高等数学课程标准

合集下载

高等数学课程标准

高等数学课程标准

《高等数学》课程标准0 课程基本信息高等数学是环境监测与评价专业的一门重要的专业基础课程,该课程的学习,为后续课程提供必要的高等数学基础知识,并且培养学生数学运算、逻辑思维、抽象思维和空间思维能力以及分析问题和解决问题的能力,为以后的专业课程的学习奠定良好的基础。

本课程教学的质量对学生今后的进一步学习产生重要影响。

0.1 适用专业环境监测与评价0.2 开课系部信息技术系0.3课程负责人袁蓓0.4学时与学分学时:56学时学分: 4分1 课程定位1.1 课程性质与作用高等数学课程是环境监测与评价的专业基础课程,是学好其它专业课程的基础和工具。

它的研究对象是函数,主要内容包括函数、极限、连续,一元函数微分学,一元函数积分学与常微分方程等。

高等数学对学生后继课程的学习和思想品质的培养起着重要作用。

为后继课程的学习提供必要的知识和方法论的支撑,为其它专业课奠定必要的数学基础。

同时,通过各个教学环节逐步培养学生抽象概括能力、逻辑推理能力、空间想象能力和自学能力,全面提高学生的综合素质。

1.2 相关课程本课程的后续课程为环境统计。

2 课程目标2.1 课程总体目标通过对高等数学的学习,使学生能够获得相关专业课必须掌握的知识,以及掌握基本的数学思想方法,使学生学会用数学的思维方式去观察、分析现实社会,去解决学习、生活、工作中遇到的实际问题,使学生具有一定的创新精神和提出问题分析问题解决问题的能力,从而促进生活、事业的全面发展。

2.2 知识、能力与素质目标2.2.1 知识目标掌握高等数学的基础概念、基础理论和基本运算并掌握微积分学的基本方法、手段、技巧,能较熟练地应用微积分学的思想方法解决应用问题。

2.2.2 能力目标(1)培养学生具备比较熟练的运算能力;(2)培养学生具备较强的分析问题、解决问题的能力;(3)培养学生具备一定的实践能力。

2.2.3 素质目标(1)培养学生主动探索、勇于发现的科学精神;(2)培养学生的创新意识和创新精神;(3)培养学生的坚强的学习意志,认真的学习态度,踏实的工作精神。

《高等数学》课程标准

《高等数学》课程标准

《高等数学》课程标准
一、课程基本信息
二、课程的性质、目的和任务
1.课程性质
高等数学课程是工程机械学院三年制各专业一门必修的公共基础课程,也是一门重要的素质教育课程。

在教学过程中,培养学生的思维品质、思辨能力、创造潜能等科学和文化素养。

为后续专业课的学习和以后从事专业技术工作打下坚实的知识基础、思维基础和养成良好的数学品质。

2.目的和任务
掌握高等数学中有关极限、导数、积分和微分方程的基本概念、基本理论和基本运算;能够提高解读问题和抽象概括问题的能力、熟练的运算能力、逻辑思维能力和推理能力、分析问题能力和将实际问题转化为数学模型进而解决实际问题的能力;提高书面表达能力、优秀的思维品质、敏锐的思辨能力和较好的数学素养。

三、课程教学的基本要求
四、课程的教学重点和难点、学时分配
教学重点:微积分概念和应用教学难点:微积分应用课程学时分配一览表
五、相关课程的衔接
开设此门课程之前,学生应较好的掌握初等数学的基础知识,以便于以后的学习过程中较好的理解与掌握高等数学的知识与运用。

六、其它
课程的考核与评价。

学生成绩包括过程考核成绩和期末考试成绩,采取平时30%+基础知识测试10%+期末考试60%成绩考核方法。

其中平时成绩包括出勤表现10%、课堂提问10%、作业测评10%;基础知识测试为数学基本公式和基本定理考核,由任课教师对学生进行一对一考核;期末考试为笔试考核,重点考核学生的数学基本方法和基本应用,试题覆盖全部教学内容,采用试题库组题。

