高等数学上册第一到第三章复习资料

合集下载

高等数学(上册)重要知识点

高等数学(上册)重要知识点

一章 函数与极限1. 集合与函数 1.1 集合的概念具有某种特定性质的事物的的全体。

全体非负整数(自然数)构成的集合{0,1,2,3......}记为N 。

全体正整数构成的集合{1,2,3....}记为 。

全体整数构成的集合{....-1,0,1,2....}(记为Z). 全体实数构成的集合R. 1.2基本初等函数和初等函数 反对幂指三是基本初等函数.将基本初等函数经过有限次的四则运算和有限次的复合运算所得到的 且能用一个式子表示的函数称为初等函数. 1.3极坐标与直角坐标系的关系θρθρsin cos {==y x )0(tan {22≠=+=x x y yx θρ1.4几种特殊性质的函数 (1)有界函数F(x)在x 上有界的充分必要条件为:存在常数M>0,使得| f(x) | ≦ M,对任意x 属于X.这时称风f(x)在x 上有一个界. (2)奇偶函数F (x)=f(-x),称为偶函数. F (-x)=-f(x),称为奇函数. (3)周期函数f(x+L)=f(x)恒成立,称f(x)为周期函数.L 为f(x)的最小正周期.2.极限2.1数列极限的定义设有数列{a n },若存在常数a ,对任意给定的ε>0,总存在正整数N ,当n>N 时,恒有| a n -a |<ε成立,则数列{a n }以a 为极限。

记作:aann =∞→lim , 或 a a n→(∞→a ).此时称数列}{a n 收敛于常数a ,或简称数列收敛.反之数列}{a n 没有极限,或称它为发散.2.2数列极限的性质(1)(极限的唯一性)如果数列}{a n 收敛,那么它的极限必唯一.(2)(有界性)收敛数列必定有界.(3)(保号性)设有数列}{a n ,}{b n 分别收敛于a,b,并且b>a,那么存在正整数 N ,当n>N 时,恒有b n >a n . (4) 设有数列}{a n ,}{b n 分别收敛于a,b,并且存在正整数N,当n>N时,恒有b n ≥an,那么a b ≥(5)数列}收敛于a 的充分必要条件是它的任何一个子集数列都收敛于a. 2.3函数极限(1)设函数f(x)在的某去心邻域有定义.若存在常数A,使对任给的ε>0,总存在δ>0,当0<|x-x 0|<δ时,恒有 |f(x)-A|<ε恒成立,则称当x x →0时,f(x)以A 为极限.记作:)(limx f x x →=A或A x f →)(,当x x 0→.(2)函数极限的性质1.(唯一性)如果存在,那么极限是唯一的。

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高等数学复习资料

高等数学复习资料

全国教师教育网络联盟专科起点升本科高等数学复习资料目录第一章函数 (1)一、内容提要 (1)二、典型例题 (2)第二章极限与连续 (5)一、内容提要 (5)二、典型例题 (7)第三章导数与微分 (12)一、内容提要 (12)二、典型例题 (14)第四章导数的应用 (18)一、内容提要 (18)二、典型例题 (20)第五章不定积分 (25)一、内容提要 (25)二、典型例题 (26)第六章定积分及其应用 (30)一、内容提要 (30)二、典型例题 (31)第七章多元函数微积分 (34)一、内容提要 (34)二、典型例题 (37)第一章函数一、内容提要1、函数(1)定义:设有两个变量x与y。

当变量x在给定的某一变域中任意取定一值时,另一变量y就按某一确定的法则有一个确定值与x的这个值相对应,那末变量y称为变量x的函数,记作y=f(x)。

(2)定义中两要素:定义域与对应法则。

定义域:自变量x的取值范围。

对应法则:自变量x与因变量y的对应规则。

(3)注意两点:①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。

②在不同区间上用不同数学表达式来表示的函数称为分段函数。

分段函数是一个函数而不是几个函数。

2、反函数(1)定义:设已知y是x的函数y=f(x),如果将y当作自变量,x当函数,则由关系式y=f(x)所确定的函数x=ϕ(y)就叫做函数f(x)的反函数,由于通常总把自变量记作x,函数记作y,因此习惯上称y=ϕ(x)为函数f(x)的反函数,记作f -1(x),而f(x)叫做直接函数。

