpiece against a cutting tool. They are commonly used in manufacturing and repair operations.There are many different types of lathes, including engine lathes, turret lathes, and CNC lathes. Each type has its own unique features and advantages. For example, engine lathes are versatile and can be used for a wide range of tasks, while CNC lathes are highly automated and canproduce complex parts with great precision.One of the most important parts of a lathe is the chuck, which holds the workpiece in place while it is being machined. Chucks can be either manual or automatic, and can be designed to hold a variety of different shapes and sizesof workpieces.Another important component of a lathe is the tool post, which holds the cutting tool and allows it to be moved into position for machining. The tool post can be manually or automatically adjusted, depending on the type of lathe.Overall, lathes are essential tools for any machinistor manufacturer. They allow for precise shaping and machining of metal and wood, and can be used for a wide range of tasks.中文:作为一名专业的机械师,我在车床方面有着丰富的经验。
车床类英语作文

车床类英语作文Lathe machines have been an integral part of the manufacturing industry for centuries. These versatile tools have played a crucial role in the production of a wide range of products, from simple household items to complex industrial components. In this essay, we will explore the history, function, and importance of lathe machines in the modern world.The history of the lathe can be traced back to ancient civilizations, such as ancient Egypt and Greece. The earliest known lathes were used for woodworking, with the operator using a bow to rotate the workpiece. Over time, the design and technology of lathes have evolved, with the introduction of power-driven mechanisms and the ability to work with a variety of materials, including metals.One of the key features of a lathe machine is its ability to create cylindrical or tapered parts. This is achieved through the use of a rotating spindle, which holds the workpiece, and a cutting tool that is moved along the length of the workpiece. The operator can control the speed and direction of the spindle, as well as the depth andangle of the cutting tool, to produce a wide range of shapes and sizes.Lathes can be classified into several different types, each with its own unique features and applications. The most common types of lathes include:1. Engine Lathes: These are the most basic and widely used type of lathe. They are typically used for general-purpose machining tasks, such as turning, facing, and threading.2. Turret Lathes: These lathes are equipped with a multi-tool turret, which allows for the automatic changing of tools during the machining process. This makes them well-suited for high-volume production work.3. CNC (Computer Numerical Control) Lathes: These advanced lathes are controlled by a computer, which allows for the precise and automated control of the machining process. CNC lathes are commonly used in the production of complex parts and components.4. Specialized Lathes: There are also a variety of specialized lathe machines designed for specific applications, such as gun-drilling lathes for producing long, straight holes and Swiss-type lathes for the production of small, precision parts.Lathe machines play a crucial role in a wide range of industries, including automotive, aerospace, and medical device manufacturing. In the automotive industry, for example, lathes are used to produce engine components, such as crankshafts and camshafts, as well as various other parts. In the aerospace industry, lathes are used to create complex and highly precise components for aircraft and spacecraft.One of the key advantages of using a lathe machine is its ability to produce parts with a high degree of accuracy and repeatability. This is particularly important in industries where tight tolerances and consistent quality are essential. Lathes also offer a high level of flexibility, allowing operators to quickly and easily switch between different types of parts and materials.In addition to their practical applications, lathe machines have also played a significant role in the development of modern manufacturing techniques. The introduction of CNC technology, for example, has revolutionized the way that parts are produced, allowing for the creation of complex and intricate designs that would have been impossible using traditional manual methods.Despite the many advancements in lathe technology, the basic principles of operation have remained largely unchanged over theyears. The core components of a lathe – the spindle, the cutting tool, and the ways (or slides) – are still the foundation of these versatile machines. However, the integration of digital controls, advanced sensors, and sophisticated software has significantly enhanced the capabilities of modern lathe machines.One of the key challenges facing the lathe industry today is the need to keep up with the rapidly changing demands of the manufacturing sector. As products become more complex and the need for faster turnaround times increases, lathe manufacturers must continually innovate and develop new technologies to meet these demands.This has led to the development of hybrid lathe machines, which combine the capabilities of traditional lathes with those of other machining technologies, such as milling and grinding. These hybrid machines offer a greater degree of flexibility and efficiency, allowing manufacturers to produce a wider range of parts using a single machine.Another important trend in the lathe industry is the increasing focus on sustainability and environmental responsibility. Lathe manufacturers are now incorporating features that reduce energy consumption, minimize waste, and improve the overall environmental impact of their machines. This includes the use of more energy-efficient motors, the implementation of advancedcoolant management systems, and the development of more environmentally friendly cutting fluids.In conclusion, lathe machines have been an essential tool in the manufacturing industry for centuries, and their importance continues to grow in the modern world. From the production of simple household items to the creation of complex industrial components, lathes have played a crucial role in shaping the products we use every day. As technology continues to advance, it is likely that the role of lathe machines in the manufacturing process will only become more important, as manufacturers strive to meet the ever-changing demands of the global marketplace.。
