高中数学复习学(教)案(第77讲)复合函数的导数

合集下载

《复合函数的导数》课件

《复合函数的导数》课件
复合函数的导数
目 录
• 复合函数简介 • 复合函数的导数 • 复合函数导数的计算 • 复合函数导数的应用 • 习题与答案
01
CATALOGUE
复合函数简介
复合函数的定义
复合函数是由两个或多个函数通过复 合运算得到的函数。
设$u = f(x)$是一个函数,$y = g(u)$是另一个函数,则复合函数$y = g(f(x))$是由$f(x)$和$g(u)$复合而 成。
复合函数导数的计算
链式法则
总结词
链式法则是复合函数求导的核心,它描述了函数内部自变量对外部自变量的导数关系。
详细描述
链式法则指出,如果一个函数y是另一个函数u的复合函数,即y=f(u),那么dy/dx等于dy/du乘以du/dx。具体 地,假设y=f(u)和u=g(x),则dy/dx=(dy/du)*(du/dx)。
$f'(x) = 3x^2 + 4x + 1$
$f'(frac{pi}{2}) = cos(frac{pi}{2}) cdot frac{pi}{2} = 0$
$f'(e) = frac{2}{e}$
THANKS
感谢观看
复合函数导数的应用 利用导数研究函数的单调性
总结词
利用导数研究曲线的凹凸性。
详细描述
通过求二阶导数并分析其符号,可以判断曲线的凹凸性 。二阶导数大于0的区间内,曲线为凹;二阶导数小于0 的区间内,曲线为凸。这一性质在几何和工程领域中有 重要的应用。
05
CATALOGUE
习题与答案
习题
计算复合函数$f(x) = (x^2 + 1)(x + 3)$的导数 。
乘积法则

高考数学一轮复习课件:复合函数的导数

高考数学一轮复习课件:复合函数的导数
高考数学一轮复习课件 复合函数的导数
CONTENTS
目录
• 复合函数导数的基本概念 • 复合函数的求导法则 • 复合函数导数的应用 • 高考真题解析 • 练习题及答案解析
CHAPTER
01
复合函数导数的基本概念
复合函数的定义
总结词
理解复合函数的概念是掌握复合函数导数的基础。
详细描述
复合函数是由两个或多个函数的组合而成的函数。简单来说,如果函数y=f(u)和函数u=g(x)存在,且g(x)有定义 域和值域,那么由这两个函数可以组成一个新的函数y=f(g(x)),这就是一个复合函数。
$f'(x) = frac{2}{x}$
答案及解析
解析5
利用对数函数的导数公式,对内部进行求导。
答案6
$f'(x) = e^xcos x - e^xsin x$
解析6
利用乘积法则,分别对每一项求导,然后合并同类项。
THANKS
感谢观看
CHAPTER
02
复合函数的求导法则
链式法则
链式法则
对于复合函数$f(g(x))$,其导数 为$f'(g(x)) cdot g'(x)$。
应用场景
当一个复合函数由多个函数嵌套而 成时,链式法则是求导的关键。
示例
若$f(x) = sin(x^2)$,则$f'(x) = 2x cos(x^2)$。
乘积法则
答案及解析
1 2
解析2
利用幂函数的导数公式,对根号下的部分进行求 导。
答案3
$f'(x) = -frac{1}{x^2}$
3
解析3
利用幂函数的导数公式,对分母进行求导。

高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数【高考要求】:简单复合函数的导数(B).【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数.2.会用复合函数的导数研究函数图像或曲线的特征.3.会用复合函数的导数研究函数的单调性、极值、最值.【知识复习与自学质疑】1.复合函数的求导法则是什么?2.(1)若,则 ________.(2)若,则 _____.(3)若,则___________.(4)若,则 ___________.3.函数在区间_____________________________上是增函数, 在区间__________________________上是减函数.4.函数的单调性是_________________________________________.5.函数的极大值是___________.6.函数的值,最小值分别是______,_________.【例题精讲】1. 求下列函数的导数(1) ;(2) .2.已知曲线在点处的切线与曲线在点处的切线相同,求的值.【矫正反馈】1.与曲线在点处的切线垂直的一条直线是___________________.2.函数的极大值点是_______,极小值点是__________.(不好解)3.设曲线在点处的切线斜率为 ,若 ,则函数的周期是____________.4.已知曲线在点处的切线与曲线在点处的切线互相垂直, 为原点,且 ,则的面积为______________.5.曲线上的点到直线的最短距离是___________.【迁移应用】1.设 , , 若存有 ,使得 ,求的取值范围.2.已知 , ,若对任意都有 ,试求的取值范围.。

高二年级-数学-复合函数的导数

高二年级-数学-复合函数的导数

2、求曲线y
sin
2x
6
在x
12
处的切线方程.
解:y sin u,u 2x .
6
y sin u u
切线的斜率k
2
cos u 2
cos
2
12
26cos12.
x
6
.
而切点坐标为
12
,3 2