(2)附注:反函数的定义域与直接函数的值域相同。

3隐函数定义:凡能够由方程F(x,y)=0确定的函数关系,称为隐函数。

4、函数的简单性质有界性,奇偶性,单调性与周期性。

5、复合函数(1)定义:设y是u的函数y=f(u),而u又是x的函数u=ϕ(x),而且当x在某一区间I 取值时相应的u值可使y有定义,则称y是x的一个定义于区间I上的复合函数,记作y=f[ϕ(x)]。

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一。

函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x ) = 0[)(x g ],称g(x)是比f (x)低阶的无穷小.(2)l ≠ 0,称f (x )与g (x )是同阶无穷小.(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n nn nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x(3))()(lim 0x F x f x x ''→存在(或为无穷大)这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则。

专转本——高等数学 各章节题型重点总复习 (上)

专转本——高等数学 各章节题型重点总复习 (上)

重点题型第一章 函数1.求函数的定义域:◆ 一般类型:考虑五个要素,即“分母、根式、对数式、反三角式、复合式(取交集)” ◆ 已知函数定义域,求其它函数的定义域:(注意:实质上就是不等式取范围的问题,另外要深刻理解对应法则f 和定义域D )2.求函数解析式: ◆ 已知f (x ),求f[g (x )]◆ 已知f[g (x )],求f (x )(同样要深刻理解对应法则f 和定义域D )3.判断函数是否相同:两个要素,即“对应法则f (化简),定义域”4.判断函数的奇偶性:◆ 定义域的对称性以及f (x )与f (-x )之间的关系◆ 奇偶函数的运算性质(奇偶,奇奇,偶偶——加减乘除)第二章 极限与连续1.求极限:∞/∞ 总的思想:分母无穷大、指数0<a<1使值趋于0 而约去 (1.一般式 2.根号下的一般式 3.利用指数特性进行变换,是趋于0值)0/0 总的思想:清零 (1.因式分解 2.根式有理化 3.无穷小替换 4.洛必达法则,如:211lim ()tan x x xx→-)∞-∞ 总的思想:结合以上两种方法,先同分,再有理化0-0 总的思想:结合以上两种方法,先同分,再有理化1∞ 总的思想:利用两个重要极限中的e 值无穷小与有界量 (以“x →0、x →∞,x*sin (1/x )、(1/x )*sinx 为例拓展思考)初等变换◆分子分母同除以,利用指数特性◆和差化积,利用无穷小的等效替换◆对含有e量的思考与变形(“e x-1”)洛必达法则(有待进一步学习,非常重要)注意其使用条件,只使用于:∞/∞、0/0两种类型,有拓展类型注意:要学会综合利用各种方法处理,其中典型题:Page442.给出分段函数式,求分段点处的极限/或者说成是该点处是否存在极限值(考虑带参数的情况)利用“左极限=右极限”;3.函数的连续性◆给出函数式(带参),在x0处连续,求参数与以上2相比,只多了一个连续的条件◆给出函数式的极限值,求参数(难点在于“∞/∞、0/0“型)解决方法:◆判断间断点的类型第一要考虑到间断点有哪几个点(对函数式来说是无意义的点),第二要考虑到分子为0的情况,此情况可能会产生可去间断点附:【无意义的点一定是间断点】◆求函数的连续区间(初等函数在定义域内都是连续的,因此只需对间断点进行分析)通常是针对于分段函数(要知道为什么会这么说),结合左右极限与分断点处的值进行分析4.