数控车床外文翻译3

本科生毕业设计 (论文)
外文翻译
原文标题数控车床
译文标题Numerical Control Lathes
作者所在系机械工程系
作者所在专机械设计制造及其自动化作者所在班
作者姓名
作者学号
指导教师姓
指导教师职
完成时间2012 年 2 月28
注:1. 指导教师对译文进行评阅时应注意以下几个方面:①翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;②翻译的外文文献字数是否达到规定数量(3 000字以上);③译文语言是否准确、通顺、具有参考价值。
2. 外文原文应以附件的方式置于译文之后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 LathesLathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a handwheel and screw.The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to 3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches ) –also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet.Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator’s time is consu med by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.1.2 Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool.For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:Electrical discharge machining,Laser cutting,Electron beam welding.Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively.However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, Each line segment in the steps had to be calculated.This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the fur ther development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape.A tape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development.A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a givenpart, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To made even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a reality and soon solved the problems of NC associated with punched paper and plastic tape.The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control.1.3 TurningThe engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in today’s production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now,more than ever before, this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turrets lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic screw machine. Quantities less than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer Lathes Since surface roughness depends greatly on material turned, tooling , and feeds and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of 0.05mm are held in continuous production using but one cut . groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. Onhigh-production runs where maximum output is desirable, a minimum tolerance of 0.125mm is economical on both diameter and length of turn.2.1 microscopic view of the necessity ofFrom the micro perspective, CNC machine tools than traditional machines have the following prominent superiority, and these advantages are from the NC system includes computer power.2.1.1 can be processed by conventional machining is not the curve, surface and other complex partsBecause computers are superb computing power can be accurately calculated instantaneous each coordinate axis movement exercise should be instantaneous, it can compound into complex curves and surfaces.2.1.2 automated processing can be achieved, but also flexible automation to increase machine efficiency than traditional 3 to 7 times.Because computers are memory and storage capacity, can be imported and stored procedures remember down, and then click procedural requirements to implement the order automatically to achieve automation. CNC machine tool as a replacement procedures, we can achieve another work piece machining automation, so that single pieces and small batch production can be automated, it has been called "flexible automation."2.1.3 high precision machining parts, the size dispersion of small, easy to assemble, no longer needed "repair."2.1.4 processes can be realized more focused, in part to reduce the frequent removal machine.2.1.5 have automatic alarm, automatic control, automatic compensation, and other self-regulatory functions, thus achieving long unattended processing.2.1.6 derived from the benefits of more than five.Such as: reducing the labor intensity of the workers, save the labor force (one can look after more than one machine), a decrease of tooling, shorten Trial Production of a new product cycle and the production cycle, the market demand for quick response, and so on.These advantages are our predecessors did not expect, is a very major breakthrough. In addition, CNC machine tools or the FMC (Flexible Manufacturing Cell), FMS (flexible manufacturing system) and CIMS (Computer Integrated Manufacturing System), and other enterprises, the basis of information transformation. NC manufacturing automation technology has become the core technology and basic technology.2.2 the macro view of the necessityFrom a macro perspective, the military industrial developed countries, the machinery industry, in the late 1970s, early 1980s, has begun a large-scale application of CNC machine tools. Its essence is the use of information technology on the traditional industries (including the military, the Machinery Industry) for technological transformation. In addition to the manufacturing process used in CNC machine t ools, FMC, FMS, but also included in the product development in the implementation of CAD, CAE, CAM, virtual manufacturing and production management in the implementation of the MIS (Management Information System), CIMS, and so on. And the products that they produce an increase in information technology, including artificial intelligence and other content. As the use of information technology to foreign forces, the depth of Machinery Industry (referred to as information technology), and ultimately makes their products in the international military and civilian products on the market competitiveness of much stronger. And we in the information technology to transform traditional industries than about 20 years behind developed countries. Such as possession of machine tools in China, the proportion of CNC machine tools (CNC rate) in 1995 to only 1.9 percent, while Japan in 1994 reached 20.8 percent, every year a large number of imports of mechanical and electrical products. This also explains the macro CNC transformation of the need.Third, CNC machine tools and production lines of the transformation of the market3.1 CNC transformation of the marketMy current machine total more than 380 million