对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法本文来自于《郝铭-高端电视维修培训专家》

合集下载

液晶屏逻辑板原理分析与维修

液晶屏逻辑板原理分析与维修

液晶屏逻辑板原理分析与维修屏逻辑板损坏造成的故障现象有:黑屏、白屏、灰屏、负像、噪波点、竖带、图像太亮或太暗等。

不同的液晶屏一般需要选择不同的LVDS 程序,当程序不匹配时多会出现彩色不对或图像不正常等现象。

白屏在维修中也占有一定比例,遇到白屏故障首先要检查3个电压,第一个电压是10V或者是12V(它是由5V或33V的屏供电电压经过一个简单升压后,产生的一个电压。

);第二个电压是25V或者是30V,由屏而定。

(它是由DC----DC 变换电路输出的。

);第三个电压是负7V(它也是由DC---DC变换电路输出的)。

一般屏电路这三个电压都正常,最后才考虑主芯片;一般屏的DC 变换电路,第一要检查的就是滤波电容,第二个就是DC---DC电路,IC坏的多,检查以上几步如果还不能修好,建议直接更换逻辑板,如果是一体屏,那就只有更换屏了。

液晶LCD屏竖线,专业是用压屏机完成,但是一般维修部没有该设备,故可以用热风枪加铝片处理,一般竖线是屏驱动和屏连接的排线松动,用手按着就好。

因排线是软塑料制成不能用热风枪直接加温,就借用铝片去按压排线,然后加热铝散热片。

用手按着不要松动,温度控制在200摄氏度,太高会把排线烧坏,风枪温度要自己掌握好不然会把屏吹报废,这种方法是死马当活马治,不成功就真的成死马了。

一般的故障判断如下:1、花屏检查lvds连接线,一般接口处连接松,或潮湿,芯片坏的也有。

2、调节显示器时菜单乱码,更换主芯片或者存储器。

开机字符,雪花点一切基本正常,当接上RF信号后,发现图像在亮的地方有彩色镶边,就像LVDS线接触不良一样!越亮的地方越严重。

亮度低的时候,基本看不出来。

首先打开菜单,在对比度调整选项中,将对比度打到最高,发现图像镶边极其严重,基本看不到正常的图像了,但是把对比度调低,发现,当对比度低于50的情况下,画面基本和正常无异,基本看不出故障来了。

这说明了故障范围可以排除主板了,不是屏线接触不好,就应该是逻辑板或是屏损坏。

谈谈液晶电视机的逻辑板对屏的影响

谈谈液晶电视机的逻辑板对屏的影响

谈谈液晶电视机的逻辑板对屏的影响
液晶电视机的逻辑板看它只是一个小小的板件,一般以为只要能用就行,似乎认为对屏的性能没有多大的影响。

但其实一块质量优良的逻辑板对提升屏的性能起到了至关重要的作用,而一块劣质的逻辑板足以毁掉一个好的屏。

下面为您分析下具体的原因:
逻辑板实物图:
液晶屏组件:由背光源、液晶屏面板及驱动两大部分构成。

1、背光源:由逆变器、CCFL灯管(或LED)、各类光学透镜构成。

2、液晶屏面板及驱动:主要由液晶面板、面板驱动电路构成。

面板驱动电路主要由GDTE驱动、SOURCE驱动构成。

液晶屏不能直接识别主板的输出信号,主板的信号要经过逻辑板的处理再传输到液晶屏上。

逻辑板的作用:
是把数字板送来的LVDS图像数据输入信号(输入信号包含RGB 数据信号、时钟信号、控制信号三类信号)通过逻辑板处理后,转换成能驱动液晶屏的LVDS信号,再直接送往液晶屏的LVDS接收芯片。