“零值定理”的应用,证明方程在某一范围内至少存在一个根(有时候避讳说范围,而改成说至少存在一个正根)1.令F(x)(这一步是关键,有时候涉及到变形,比如:f(x)=g(x)、f(x)-g(x)=0有解) 2.说明F(x)在[a,b]内连续 3.F(a)F(b)异号5.难点概念分析附:几个等价无穷小夹逼准则sinx~x arcsinx~x tanx~x arctanx~x单调有界数列e x-1~x a x-1~x ln(1+x)~x (1+x)n-1~nx(是难点,用到的要注意)第三章导数和微分1.用导数定义求函数的导数a)已知某点的导数,利用对导数定义中的△x进行变化(包括n△x、+-△x),以求形式的一致b)改变形式,即“+ f(x0)-f(x0)”,得到两个导数c)对f(0)=0的函数要注意,当x→0时,有f(x)/x=f’(0)2.在某x0连续,求该点处的导数利用求导的定义求,因为有一个关糸(极限/连续/导数/微分),解题方法是利用定义求导结合求极限得出结果典型:“f(x)=(x502-1)*g(x),其中g(x)在x=1处连续,g(1)=4, 求f’(1)”3.已知分段函数f(x),讨论分断点x0处的可导性,并且求导a)在大题目中,必须使用求导的定义求b)在小题目中,可以求分断点两端函数在该点处的导数(快、简洁)4.复合函数的求导方法与微分方法a)由外到内,逐层求导b)由外到内,逐层微分5.隐函数所确定函数的导数和微分a)隐函数所确定函数的导数和微分总的思想是,分别对方程两边的x和y求导或微分(记住y是x的函数),然后再进行整理求一阶导数和一阶微分求二阶导数和二阶微分(第一次会产生x、y、y’,第二次会产生x、y、y’、y’’,因此第一次要总结出y’的结果;其次是要注意每一步的化简)b)乘积式、幂指数的求导与微分(要知道这么做的好处以及为什么放在这个地方叙述?)总的思想是,利用“对数求导法”6.由参数方程所确定的函数的求导方法利用一阶微分形式的不变性,即“dy=y’*dt dx=x’dt”利用“dy/dx=(dy/dt)/(dx/dt) ”即“dy/dx=(dy/dt)*(dt/dx)”7.求函数的高阶导数(要多多练习——从“化简与找规律”的方面入手)总的思想是,先求出开始的几阶导数,然后观察总结规律,必要时用数学规纳法证明几个常见的高阶导数:1)(ex)(n)=e x(xex)(n)=(x+n)*e x2)(sinx)(n)=sin(x+n*π/2) (cosx)(n)=cos(x+n*π/2)3)对(xu)(n)的形式要分情况(如果有时候想不通,就以(x3)(n)次方为例):n∈/N,(x u)(n)=u*(u-1)*(u-2)*(u-n+1)*x u-nn∈N, 若n≦u,则有(x u)(n)= u*(u-1)*(u-2)*(u-n+1)*x u-n若n>u,则有(xu)(n)=0拓展:[ln(1+x)](n)=(-1)n-1*(n-1)!*(1+x)-n[1/(1+x)](n)=(-1)n*n!*(1+x)-n-1[(1+x) u] (n)= u*(u-1)*(u-2)*(u-n+1)*(1+x)u-n8.涉及到切线的问题(关键是求切点(x0、y0))a)已知曲线方程,并给出可以求出切点与斜率的提示【该曲线与x、y轴(或者是某条线)交点处的切线】,求该点处的切线方程(关键是求切点(x0y0)与斜率k)、b)已知曲线方程,并给出某点处的切线方程(1.