units, of which only the total number of CNC machine tool 113,400 Taiwan, or that China's CNC rate of less than 3 percent. Over the past 10 years, China's annual output of about 0.6 CNC machine tools to 0.8 million units, an annual output value of about 1.8 billion yuan. CNC machine tools annual rate of 6 per cent. China's machine to ol easements over age 10 account for more than 60% below the 10 machines, automatic / semi-automatic machine less than 20 per cent, FMC / FMS, such as a handful more automated production line (the United States and Japan automatic and semi-automatic machine, 60 percent above). This shows that we the majority of manufacturing industries and enterprises of the production, processing equipment is the great majority of traditional machine tools, and more than half of military age is over 10 years old machine. Processing equipment used by the prevalence of poor quality products, less variety, low-grade, high cost, supply a long period, in view of the international and domestic markets, lack of competitiveness, and a direct impact on a company's products, markets, efficiency and impact The survival and development of enterprises. Therefore, we must vigorously raise the rate of CNC machine tools.3.2 import equipment and production lines of the transformation of NC marketSince China's reform and opening up, many foreign enterprises from the introduction of technology, equipment and production lines for technological transformation. According to incomplete statistics, from 1979 to 1988 10, the introduction of technological transformation projects are 18,446, about 16.58 billion US dollars.These projects, the majority of projects in China's economic construction play a due role. Some, however, the introduction of projects due to various reasons, not equipment or normal operation of the production line, and even paralyzed, and the effectiveness of enterprises affected by serious enterprise is in trouble. Some of the equipment, production lines introduced from abroad, the digestion and absorption of some bad, spare parts incomplete, improper maintenance, poor operating results; only pay attention to the introduction of some imported the equipment, apparatus, production lines, ignore software, technology, and management, resulting in items integrity, and potential equipment can not play, but some can not even start running, did not play due role, but some production lines to sell the products very well, but not because of equipment failure production standards; because some high energy consumption, low pass rate products incur losses, but some have introduced a longer time, and the need for technological upgrading. Some of the causes of the equipment did not create wealth, but consumption of wealth.These can not use the equipment, production lines is a burden, but alsoa number of significant assets in stock, wealth is repaired. As long as identifying the main technical difficulties, and solve key technical problems, we can minimize the investment and make the most of their assets in stock, gain the greatest economic and social benefits. This is a great transformation of the market.Fourth, NC transformation of the content and gifted missing4.1 the rise of foreign trade reformIn the United States, Japan and Germany and other developed countries, and their machine transform ation as new economic growth sector, the business scene, is in a golden age. The machine, as well as technology continues to progress, is a machine of the "eternal" issue. China's machine tool industry transformation, but also from old industries to enter the CNC technology mainly to the new industries. In the United States, Japan, Germany, with CNC machine tools and technological transformation of production lines vast market, has formed a CNC machine tools and production lines of the new industry. In the United States, transforming machine tool industry as renewable (Remanufacturing) industry. Renewable industry in the famous companies: Borsches engineering company, atoms machine tool company, Devlieg-Bullavd (Bo) services group, US equipment companies. Companies in the United States-run companies in China. In Japan, the machine tool industry transformation as machine modification (Retrofitting) industry. Conversion industry in the famous companies: Okuma engineering group, Kong 3 Machinery Company, Chiyoda Engineering Company, Nozaki engineering company, Hamada engineering companies, Yamamoto Engineering Company.4.2 the content of NCMachine tools and production line NC transformation main contents of the following:One is the restoration of the original features of the machine tools, production line of the fault diagnosis and recovery; second NC, in the ordinary machine augends significant installations, or additions to NC system, transformed into NC machine tools, CNC machine tools; its Third, renovation, to improve accura cy, efficiency and the degree of automation, mechanical, electrical part of the renovation, re-assembly of mechanical parts processing, restore the original accuracy of their production requirements are not satisfied with the latest CNC system update; Fourth, the technology updates or technical innovation, to enhance performance or grades, or for the use of new technology, new technologies, based on the original technology for large-scale update or technological innovation, and more significantly raise the level, and grades of upgrading.4.3 NC transformation of the gifted missing4.3.1 reduce the amount of investment, shorter delivery time Compared with the purchase of new machine, the general can save 60% to 80% of the costs and transforming low-cost. Especially for large, special machine tools particularly obvious. General transformation oflarge-scale machine, spent only the cost of the new machine purchase 1 / 3, short delivery time. But some special circumstances, such as high-speed spindle, automatic tray switching systems and the production of the installation costs too costly and often raise the cost of 2 to 3 times compared with the purchase of new machine, only about 50 percent of savings investment.4.3.2 stable and reliable mechanical properties, structure limitedBy the use of bed, column, and other basic items are heavy and solid casting components, rather than kind of welding components of the machine after the high-performance, quality, and can continue to use the new equipment。