通过进行试卷分析,研究考核过程中出现的问题并提出解决的措施,以便在以后的教学过程中进行改进。

《高等数学》课程标准

《高等数学》课程标准

《高等数学》课程标准第一部分课程概述一、课程性质和作用高等数学是高职高专各专业重要的基础课程,其教学内容与后继专业课教学内容有着紧密的联系,它影响到学生后继专业课程的学习,影响到学生专业素质的提高。

它具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。

通过本课程的教学,首先让学生掌握高等数学的基本理论、技巧和思想方法,为后设专业课程提供必要的数学基础知识和科学的思想方法。

其次,逐步培养了学生具有一定的抽象概括问题能力,一定的逻辑推理能力,比较熟练的运算能力,综合分析并解决实际问题的能力等。

最后还充分调动学生已有的数学知识为专业目标服务,培养学生运用数学知识分析处理实际专业问题的数学应用能力和综合素质,以满足后继专业课程对数学知识需要,培养出能够满足工作需要的,具有良好综合素质的应用型人才。

二、课程基本理念高等数学作为高职高专各专业公共基础课,在课程设计中,我们对照教育部最新制定的《高职高专教育高等数学课程教学基本要求》,致力于实现高职高专院校的培养目标,着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。

课程内容不仅反映出专业的需要、数学学科的特征,同时符合学生的认知规律;不仅包括数学的结论,而且包括数学结论的形成过程和数学思想方法。

同时,课程设计努力满足学生对未来的学习、工作和生活的需要,使学生通过本课程的学习,在抽象思维、推理能力、应用意识、情感、态度与价值观等诸多方面均有大的发展。

三、课程标准设计思路及依据(一)教学内容《标准》安排了《一元函数微积分》的基本内容。

课程内容的学习,强调学生的数学学习活动,发展学生的应用意识。

(二)目标根据教育部制定的《高职高专教育高等数学课程基本要求》和《高职高专教育人才培养目标及规格》,《标准》明确了高等数学课程的总目标,其子目标从知识、能力、情感等三个方面作出了进一步阐述。

(三)实施建议《标准》针对教学、评价、教材编写、教案编写、课程资源的利用与开发提出了建议,以保证《标准》的顺利实施。

《高等数学2》课程标准

《高等数学2》课程标准

《高等数学2》课程标准课程名称:高等数学2 课程类别:公共基础课课程编码:210231402 学分:4适用专业(群):生物制药(3+2)学时:60编写执笔人:编写日期:2023年6月专业(群)建设委员会审定(负责人签字):审定日期:2023年 6 月一、前言(一)课程性质《高等数学》是高等职业技术教育中的一门必修公共基础课程,既是工具课也是通识素养课。

一方面为学生后续专业课的学习和职业长远发展奠定必要的数学基础知识,另一方面有助于学生了解数学在推动人类社会和其它学科发展中的重要作用,提升学生人文素养。

(二)课程定位本课程在生物制药课程体系中居于基础服务性的地位,主要为后续各专业课程的教学和学生进行终身学习提供必要的数理基础、数理思维和能力素养。

通过本课程的学习使学生掌握必须够用的数理理论、知识、方法以及培养学生的逻辑思维能力、科学理论理解能力、量化解决相关专业问题的能力,对学生数学文化素养的提升、科学思维的形成、创新能力的培养以及可持续发展都具有重要意义。

前导课程《高等数学1》后续课程专业课程(三)课程设计理念与思路1.课程设计理念本课程以“拓宽文化基础、增强能力支撑、提供专业服务”为指导思想,坚持“以应用为目的,以必须够用为度”的原则,树立“以学生为中心,教师为主导”的教学理念。

2.课程设计思路结合专业需要,依据教材内容和高等数学知识体系设计了“不定积分,定积分,定积分的应用,常微分方程”四个项目,以任务驱动的方法发挥学生的自主性,教师再适当进行引导、补充和修正,实现在做中教,在做中学。