含有参数,通常是斜率k;2.但如果不是斜率,则比较简单),求参数值解题步骤:1.令点为(x0y0) 2.将切线表示成y_x_x0之间的关糸(如何表示:1.借助曲线可得x0与y0之间的关糸,统一为x0 2.与此切线进行形式对比,以确定x0,进而确定参数k对b)有典型:设曲线y=x2+3x+1上某点处的切线方程为y=mx,求m的值解:y0=x20+3x0+1 y’0=2x0+3代入切线方程得y=(2x0+3)x+1-x20 与y=mx进行对比因此可得x0=+-1,即可得m值9.微分的应用涉及到的问题包括:1.近似计算 2.求未知函数的变化率1.近似计算(首先要明白这种计算的依据) a) 一般计算b) 公式套用:nx x n +≈+11 sinx ≈x tanx ≈x e x≈1+x ln(1+x)≈x2.未知函数的变化率容易出错的题目:1) y=(x-1)(x-2)2(x-3)3,求y’(1)2) y=110110+-x x ,求dy/dx,dy|x=0;注意,对于这两道题要有心得,即看到无穷小与某个不确定的数进行乘积时,不可轻易将 值定义为零第四章 中值定理与导数的应用1.求“单调区间和极值点”,“最值”,“凹凸区间和拐点”求“单调区间和极值点”的解题步骤: 1) 求f(x)的定义域2) 求驻点(即导数存在的点)及导数不存在的点 求f’’(x)=0的点和f’’(x )不存在的点 3) 列表讨论(这个是必须的)附:①对于导数f ’(x 0)不存在的点有三种情况,1.函数本身在该点处没有定义 2.该点处的导数趋于无穷大(对于一般函数来说,导数不存在都是这种情况) 3.该点处的左右导数不一样②对于以上3)为什么说是必须的要明白,需要理解“极值点的存在与驻点及导数不存在的点之间的关糸”和“拐点的存在与y ’’=0的点及y ’’不存在的点之间的关糸”,以“x 3 x 4x 1/3为代表进行分析2.证明题● 证明根的存在性问题主要是针对等式中含有导数式,利用罗尔定理构造辅助函数● 利用导数证明不等式 拉格朗日中值定理函数的单调性(求导 最值) 函数的凹凸性 典型:①证明不等式ba b -<ln ab <aa b -(0<a<b)解析:隐含两个条件,即“a<Ɛ<b (lnx)’=1/x,单调递减”(拓展:有时候题中会出现f ’(x)单调性,实则和这个问题是一样的)②证明当0<x<π/2,tanx>x+x 3/3解析:1.令f(x)= tanx_(x+x 3/3) 2.求f ’(x)单调性得f ’(x)=(tanx-x)(tanx+x)>0 3.f(0)=0,则有f(x)>f(0)=0 故问题成立③证明当x>0 y>0时,有不等式xlnx+yln y ≥(x+y)ln 2y x + 等号仅当x=y 时成立 解析:1两边同除以2变形为2ln ln yy x x +≥2y x +ln2y x + 2.分析为中值与平均值的比较(lnx ) 3.证明lnx 的凹凸性 ●应用中值定理的证明(主要是验证定理对函数的正确性)1)确定条件2)根据定理结论,求f ’(ε)值 3)确认ε∈定义区间3.关于方程根的问题主要的解决方案是:结合端点值、求导确定单调性、极值(零值定理) 题型:1.在某个区间有几个根 2.证明方程有且仅有一个根4.作图题1) 确定义域2) 令y’=0 y’’=0确定极值点和拐点 3) 列表4) 确定渐近线5) 找出五个重要的点,作草图5.应用题【包含边际分析(主要是征对“经济”中的“利润”问题分析)】附:对f’(x) f’’(x)结合的各种情况作出分析图(选择题中常出现)。