通过处理移位寄存器存储将图像数据信号,时钟信号转换成屏能够识
别的控制信号,行列信号RSDS控制屏内的MOSFET管工作而控制液晶分子的扭曲度。

驱动液晶屏显示图像。

逻辑板是一个具有软件和固有程序的组件,内置有移位寄存器。

逻辑板发生故障会产生以下现象:
黑屏、白屏、灰屏、负像、噪波点、竖带、图像太亮或太暗。

从上面可以看出逻辑板的质量稳定性关系到整个屏的正常运转,而逻辑板对信号的处理速度,处理的准确不失真等关系到屏画面的流畅度,色彩饱和度,和确保画面不失真的诸多关键因素。

同时逻辑板的软件也是一个很关键的因素,软件驱动是否合理,也会影响信号传输速度。

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识: 郝铭博客–平板电视维修技术学习

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识: 郝铭博客–平板电视维修技术学习

配合学习'液晶屏逻辑驱动电路原理、电路分析及故障检修'的预备知识:郝铭博客–平板电视维修技术学习学习液晶屏逻辑驱动电路原理的必备的预备知识:一、触发器:触发器是逻辑电路的基础,种类很多,用处也不同。

常见的触发器有:RS触发器、同步RS触发器、D触发器、单稳态触发器和施密特触发器等。

为了理解我们此文介绍的液晶屏逻辑电路原理,这里重点以框图的形式简单的介绍“D 触发器”。

D触发器:D触发器又称为延迟触发器,其输出状态的改变依赖于时钟脉冲的触发,即在时钟脉冲边沿的触发下,数据由输入端传递到输出端。

D触发器也是最常用的触发器之一。

图6.1图6.1所示;是一个 D 触发器简单的框图;它有两个输入端(左边和上面)和一个输出端(右边);左边的输入端是数据输入端;上面的输入端是触发脉冲输入端(控制端);右边是输出端。

D触发器的简单工作过程:图6.2及图6.3所示;图6.2图6.3在D触发器的“数据输入端”给一个数据信号STV,此时;当上面的“触发脉冲输入端”没有信号输入时;数据信号STV 就停留在“数据输入端”,图6.2所示。

如果此时,在上面的“触发脉冲输入端”输入一个脉冲信号CKV,则在脉冲信号CKV的前上升沿的触发下;数据信号STV由输入端迅速传递到输出端,图6.3所示。

电路的特点:(1)D触发器在“数据输入端”有数据信号STV输入;“触发脉冲输入端”无触发脉冲的状态下:D触发器没有传递信号的动作(D触发器没有“搬运”动作)“数据输出端”没有信号输出,此时输出端为零电平。

(2)D触发器在“数据输入端”无数据信号STV输入;“触发脉冲输入端”有触发脉冲触发的状态下:D触发器有传递信号的动作(D触发器工作;有“搬运”动作)但是“数据输出端”没有信号输出(因为输入端没有信号可以传递),此时输出端为零电平。

(3)D触发器在“数据输入端”有数据信号输入;“触发脉冲输入端”有触发脉冲触发的状态下:D触发器有传递信号的动作(D触发器工作;有“搬运”动作)“数据输出端”有信号输出(因为输入端有信号可以传递),此时原输入端的数据信号被传递到输出端。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理对〝剖析液晶屏逻辑板TFT偏压电路〞一文的一点看法〔此文为技术探讨〕在国内某知名刊物2020年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:〝剖析液晶屏逻辑板TFT偏压电路〞这是一篇选题极好的文章、目前液晶电视显现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,修理人员在修理此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的关心,目前在一样的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视差不多上采纳TFT屏作为图像终端显示屏,由于我们现在的电视信号〔包括各种视频信号〕是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时刻关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行储备,然后依照信号的标准及液晶屏的各项参数进行分析运算,依照运算的结果在按规定从储备器中读取预存的像素信号,并按照运算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

那个过程把信号的时刻过程、排列顺序都进行了重新的编排,同时要产生操纵各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的和谐下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个如此的转换电路,那个电路确实是我们常说的〝时序操纵电路〞或〝T-CON〔提康〕电路〞,也有称为〝逻辑板电路〞的。