切线的方程为y
3 2
1
x
12
Байду номын сангаас
,即y
x
3 .
2 12
小结 : • ⑴复合函数的求导,要注意分析复合函数的结 构,引入中间变量,将复合函数分解成为较简单的 函数,然后再用复合函数的求导法则求导; • ⑵复合函数求导的基本步骤是:
x
1
f
x
3x
2
6
27 x2
2
f
x
exx x2
ex
常用的基本初等函数
复合函数
函数f (u)叫作外层函数,函数φ (x)叫作内层函数.
1.指出下列函数是怎样复合而成:
y u2 u 3x 2
yu 2u 6x 4 ; ux 3 ;
另一方面,将函数y sin 2x看作是函数 y sin u 分解
和函数 u 2x 复合而成.
求导
相乘
回代
复合函数的求导法则:
一般地,若 y f u,u ax b ,则
函数f22fxx的 f导x数 是?
对于一般的复合函数,结论也成立 。
例题讲解
课堂练习 1、求下列函数的导数:
课堂练习 1、求下列函数的导数:
课堂练习 1、求下列函数的导数:
课堂练习

复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则复合函数是指由两个或多个函数组成的函数。

在求复合函数的导数时,需要使用链式法则,即将函数的导数作为求导的一部分。

设有两个函数f(x)和g(x),假设y=f(g(x))是一个复合函数。

我们的目标是求解复合函数y=f(g(x))的导数dy/dx。

根据链式法则,dy/dx可以表示为:dy/dx = df(g(x))/dx根据上述公式,我们可以按照以下步骤求导:Step 1: 首先对f(g(x))进行求导,即求df(g)/dg。

Step 2: 然后对g(x)进行求导,即求dg(x)/dx。

Step 3: 最后将求导得到的结果相乘,即df(g)/dg * dg(x)/dx =dy/dx。

下面我们讨论一些常见的复合函数和它们的导数运算法则。

1. 复合函数的链式法则(Chain Rule)设有函数f(u)和g(x),假设y=f(g(x))是一个复合函数。

根据链式法则,复合函数y=f(g(x))的导数可以表示为:dy/dx = f'(g(x)) * g'(x)其中,f'(u)和g'(x)分别表示f(u)和g(x)的导数。

例如,如果y=(2x+1)^3,则可以将它表示为y=u^3,其中u=2x+1、根据链式法则:dy/dx = 3u^2 * du/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^22.复合函数中的乘法法则如果复合函数中有乘法运算,则可以使用乘法法则来求导。

例如,如果y=x^2*e^x,则可以使用乘法法则来求导:dy/dx = (d/dx)(x^2) * e^x + x^2 * (d/dx)(e^x)对于每一项使用基本求导法则:dy/dx = 2x * e^x + x^2 * e^x3.复合函数中的除法法则如果复合函数中有除法运算,则可以使用除法法则来求导。

例如,如果y=(x^2+1)/(x-1),则可以使用除法法则来求导:dy/dx = [(d/dx)(x^2 + 1)(x - 1) - (d/dx)(x - 1)(x^2 + 1)]/(x - 1)^2再对每一项使用基本求导法则:dy/dx = [(2x)(x - 1) - (x^2 + 1)]/(x - 1)^24.复合函数中的三角函数法则如果复合函数中包含三角函数,则可以使用三角函数法则来求导。

复合函数的导数求法

复合函数的导数求法

幂函数的导数
幂函数是形如$y = x^n$的函数,其 中$n$是实数。
VS
幂函数的导数可以通过幂函数的定义 和极限的定义求得,结果为$y' = nx^{n-1}$。
三角函数的导数
三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的导数是余弦函数,即$frac{d}{dx}sin x = cos x$;余弦函数的导数是负的正弦函数,即$frac{d}{dx}cos x = -sin x$; 正切函数的导数是正切函数的平方与1的和的倒数,即$frac{d}{dx}tan x = frac{1}{cos^2 x}$。
探讨未来可能的研究方向
复杂复合函数的求导 方法
对于更为复杂的复合函数,如多 层嵌套、多变量复合等,需要进 一步研究更为高效、简洁的求导 方法。这有助于解决实际应用中 更为复杂的数学问题。
复合函数导数的性质 研究
复合函数的导数具有一些独特的 性质,如连续性、可微性等。未 来可以进一步探讨这些性质在复 合函数求导中的应用,以及它们 对导数求解的影响。
对数函数是形如$y = log_a x$的函数,其中$a > 0$且$a neq 1$。
03 复合函数求导举例
简单复合函数求导
举例1
$y = sin(2x)$
分析
这是一个简单的复合函数,其中内层函数是 $2x$,外层函数是$sin u$。
求导过程
根据链式法则,$frac{dy}{dx} = cos(2x) cdot 2 = 2cos(2x)$。
指数函数和对数函数的导数
指数函数的导数是其本身与底数自然对数的乘 积,即$frac{d}{dx}a^x = a^x ln a$。
对数函数的导数是底数的倒数与自变量对数的倒数之 积,即$frac{d}{dx}log_a x = frac{1}{x ln a}$。