高等数学上册总结

高等数学上册总结

第二类换元法常见类型:
1 )f(x ,na b x )d x , 令tnaxb
2)f(x,nc ax x d b)dx,

t n
a xb c xd


3 )f(x, a 2 x 2)d x, 令 xasitn或 x 节aco t s

4 )f(x, a 2 x 2)d x,令 xatatn 或 xasth
第二类间断点
无穷间断点 振荡间断点
左右极限至少有一 个不存在
最值定理,介值定理
在 在 在 4. 当
上有界;
上达到最大值与最小值;
上可取最大与最小值之间的任何值种等价形式; 复合函数求导公式; 隐函数求导,参数方程求导,高阶导数;
1. 导数的实质: 增量比的极限;
换元积分: 分部积分:
常1 2 ))用的ff((几a xx n 种) x配b n )1 元ddx形x 式1a :1n
f
(ax b) d(axb) f (xn) d x n
3) f(xn)1dx1 xn
f (xn)
1 xn
dxn
万 能
4 )f(sinx)co sxdxf
(sinx)dsinx
n1x1~1n x , ln1(x)~x
1. f (x) 在点 x 0 连续的等价形式
xl ixm 0f(x)f(x0)
lx i0 [fm (x 0 x ) f(x 0 ) ] 0 f(x 0 ) f(x 0 ) f(x 0 )
左连续 右连续
2. f (x) 在点 x 0 间断的类型
可去间断点 第一类间断点 跳跃间断点 左右极限都存在
凑 幂
5 )f(co sx)sinxdx f(coxs) dcos法x

高等数学复习提要

高等数学复习提要

高等数学复习提纲第一章 函数与极限 复习重点: 1、求极限1)四则运算法则 注意:四则运算法则适用的函数个数是有限个;四则运算法则的条件是充分条件有理分式函数求极限公式:2)两个重要极限))01(()11(lim )1(lim )sin (1sin lim1100+=+=+=∞→→→e xx x x x x xx x3)两个准则准则一:准则二:单调有界数列必有极限单调递增有上界的数列其极限为最小的上界(上确界) 单调递减有下界的数列其极限为最大的下界(下确界) 4)无穷小量a.无穷小量的定义,注意其是变量,谈及无穷小量时一定要注明自变量的变化趋势。

唯一的例外是0永远是无穷小量;b.掌握何为高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小;c.利用无穷小量求极限无穷小量与有界函数的乘积是无穷小量等价无穷小量替代求极限 注意:下面给出关系式是在0→x 时才成立 等价无穷小量替代求极限只在积、商时成立,加减时不行2、连续性和间断点 1)连续定义)()(lim ,0lim 00x f x f y x x x ==∆→→∆n n n n m m m m x b x b x b x b a x a x a x a ++++++++----∞→11101110lim ⎪⎪⎩⎪⎪⎨⎧>∞<==++++++++=----∞→nm n m m n b a xb x x b x x b x x b x a x x a x x a x x a n nn n n n n n n m n m n m n m x 0lim 0011101110 az y N n z x y n n n n n n n ==∈∀≤≤∞→∞→lim lim )(2 )1(若ax x n n n =∞→lim ,}{且有极限则n x x x x a x a x x x e x x x x x x nx x~11~)1ln(ln ~1~tan ~1~arcsin 21~cos 1~sin 2-++--- 要求会用定义讨论分段函数分段点的连续性2)间断点间断点的疑似点:使函数没有意义的点和分段函数分段点要求:判断函数的间断点,若是第一类的要写出是跳跃还是可去,第二类只需写出是第二类间断点即可。