教学中要求降低理论推导,承接数学思想和方法,加强基本概念和基本方法的训练,不追求繁琐的计算和变换技巧。

3.课程思政设计思路以教育部2020年5月《高等学校课程思政建设指导纲要》为指导,深入挖掘数学课程中蕴含的思想政治教育资源,让学生通过学习,掌握事物发展规律,通晓天下道理,丰富学识,增长见识,塑造品格。

培养德智体美劳全面发展的社会主义建设者和接班人。

高等数学课程标准

高等数学课程标准

《高等数学》课程标准【课程名称】高等数学【总学时数】50一、课程概述(一)课程的性质《高等数学》课程是高等职业院校各专业开设的一门必修的职业公共课程、工具课程,其思想和方法广泛应用于工程技术、科学技术、社会经济等领域,对学生的专业学习、能力提高和职业发展有着极其重要的作用。

《高等数学》教学内容具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。

(二)课程设计的理念《高等数学》着眼于学生的整体素质的提高,着眼于促进学生全面、持续、和谐发展。

确立以”应用为目的,以能力培养为目标”,贴近专业,为专业课服务。

《高等数学》实行模块化教学,不同专业根据专业需要选则不同教学内容,针对不同教学内容选择不同的教学方法。

《高等数学》努力满足学生对未来的学习、工作和生活的需要,使学生通过本课程的学习,在抽象思维、推理能力、应用意识、情感、态度与价值观等诸多方面均有大的发展。

(三)设计思路在课程理念的指导下,注意教学内容的系统性,从基础理论到实际应用,从实际问题到理论知识,在教学内容上,与专业相对应,以模块为单位,重组知识结构;在教学手段上,将传统的数学教学与现代化教育技术结合使用,通过多媒体,将抽象的概念、定理和公式、内蕴的数学思想等生动地表现出来;在教学方法上,采用启发式教学、问题教学、讨论式教学、探究式教学、发现式教学等方法,把学生思维活动引导到实际问题中,把重点放在引入、分析和解决问题的思路上。

本着知识应用的目的,对高等数学课程经典内容进行整体优化组合、加工与创新,突出数学理念与专业课实际的结合;在考核方面,采取闭卷理论考试和平时考核相结合的方法,促进学生素质的提高和职业能力的培养。

二、课程教学目标本课程的总目标是要通过对高等数学在高等教育阶段的学习,使学生能够获得适应未来工作及进一步发展所必需的重要的数学知识,以及基本的数学思想方法和必要的应用技能;使学生学会用数学的思维方式去观察、分析现实社会,去解决学习、生活、工作中遇到的实际问题,从而进一步增进对数学的理解和兴趣;使学生具有一定的创新精神和提出问题分析问题解决问题的能力,从而促进生活、事业的全面充分的发展;使学生既具有独立思考又具有团体协作精神,在科学工作事业中实事求是、坚持真理,勇于攻克难题;使学生能敏感地把握现实社会经济的脉搏,适应社会经济的变革发展,做时代的主人.本课程的总目标进一步阐释为:(一)知识与技能方面1.了解极限的思想理论,掌握函数微分的基本知识与基本运算。

高等数学课程标准 教育部

高等数学课程标准 教育部

高等数学课程标准教育部高等数学课程是高等教育的核心课程之一,其课程标准由教育部制定,旨在确保学生掌握必要的数学知识和技能,为后续的专业课程学习和终身发展打下坚实的基础。