那个电路包括液晶屏周边的〝行、列驱动电路〞构成了一个液晶屏的驱动系统。

也是一个独立的整体。

那个独立的整体是由时序电路、储备电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马〔Gamma〕电路〔灰阶电压〕等组成,这些电路的正常工作也需要各种不同的工作电压,同时还要有一定的上电时序关系,不同的屏,不同的供电电压。

液晶屏逻辑板TFT偏压电路

液晶屏逻辑板TFT偏压电路

在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同(CRT是扫描成像、液晶屏是矩阵成像),液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。

我对《剖析液晶屏逻辑板tft偏压电路》的理解

我对《剖析液晶屏逻辑板tft偏压电路》的理解

我对《剖析液晶屏逻辑板tft偏压电路》的理解
《剖析液晶屏逻辑板tft偏压电路》是一篇讲述液晶屏逻辑板中TFT(Thin Film Transistor)的偏压电路的文章。

TFT偏压电路是一种在液晶屏逻辑板上使用的电路,用于提供适当的电压来控制液晶分子的取向和转换。

通过阅读该文章,我对TFT偏压电路的理解如下:
1. TFT偏压电路的作用:TFT偏压电路主要用于提供适当的电压给液晶分子,以控制液晶的取向和转换。

液晶分子在受到电场作用下会发生施微拟畸变,这样就可以通过控制电场的大小来控制液晶显示的亮度和颜色。

2. TFT偏压电路的原理:TFT偏压电路通常由一系列电路元件组成,包括电压源、电阻、电容等。

通过合适的连接和调节,可以产生所需的电压信号,并将其传送到液晶屏的每个像素点上。

3. TFT偏压电路的设计和调节:设计和调节TFT偏压电路需要考虑多个因素,如需要的电压范围、显示效果、电路的复杂程度等。

通常需要进行电路仿真、优化和实验测试等步骤,以确保电路能够稳定地提供正确的电压。

4. TFT偏压电路的应用:TFT偏压电路广泛应用于液晶屏逻辑板中,如手机、电视、电脑显示器等。

通过控制液晶屏的电压信号,可以实现不同颜色和亮度的显示效果,从而提供更好的图像质量和用户体验。

总的来说,《剖析液晶屏逻辑板tft偏压电路》是一篇介绍TFT偏压电路的文章,通过对TFT偏压电路的理解和应用,可以更好地理解和使用液晶屏逻辑板。

现代液晶显示器的偏压电源解决方案

现代液晶显示器的偏压电源解决方案

S p e c i a l R e p o r t >> >> 测试与测量 >> 传感器、数据处理 >> 电源技术 >> 无线通信 >>S p e c i a lR e p o r t632006.2www.ecnchina.com现代液晶显示器的偏压电源解决方案Bias Power Supply Solutions for Modern Liquid Crystal Displays前言现代液晶显示器需要专用电源供应电路来满足其特定需求。

市面上有许多不同的显示器技术抢占市场份额。

虽然无源矩阵扭曲向列型 (TwistedNematic,简称TN) 或超扭曲向列型(Super Twisted Nematic,简称STN) 液晶显示器所需的偏压电路相当简单,但采用非晶硅 (a-Si) 或低温多晶硅 (Low-Temperature Polysilicon,简称LTPS) 背板的主动矩阵显示器则需要较复杂的偏压电源电路,以提供多组电源以及开机、关机顺序功能。

显示器的电源供应需求取决于其所采用的显示器技术,以及所支持的终端设备。

过去LCD偏压电源电路多半采用分立器件;但随着技术成熟,新型专用的完全集成的电源供应IC已可提供必要功能来满足显示器所有要求,同时减少解决方案的总体积和成本。

对于液晶显示器设计人员来说,当前的挑战在于选择最适当的偏压供应组件来支持液晶显示器技术,并满足终端设备的电源要求;这对移动电话、掌上电脑或笔记本电脑等便携式设备所使用的液晶屏幕特别重要,因为提高电源效率和缩小解决方案体积是这类应用的重要特色。