高等数学一教材章节

高等数学一教材章节

高等数学一教材章节第一章:函数与极限函数的定义与性质函数的概念函数的表示方法函数的分类一元函数的极限极限的定义极限的运算法则极限存在准则函数的连续性连续函数的定义连续函数的性质连续函数的运算法则第二章:导数与微分导数的概念与运算法则导数的定义导数的几何意义导数的运算法则高阶导数与隐函数的导数高阶导数的概念隐函数的导数高阶导数的计算微分中值定理与导数的应用罗尔定理拉格朗日中值定理函数单调性与极值第三章:积分与定积分不定积分不定积分的定义常见函数的不定积分不定积分的基本性质定积分的概念与性质定积分的定义定积分的基本性质定积分的几何意义牛顿-莱布尼茨公式与变限积分牛顿-莱布尼茨公式的推导变限积分的概念与运算法则曲线长度的定积分表示第四章:一元函数的应用或微分方程常微分方程常微分方程的概念一阶线性微分方程一阶齐次线性微分方程微分方程的应用因变量可分离的微分方程可化为一阶线性微分方程的方程可化为齐次微分方程的方程第五章:多元函数微分学多元函数的极限与连续性多元函数的极限定义多元函数的连续性定义多元函数的偏导数与全微分多元函数的导数与微分法多元函数的偏导数多元函数的全微分多元函数的隐函数及其导数多元函数的极值与条件极值多元函数的极值判定多元函数的条件极值第六章:重积分与曲线曲面积分二重积分的概念与性质二重积分的定义二重积分的性质与运算法则可求面积与可求平均值的关系三重积分与多重积分三重积分运算法则广义重积分多重积分的应用曲线积分与曲面积分第一类曲线积分的概念与计算第二类曲线积分的概念与计算曲面积分的概念与计算第七章:向量场与无散场、无旋场向量场的基本概念与性质向量场的概念向量场的性质与分类散度与无散场散度的概念与计算无散场的特点与判定旋度与无旋场旋度的概念与计算无旋场的特点与判定第八章:曲线积分与曲面积分的应用曲线积分的应用曲线积分在物理中的应用曲线积分在工程中的应用曲线积分在电磁学中的应用曲面积分的应用曲面积分在流体力学中的应用曲面积分在电场中的应用曲面积分在热传导中的应用第九章:常微分方程入门常微分方程的基本概念与解法常微分方程的定义与分类分离变量法与齐次方程法一阶线性微分方程的解法高阶微分方程与常微分方程组高阶微分方程的解法常微分方程组的概念与解法常微分方程在物理中的应用第十章:级数与幂级数级数的定义与性质级数的基本概念级数的运算法则级数的比较判别法幂级数的收敛性与展开幂级数的收敛半径幂级数的展开幂级数的应用函数项级数与傅里叶级数函数项级数的定义与性质函数项级数的收敛性傅里叶级数的基本概念与性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学上册第一到第三章复习资料写在前面:小伙伴们,高数是比较重的一门课,以下内容我可以保证是在问过罗老师后总结的第一章函数与极限总说:1.第一节至第三节是概念问题,小伙伴们只需要了解。

但是在这里有个函数极限的定义,下面我会列出2.第四、五、六、七节可以说是第一章重点了,牵扯到极限的运算。

3.第八、九、十节也是概念居多,而且与第二章函数导数牵扯较大。

在第十节,零点定理与介值定理也是重点二、极限运算的各种定理与推论(极限运算的基础)x 0是x 0+ x 0- 1.定理1:有限个无穷小的和也是无穷小2.定理2:有界函数与无穷小的乘积是无穷小3.定理3:如果limf ﹙x ﹚=A ,limg ﹙x ﹚=B ,那么:﹙1﹚lim[f ﹙x ﹚±g ﹙x ﹚]=lim f ﹙x ﹚±limg ﹙x ﹚=A +B ﹙2﹚lim[f ﹙x ﹚·g ﹙x ﹚]= lim f ﹙x ﹚·limg ﹙x ﹚=A ·B﹙3﹚若有B ≠0,则 lim [f ﹙x ﹚/ g ﹙x ﹚]= limf ﹙x ﹚/ limg ﹙x ﹚=A/B 4.定理4:设有数列﹛x n ﹜和﹛y n ﹜,如果lim n →∞x n =A , lim n →∞y n =B 那么:(1)lim n →∞(x n ±y n ﹚=A ±B(2) lim n →∞x n ·y n =A ·B(3)当n x 0(1,2,3...)B 0lim n n nAy n y B →∞≠=≠=且时, 5.定理5:[][][]00000,00()()lim (),lim (),(),g(x)u ,lim ()lim ()x xu u x x u u y f g x g x g x u f u A x f g x f u Aδ→→→→===∈≠== 设函数是由函数u=g(x)与函数y=f(u)复合而成,f 在点x 的某去心邻域内有定义,若且存在x 有则:4.推论1:常数与无穷小的乘积是无穷小5.推论2:有限个无穷小的乘积也是无穷小6.推论3:如果limf(x)存在,而c 为常数,则:[]lim ()lim ()cf x c f x =7.推论4:如果limf(x)存在,而n 是正整数,则:[][]lim ()lim ()nnf x f x = 二、无穷小的比较处公式:(可根据题干变换x )11nx 等价于 arcsinx x 等价于 sinx x 等价于211-cos x 2x 等价于 1sec cos x x等价于 tan tx x等价于三、重要极限:0sin lim1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭四、零点定理与介值定理:1.零点定理:设函数f(x)在闭区间[a ,b ]上连续,且f(a)与f(b)异号,那么在开区间﹙a ,b ﹚内至少有一点ξ ,使:f(ξ)=02.介值定理:设函数f(x)在闭区间[a ,b ]上连续,且在这区间的端点取不同的值f (a )=A f(b)=B,那么,对于A 与B 之间的任意一个数C ,在开区间(a,b ) 内至少有一点ξ ,使:f(ξ)=C (a<ξ<b )第二章 导数与微分总说:这一章可以说是前半本书的重点,它不仅与极限联系,而且与后面的积分息息相关,这章必须融会贯通。