以下是一份高等数学课程标准的简要介绍:1. 课程性质:高等数学是高等教育的一门必修基础课程,具有高度的抽象性、严谨的逻辑性和广泛的应用性。

通过本课程的学习,学生将掌握数学的基本概念、基本理论和基本方法,培养数学思维和解决问题的能力。

2. 课程目标:高等数学课程的目标是培养学生的数学素养和运用数学解决问题的能力,为后续的专业课程学习和科学研究打下基础。

具体目标包括:掌握高等数学的基本概念、定理和公式;学会运用数学方法分析问题、解决问题;培养学生的数学思维、创新能力和团队协作精神。

3. 课程内容:高等数学课程的主要内容包括极限理论、微积分学、空间解析几何、线性代数、常微分方程等。

学生需要掌握这些内容的基本概念、原理和方法,能够运用所学知识解决实际问题。

4. 课程实施:高等数学课程的实施应注重理论与实践相结合,采用多种教学方法和手段,激发学生的学习兴趣和积极性。

具体措施包括:采用启发式、讨论式教学方法,引导学生主动思考;利用多媒体技术辅助教学,提高教学效果;开展数学实验、数学建模等活动,培养学生的实践能力。

5. 课程评价:高等数学课程的评价应注重学生的实际应用能力和思维能力的评价,采用多种评价方式和方法,全面反映学生的学习状况和水平。

具体评价方式包括:平时成绩、期中考试、期末考试等。

评价内容应涵盖知识掌握、能力培养和素质提升等多个方面。

总之,高等数学课程标准旨在培养学生的数学素养和解决问题的能力,为学生后续的专业课程学习和科学研究打下坚实的基础。

在实施过程中,应注重理论与实践相结合,采用多种教学方法和手段,激发学生的学习兴趣和积极性。

同时,应注重学生的实际应用能力和思维能力的评价,采用多种评价方式和方法,全面反映学生的学习状况和水平。

《高等数学》课程标准

《高等数学》课程标准

《高等数学》课程标准《高等数学》是许多学科的基础课程,特别是在数学、物理、工程学、经济学等学科中有着广泛的应用。

这门课程不仅提供了这些学科所需的基本数学工具,而且还锻炼了学生的逻辑思维和问题解决能力。

以下是对《高等数学》课程标准的详细描述。

一、课程目标《高等数学》旨在为学生提供深入理解数学基本概念、原理和方法的工具。

通过本课程的学习,学生应能:1.理解并掌握高等数学的基本概念、原理和算法,包括但不限于微积分、线性代数、概率论和数理统计等。

2.培养学生运用数学工具解决实际问题的能力,包括数据分析、建模、优化和概率决策等。

3.培养学生的逻辑推理和抽象思维能力,包括对问题的表述、分解、推导和总结等。

4.通过团队协作和讨论,提高学生的沟通技巧和批判性思维。

二、课程内容《高等数学》主要包括以下四个部分:1.微积分:包括极限、导数、微分、不定积分、定积分和微分方程等。

2.线性代数:包括行列式、矩阵、向量空间、线性变换和特征值等。

3.概率论:包括随机变量、概率分布、期望、方差、协方差和相关系数等。

4.数理统计:包括抽样分布、参数估计、假设检验和方差分析等。

三、课程安排《高等数学》课程应按照以下时间表进行安排:1.第一学期:微积分(1-16周),每周4小时,共64课时;2.第二学期:线性代数(17-32周),每周4小时,共64课时;3.第三学期:概率论(33-48周),每周4小时,共64课时;4.第四学期:数理统计(49-64周),每周4小时,共64课时。

四、教学方法本课程的教学方法应注重实践性和互动性。

具体方法包括:1.课堂讲解:由教师主导,详细讲解课程内容,突出重点和难点。

2.实例分析:通过分析具体的数学实例,让学生理解和掌握数学原理的应用。

3.学生自主学习:鼓励学生通过自主学习,完成作业和阅读指定参考书籍,以培养学生的独立思考能力和解决问题的能力。

4.小组讨论:鼓励学生分组讨论,提高学生之间的合作与交流能力。

最新高等数学课程标准

最新高等数学课程标准

《高等数学》课程标准一、课程简介(一)课程基本信息课程名称:高等数学课程类别:公共基础课课程编码:课程学时:72学时适应专业:会计、计算机、工程造价、经济管理等专业(二)课程定位关键词:课程专业背景、课程地位、课程作用、职业岗位能力本课程是我院校各专业学生的一门必修的公共基础理论课。