本文将探讨不同的LCD偏压供应解决Jeff Falin Oliver Nachbaur, Texas Instruments方案,并说明掌上电脑或LCD面板等终端设备的特定系统需求与集成功能之间的关系。

单个升压转换器供电无源矩阵型彩色STN显示器对于不需要高分辨率或视频图像质量的便携式设备,无源矩阵显示器是最理想选择。

“奇美”32寸液晶屏逻辑板(TCON)电路分析及故障检修(一、电路原理部分)

“奇美”32寸液晶屏逻辑板(TCON)电路分析及故障检修(一、电路原理部分)

“奇美”32寸液晶屏逻辑板(TCON)电路分析及故障检修(一、电路原理部分)2012年2月3日郝铭发表评论阅读评论本文是对常见的“奇美”32寸液晶屏逻辑板(V315B3-LN1 REV.C1),俗称TCON板的组成、结构、电路进行了详细的介绍,并对关键的单元电路进行了分析,弄懂电路的组成结构、分析透彻工作原理对其它任何液晶屏的逻辑驱动电路可以起到举一反三的效果。

一、什么是时序控制电路,时序控制电路在液晶屏中的作用CRT伴随着电视的发明已经近一个世纪,在上个世纪的七十年中,活动视频图像信号的传输技术在不断的进步,但是终端图像的显示器件一直是采用的是CRT。

这样几乎所有的视频图像信号的结构、标准均以CRT的显示特点而设计、制定的,这个专门为CRT显示制定的视频图像信号一直沿用至今。

CRT的显示特点是利用荧光粉的余晖,把顺序着屏的像素信号采用行、场扫描的方式组合成图像,图1.1所示。

为了适应CRT的这个显示特点,在发送端也利用扫描的方式在行、场同步信号控制下把图像分解成一个个像素,并按照时间的先后顺序的传送;并且以一行像素和一场像素的间隔插入行同步和场同步信号等,这是一个模拟信号,是一个随时间变化的单值函数,是一个像素随时间串行排列的图像信号。

图1.1 图1.2目前的液晶电视机均采用TFT液晶屏作为图像显示器件;这是一种从结构上,原理上完全不同于CRT的显示器件,它是一种需要行、列驱动的矩阵显示方式,图1.2所示。

其图像显示驱动方式也完全不同于CRT图像显示驱动方式,但是液晶屏所显示的视频图像信号确仍然是原来专门为CRT设计、制定的视频图像信号,因为目前所有的视频图像信号源标准还是上个世纪;视频图像信号源的标准。

现在的问题是;液晶屏能直接显示原来CRT显示的信号标准吗?回答是否定的;不能。

但是只要在液晶屏的前端设置一个特殊的转换电路,图1.2中所示的“时序控制器”,就可以实现采用液晶屏就能显示只有CRT能显示的图像信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)
在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同(CRT是扫描成像、液晶屏是矩阵成像),液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。