1. 关于第一、二节,高中已经学过不再赘余,只说下反函数的求导。

(导数表详见p95页,最好背过)2. 第三、四、五节重点来了,也就是隐函数,高阶导数,参数方程的求导以及函数的微分。

一、 反函数的求导:11()=x f x f -⎡⎤⎣⎦′′() 或dy 1dxdx dy=二、 高阶导数:高中有过接触,二阶导数,三阶导数、、、、此处指出初等函数的n 阶导数(考试出题可以代入) 1.()()n xx ee = ()()cosx cos +n 2n x π⎛⎫= ⎪⎝⎭ ()()s i n x s i n 2n x n π⎛⎫=+ ⎪⎝⎭()()()()()11!ln 111n n nn x x --+=-⎡⎤⎣⎦+ 2.布尼茨公式:(简单记忆的方式)()()()0nnk k n k n k u v C u v -=+=∑ (详细的此处不列出,可见p102)三、 隐函数与参数方程函数的求导1.隐函数的求导很简单,总结一下吧:就是将x ,y 统一求导(注意:y 的导数为yy ′)然后把y ′解出来即可。

(说的有不足之处,还是看不懂的一定翻书p105,做做例题,考试这块绝对有)2.参数方程确定的函数的求导:(这里指出方法,不作赘余)如:()()()()x t dy t y t dx t ϕψψϕ===′′的一阶导数为 )())()()dy t t dx t ψϕψϕϕ-=′′′′′′′3(t (t 二阶导数为四、函数微分1.定义:设函数y=f(x)在某区间内有定义,x 0+Δx 在这区间内,如果增量Δy=f (x 0+Δx )-f (x 0) 可表示为Δy=A Δx=οΔx ,其中A 是不依赖于Δx 的常数,那么称函数y=f(x)在x 0 是可微的,而A Δx 叫做函数y=f(x)在点 x 0 相当于自变量增量 Δx 的微分,记做dy,即:dy= A Δx(很抽象的概念,但是这部分选择题填空题应该会出,但不会是概念,而是计算)2.微分的计算大致是把导数反过来,导数的求法熟悉了,这块不是问题 3.近似计算:Δy= f (x 0+Δx )-f (x 0)≈f ′(x 0) Δxf (x 0+Δx )≈f (x 0)+f ′(x 0) Δx f(x) ≈f (x 0)+f ′(x 0)(x-x 0)第三章 微分中值定理与导数的应用总说:这章特别重要,我会一节一节的罗列。