它是为各专业的人才培养目标服务的,它将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。

在本课程的教学中必须遵循“以应用为目的,以必需,够用为度”的原则,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以努力提高学生的数学修养和素质。

必须以“必需、够用” 为原则,服务于不同专业的实际需要;必须以突出数学文化的育人功能为主线,服务于素质教育;必须以培养学生具有应用数学方法解决实际问题并进行创新的能力为重点,服务于能力培养。

(三)课程标准的设计思路关键词:课程设置依据、课程目标定位、课程内容选择标准、项目设计思路、学习程度用语说明、课程学时和学分1.课程设计的理念高职高专的人才培养目标是培养技术应用型、技术技能型或操作型的高级技能人才,高等职业教育的学生能力目标是能解决职业岗位上的实际问题,具有自我学习、持续发展的能力,相当部分学生还应当具有创新能力和创业能力,而学院示范校建设中示范性专业的人才培养目标应当是专业是高职院校的核心,专业服从市场。

而数学课程在高职教学中应承担两方面的责任。

一是满足高等教育的必需,体现数学的基础性地位,使学生通过数学课程的学习具有较坚实的数学基础,为适应形势的变化和企业技术的更新的需要而具有较强的自我学习与可持续发展的能力;二是满足专业的需要,为专业服务,充分利用数学的工具性作用,为学生在后继专业基础课和专业课程的学习扫清障碍、做好铺垫,配合专业课程的教学,为企业培养合格的高级技术、技能型人才。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》课程标准第一部分课程的性质数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成方法和理论,并且进行广泛应用的科学。

数学是抽象的,又是具体的,是一种工具,也是一种文化,更是一种信息。

随着时代的发展,文明的进步,特别是二十世纪中叶以来,数学自身发生了巨大的变化,与计算机的结合愈来愈紧密,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展。

数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量繁杂的信息作出最优的判断和选择,同时为人们交流信息提供了一种有效而简捷的手段。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息、建立模型,进而解决问题,直接为社会创造价值。

在高等职业技术教育中,高等数学是一门必修的公共基础课。

它将为今后学习工程数学、专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。

基于职业教育的特点,以及为适应迅猛的社会经济发展,为公司企业输送相应层次的技术人才,在高等数学的教学中必须遵循“以应用为目的,以必需,够用为度”的原则,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以努力提高学生的数学修养和素质。

第二部分课程基本任务一、优化课程结构,适应高等职业教育人才培养模式高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。

因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育大众化条件下多样化的学习需求相适应,与高等教育课程改革与建设的国际化趋势相适应,与国家基础教育课程改革的要求相衔接。

二、以能力培养为切入点,充分体现课程的基础性、应用性和发展性数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据,进行计算、推理和证明,它为其它学科提供了语言、思想和方法,从而数学的基础性地位无可替代,更不能偏废。

但在高等职业技术教育中,高等教学在作为公共基础课的同时,应充分遵循“学有所用”的原则、“学有所需”的原则,而在一切的教学过程中,都要从能力培养出发,发掘学生的潜在的创新思维,以切实提高学生的综合教学素质。

三、以学生为中心,充分发挥学生的学习能动性高等教学的学习内容应当根据实际的需求进行调整,而内容的是呈现也应采用不同的表达方式,以满足多样化的学习需求,同时教学活动必须建立在学生的接受能力基础之上。

而教师也不是被动的,应调动一切可行的手段,激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验,为学习和实践提供有效的知识工具和良好的思维素质。

四、加强计算机与数学教学的整合,促进教学改革,提高教学质量现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。

数学课程的设计与实施应重视运用现代信息技术,加强计算机与数学教学的整合,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生整合到现实的、探索性的数学活动中去。