是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。

图1所示是液晶屏驱动系统框图。

从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。

图1
这个独立的液晶屏驱动电路的供电系统;主要产生4个液晶屏驱动电路所需的电压:
1 VDD 屏驱动电路工作电压,类似一般模拟集成电路的VCC。

一般为3.3V。

2 VGL 屏TFT薄膜开关MOS管的关断电压,一般为-5V。

3 VGH 屏TFT薄膜开关MOS管的开通电压,一般为20V~30V。

4 VDA屏数据驱动电压,VDA经基准处理后,由伽马电路用以产生灰阶电压,一般为14V~20V。

以上电压不同的屏;电压值不同。

这些输出的任一电压出现问题,都会出现不同的图像显示故障,可见其重要性。

并且也是故障多发部位。

也是液晶电视维修人员必须掌握的部分,这个电路在某些文章、资料里称为:液晶屏逻辑板TFT偏压电路。

这篇文章的推出;显然是“及时雨、雪中送碳”,并且此文是介绍的目前普片采用的TFT偏压供电芯片TPS65161作为典型进行分析,怀着欣喜的心情细细的阅读此文章,看完后感到非常的遗憾、失望,此文把VDD、VDA、VGL和VGH四种电压产生的原理阐述错了,对关键电压的产生过程没有任何交代(模糊词汇一语而过),例如图6中CP22、DP8组成的半波负压整流电路(产生VGL)的工作原理、CP18、DP5组成的半波正压整流电路(产生VGH)的工作原理,这些都是这个TFT偏压电路的重点,文中并把产生VDA电压的并联型的开关电源误认为是滤波电路(12V电压莫名其妙的经过滤波电路就能上升成为近20多伏的VDA 电压???)、把产生VDD电压的串联型的开关电源的蓄能电感(LP2)也误认为是滤波电感、把串联开关电源的续流二极管DP3误认为是稳压二极管等,这样的叙述无法正确的分析故障,也容易误导维修人员对电路、故障进行分析。

便于对照,以下是复制原文:也请精通此电路的师傅们参加讨论,把液晶的维修技术广为传播。

上面文章标题
(以上是某杂志某一段原文复制)
下面把我们分析的结果提供给大家以便对照参考(如有不对也请指正)。

TPS65161集成电路是美国德州仪器公司(Texas Instruments)出品的一款专门为32寸以上尺寸TFT液晶屏驱动电路提供偏置电压的开关电源芯片。

内部有一个高于500K振荡频率的振荡激励电路,该芯片12V供电;可以支持4组经过稳压的输出电压;即VDD、VGL、VGH、VDA电压,特别是能提供较大的电流容量,并且电压幅度可以调整以适应不同类型的液晶屏。

集成电路具有短路保护及过温度保护。

下面对VDD、VDA、VGH、VGL产生的原理及过程进行分析,原理图就仍然采用上面作者绘制的电路原理图。

(上面图4中原作者把Q2 P沟道误绘制成N沟道)。

VDD电压产生:
图3所示(仍旧采用原文图片序号)是TPS65161芯片VDD电压产生部分原理图;
图3 原文中VDD电压产生插图
图3 原文中VDD电压产生插图(局部放大)
在图3中,TPS65161内部的MOS管Q3、外部的LP2及DP3组成了一个串联型的开关电源,由TPS65161内部的振荡激励信号控制Q3开关电源工作。

等效电路如图3.1所示。

图3.1
在图3.1中;串联开关电源的开关管是集成电路TPS65161内部的Q3,工作过程如下;在T1时间:图3.2所示;集成电路的22脚输入12V电压经Q3、LP2流通向负载供电,由
图3.2
图3.3
于LP2内部自感电势的作用(自感电势方向为:左正右负),由于流经LP2的电流线性的增长,输出端电压逐步上升,并且线性增长的电流在LP2内部以磁能的形式存储起来,图3.2中红色箭头所示是电流方向、蓝色箭头所示是LP2的自感电势方向。

在T2时间;输出端电压上升到3.3V时经过分压取样电路RP20、RP12、RP22、RP14组成的分压取样电路的取样电压反馈至TPS65161的稳压控制15脚,控制Q3断开,这时12V
输入电压形成的电流被切断;LP2内部的电流也被切断,电流被切断LP2内部存储的磁能也无法继续维持,磁能即迅速转换成方向为左负右正的感生电势(楞次定律)图3.3中蓝色箭头所示感生电势方向,这个左负右正的感生电势的方向正好继续维持着在T1时间流过RP23的电流方向,由于Q3的断开,这个左负右正的感生电势经过LP2、RP23、DP3(续流二极管)流通继续维持着对负载的供电。

这就是VDD产生的过程,其中由于输出电压较低3.3V,续流二极管DP3采用了低压降的肖特基管,此管故障率比较高,维修过程中应特别加以注意,此管绝不是稳压管。

由于篇幅太长关于VDA、VGL、VGH电压产生的原理与原文不同的认识之处下篇继续叙述借此并整理出一套完整的电路分析及故障检修方法本文来自于《郝铭-高端电视维修培训专家》 本文网址:/zs/825/。

相关文档
最新文档