第一节 微分中值定理一、 罗尔定理: 如果函数f(x)满足(1) 在闭区间[a,b ]上连续 (2) 在开区间(a,b ﹚内可导(3) 在区间端点处的函数值相等,即f(a)=f(b) 那么,在区间(a,b ﹚内至少存在一点ξ ()a b ξ<< ,使得()0f ξ=′ 二、 拉格朗日中值定理:如果函数f(x)满足(1) 在闭区间[a,b ]上连续 (2) 在开区间(a,b ﹚内可导 那么,在区间(a,b ﹚内至少存在一点ξ()a b ξ<<,使等式()()()()b f f a f b a ξ-=-′成立 三、 柯西中值定理:如果函数f(x)、F (x)满足(1) 在闭区间[a,b ]上连续 (2) 在开区间(a,b ﹚内可导(3) 对于任意(,),()0x a b F x ∈≠′那么,在区间(a,b ﹚内至少存在一点ξ,使等式()()()()()()f b f af F b F aF ξξ-=-′′ 成立 (注:这节定理主要还是应用,注意做课后习题) 第二节 洛必达法则第二节洛必达法则这并没有什么要说的,这节主要还是练习,熟能生巧,还有这节考试必考!第三节泰勒公式(有多少人愁这个?)注:这节怎麽说呢,有可能出题也有可能不出,出的话肯定是难题,我还是先罗列定理,还有这节须熟记3个展开式,后面我会列出。

一、 泰勒中值定理:(直接来公式)()()()()()()()()()()200000002!)!n nn f x f x f x f x x x x x f x x x R x n =+-+-++-+ ′′′(其中 ()()()()()()1101n n n f R x x x n ξ++=-+!二、 佩亚诺型余项:()()n 0nR x x x ο⎡⎤=-⎣⎦三、 f(x)按 (x-x 0)的幂展开的带有佩亚诺型余项的n 阶泰勒公式()()()()()()()000000()()!n nnf x f x f x fx x x x x x x n ο⎡⎤=+-++-+-⎣⎦′四、 带有拉格朗日余项的麦克劳林展开式()()()()()()()()()21100002!!(01)1!n n n n f f f x f f x x x n f x x n θθ++=+++++<<+ ′′′五、 带有佩亚诺型余项的麦克劳林展开式()()()()()()000!n n nf f x f f x x x n ο=++++ ′六、三个展开式1.211(01)2!!(1)!n xxn x x e e x x n n θθ+=+++++<<+2.()()()352112212sinx x 13!5!(21)!cos 1(21)!m m mmm m x x x R m x R x x m θ--+=-+-+-+-=-+3.()()2422112221111cos 112!4!(2)!cos 1(01)(22)!mm m m m m x x x x R x m xR x x m θθ++++=-+-+-+=-<<+第四、五、六节 函数(毕竟高中有基础,就放到一起吧)一、单调性(高中知识,不再赘余) 二、凹凸性1.定义:设f(x)在区间I 上连续,如果对I 上任意两点x 1 、x 2恒有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭那么称f (x )在I 上的图形是凹的;如果恒有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭那么称f (x )在I 上的图形是凸的3. 判断条件:()()00f x f x ><′′′′为凹 为凸三、函数的最大值与最小值(高中知识此处不赘余。

注:函数的驻点只是可能是极值点) 四、 函数图形的描绘(考试很少出,自己去看下p164)此处提出水平线与铅直线的问题1. 水平线:要求水平线就找当x 趋近于无穷,y 值有没有趋进于某个值2. 铅直线:要求铅直线就找x 趋近于哪个值,y 值趋近于无穷第七节 曲率这节主要记住公式,考试直接应用:()3/22K 1+y y =′′′ 1R Kρ==()()()()()()()()3/2t t t t x t K y t t t ϕψϕψϕψϕψ-===⎡⎤+⎣⎦′′′′′′′2′2对于参数方程其公式为 第八节 方程的近似解此章节考试一般不考,考的话也只是这个思想,即二分法与切线法的思想,此处不在赘余,希望大家自己看书p179小结:至此,我的任务结束了啊←0←给小伙伴们打印了复习重点,接下来就看你们的了。

感觉高数这门课,背背公式(概念请无视吧),做做题都差不多了。

(前提是你上课跟着老师)还是希望大家现在就开始吧,因为等结课完了实在没时间去复习了,就算那时候复习也过得不彻底。

相关文档
最新文档