五、构建本课程新的评价体系,考察学生的“输出”能力评价的主要目的是为了全面了解学生的数学学习历程,考察学生的实际能力,同时激励学生的学习和改进教师的教学。

但以往的评价手段过于单一,不能全面反映学生的真实情况,而且评价的价值取向犹为偏颇。

所以应建立评价目标多元、评从方法多样的评价体系。

对数学学习的评价要关注学生学习的结果,也要关注学习的过程;要关注数学知识的掌握,也要关注数学知识的运用。

总之,评价的结果优劣要经得起实践检验。

第三部分课程目标本课程的总目标是要通过对高等数学在高等职业教育阶段的学习,使学生能够获得相关专业课及工程数学须使用,适应未来工作及进一步发展所必需的重要的数学知识,以及基本的数学思想方法和必要的应用技能;使学生学会用数学的思维方式去观察、分析现实社会,去解决学习、生活、工作中遇到的实际问题,从而进一步增进对数学的理解和兴趣;使学生具有一定的创新精神和提出问题分析问题解决问题的能力,从而促进生活、事业的全面充分的发展;使学生既具有独立思考又具有团体协作精神,在科学工作事业中实事求是、坚持真理,勇于攻克难题;使学生能敏感地把握现实社会经济的脉搏,适应社会经济的变革发展,做时代的主人。

本课程的总目标进一步阐释为:一、知识与技能方面1.了解微积分的发展史,认识微积分的重要性、抽象性、实用性,进而认识科学发展的一般规律。

2.理解极限的概念,掌握极限的运算法则,能够熟练计算一般函数间极限。

3.理解微分的概念,掌握微分的运算法则,能够熟练计算一般函数的微分。

4.理解积分的概念,掌握积分的运算法则,能够熟练计算一般函数的积分。

二、数学思想与能力运用方面1.通过对本课程的学习,使学生在掌握必要的基础知识的同时,具有一定的数学建模思想,并将这种思想贯穿于整个提出问题分析问题解决问题的过程。

2.通过对极限概念的学习,使学生建立无限的思想观,并使学生能用“分割求和取极限”的思想方法求一些诸如无穷数列和、图形面积等问题。

3.通过对微分的学习,使学生能够建立实际问题的模型,理解诸如最值方面的问题,并能分析、推证、解释跟最值有关的一些现实现象。

4.通过对积分的学习,使学生能够利用“微元法”的思想方法,解决一些诸如求面积、求体积、求功等问题。

5.通过对生分方程的学习,使学习初步掌握综合运用微积分的能力。

6.通过对本课程的学习,使学生具有一定的自学能力和将数学思想扩展到其它领域的能力。

三、科学观和价值观方面1.具有高尚的科学观,实事求是,尊重客观规律,2.有较强的求知欲,逐步进步,崇尚科学思维,有较强的毅力,不怕困难,有信心战胜它。

3.热爱生活,有团结协作精神,勇于批评和自我批评。

4.有理想、有抱负,热爱祖国,有振兴中华的使命感和责任感。

第四部分课程内容与要求一、函数极限连续(10课时)函数是近代数学的基本概念之一。

高等数学就是以函数为主要研究对象的一门数学课程。

极限是贯穿高等数学始终的一个重要概念,它是这门课程的基本推理工具。

连续则是函数的一个重要性态,连续函数是高等数学研究的主要对象。

通过学习这些知识,不仅为以后的学习打下必要的基础,而且有利于学生认知能力的提高和飞跃。

(一)具体目标1.函数(1)理解函数的定义,掌握函数的要素。

(2)掌握函数的单调性和奇偶性,了解函数的周期性和有界性。

(3)了解反函数、复合函数的概念。

(4)熟练掌握基本初等函数的图形;理解初等函数的概念。

(5)能建立简单的实际问题的函数关系。

2.极限(1)了解极限的“ε-δ”、“ε-N ”定义,并能在学习过程中逐步加深对极限思想的理解。

(2)掌握极限的四则运算法则。

(3)了解极限的两个存在准则(夹逼定理和单调和界定理),掌握两个重要极限。

(4)了解无穷大,无穷小的概念,掌握无穷小的比较。

3.连续(1)理解函数连续的概念,会判断间断点的类型。

(2)了解初等函数的连续性。

(3)了解闭区间上连续函数的最值定理、介值定理和极的存在性定理。

(二)案例例1 讨论函数的奇偶性、有界性、单调性。

例2 写出的复合过程,并判断的有界性。

例3 将半径为r 的半圆圈成圆锥,试建立圆锥体积V 与r 的关系V (r )。

例4 求 ()⎪⎭⎫ ⎝⎛-+++∞→→121lim ,)1ln(2lim 30x x x x x x 例5 求 ()12lim ,11lim 0+-+-+∞→→n n n x x n x 例6 求x x x x x x 3011lim ,3sin 2sin lim ⎪⎭⎫ ⎝⎛+∞→→ 例7 试比较 )0)(1ln(→+x x 和 )0(2→x x 的阶数高低例8 求 11)(2-+=x x x f 的间断点,并判断其类型。

二、一元函数微分学(28课时)导数与微分都是微分学的基本概念。

导数概念最初是从寻找曲线的切线以及确定变速运动的瞬时速度而产生的。

它在自然科学与工程技术上都有着极其广泛的应用。

微分伴随着导数而产生的概念。

通过本部分内容的学习,使学生在掌握基础知识的同时,能够利用所学知识,解决一些实际问题。

(一)具体目标1.理解导数与微分的概念。

了解导数的几何意义及可导性与连续性的关系。

2.熟练掌握导数与微分的运算法则以及基本公式。

能熟练地计算初等函数的一阶、二阶导数。

3.会求隐函数及参数方式所确定的函数的一阶导数。

4.理解罗尔定理、拉格朗日定理、柯西定理。

5.掌握罗必塔法则。

6.理解函数极值的概念。

7.会求函数的极值,能判断函数的单调性和函数图形的凹凸,会求曲线的拐点。

掌握函数图形的描绘方法。

8.能解决最值的应用题。

(二)案例例1 求 x x y +=1的一阶、二阶导数。

例2 求曲线 x x y ln =在(1,0)的切线与法线方程。

例3 求 x e x x 1lim 0-→例4 求 'y (y 由方程 x y e xy +=+1确定)例5 求 x y '(y 由方程 ⎩⎨⎧+=+=t t y t x sin cos sin 1确定)例6 求周长为l 的面积最大的矩形边长。

例7 作出 21x x y +=的图像。

三、一元函数积分学(30课时)微分学的要基本问题是:已知一个函数,求它的导数。

但是,在科学技术领域中往往会遇到与此相反的问题:已知一个函数的导数,求原来的函数。

由此产生了积分学,包括定积分与不定积分。

而定积分的广泛用途是:利用微元法,解决物理和工程技术中的诸多问题。

(一)具体目标1.理解不定积分的概念。

2.理解定积分的概念及基本性质。

3.熟练掌握不定积分的基本公式,掌握不定积分的换元法和分部积法,掌握较简单的有理函数的积分。

4.熟练掌握牛顿——莱布尼兹公式。

5.掌握定积分的换元法和分部积分法。

6.了解变上限的定积分作为其上限函数及求导定理。

7.掌握定积分的微元法,会用定积分计算相关的几何量与物理量。

8.了解广义积分的概念,会求简单的广义积分。

(二)案例例1 x2是2x的一个函数吗?例2 写出不定积分的基本公式。

例3 求dxxxdxxedxxx x⎰⎰⎰++)1(1,,122例4 判断正负:⎰⎰⎰-dxxxdxdxxe x312/1)1(,cos,π例5 比较大小:⎰⎰⎰⎰xdxxdxdxxdxx52/32/8141sinsin,ππ与与例6 若⎰=)0('),0(,22yydtey tx求例7 若⎰⎰⎰⎰+-dxexdxxxdxxdxx x2132/21232,)sin1(cos,||,π例8 证明圆锥,正四棱锥,环的体积公式。

相关文档
最新文档