高等数学入门——复合函数的求导法则

高等数学入门——复合函数的求导法则

高等数学入门——复合函数的求导法则一、复合函数的定义在高等数学中,复合函数是由两个函数通过组合而成的新函数。

假设有两个函数f(x)和g(x),则它们的复合函数可以表示为f(g(x))。

其中,g(x)是内层函数,f(x)是外层函数。

二、复合函数的求导法则对于复合函数f(g(x)),我们希望求出它的导数。

根据链式法则,复合函数的导数可以通过内层函数和外层函数的导数相乘来计算。

具体的求导法则如下:1. 内层函数求导:首先求出内层函数的导数g'(x)。

2. 外层函数求导:然后求出外层函数对内层函数的导数f'(g(x))。

3. 乘积求导:将内层函数的导数和外层函数对内层函数的导数相乘,即可求得复合函数的导数。

三、示例分析为了更好地理解复合函数的求导法则,我们来看一个具体的示例。

假设有两个函数f(x) = x^2和g(x) = 2x + 1,我们希望求出复合函数f(g(x))的导数。

求出内层函数g(x)的导数:g'(x) = 2然后,求出外层函数对内层函数的导数f'(g(x)):f'(g(x)) = 2g(x) = 2(2x + 1) = 4x + 2将内层函数的导数和外层函数对内层函数的导数相乘,得到复合函数的导数:[f(g(x))]'= f'(g(x)) * g'(x)= (4x + 2) * 2= 8x + 4因此,复合函数f(g(x))的导数为8x + 4。

四、总结通过以上示例分析,我们可以总结出复合函数的求导法则:1. 求出内层函数的导数。

2. 求出外层函数对内层函数的导数。

3. 将内层函数的导数和外层函数对内层函数的导数相乘,得到复合函数的导数。

复合函数的求导法则在微积分中具有重要的应用价值,它可以帮助我们计算复杂函数的导数。

通过理解和掌握复合函数的求导法则,我们可以更好地应用微积分知识解决实际问题。

希望本文能够对读者理解复合函数的求导法则有所帮助。

复合函数的导数公式推导

复合函数的导数公式推导

复合函数的导数公式推导
复合函数的导数公式推导
复合函数是指将一个函数的输出值作为另一个函数的输入值的过程。

在实际问题中,复合函数的应用非常广泛。

例如,在数学中,我们可以将两个函数复合起来,以便求出新函数的导数。

这个过程的推导如下:
假设 f(x) 表示一个函数,并且 g(u) 表示另一个函数。

现在,我们来寻找 f(g(u)) 的导数。

首先,根据复合函数的定义,我们可以得到:
f(g(u)) = f(x)
将其对 u 求导:
f'(g(u)) * g'(u) = f'(x) * x'
其中,f'(x) 和 g'(u) 分别表示函数 f(x) 和 g(u) 的导数。

注意到,当 u 取特定的值时,x 和 g(u) 是相等的。

因此,我们可以将 x 替换为 g(u),得到:
f'(g(u)) * g'(u) = f'(g(u)) * g(u)'
将上式移项,得到:
(f'(g(u))) / (g'(u)) = g(u)'
这个公式就是复合函数的导数公式。

它告诉我们,f(g(u)) 在 u 处的导数等于 f'(g(u)) 和 g'(u) 的商,再乘以 g(u) 在 u 处的导数。

这个公式
在实际问题中非常有用,因为它可以帮助我们求出复合函数的导数,
从而解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东平高级中学高二年级学案
班级: 姓名: 学生编号:
目标要求
1熟记基本导数公式;掌握两个函数和、差、积、商的求导法则
2了解复合函数的求导法则 会求某些简单函数的导数
知识点归纳
2.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导
3.求复合函数的导数,一般按以下三个步骤进行:
(1)适当选定中间变量,正确分解复合关系;
(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);
(3)把中间变量代回原自变量(一般是x )的函数
题型讲解
例1 求下列函数的导数:
(1)82)21(x y +=, (2)y =
例2 求下列函数的导数:
(1)),(cos 2b ax y += (2)x x
y 2sin 12sin 1+-=
例3 求下列函数的导数:
(1)11
ln +-=x x y )1(>x (2)x y 1
sin 22=
例4 求下列函数的导数:
(1) x x e y ln sin ⋅= , (2)1ln 24
+=x x y
小结:
1复合函数的求导,一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层就可以得出结果,熟练以后,可以摆脱引入中间变量的字母,只要心中记住就行,这样可以使书写简单 2求复合函数的导数的方法步骤:
(1)分清复合函数的复合关系,选好中间变量
(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数
(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数 当堂检测 1函数y =2
)13(1
-x 的导数是 A 36 B 26
C -3)13(6-x
D -2)13(6-x
2已知y =21
sin2x +sin x ,那么y ′是 A 仅有最小值的奇函数 B 既有最大值,又有最小值的偶函数 C 仅有最大值的偶函数 D 非奇非偶函数 3函数y =sin 3(3x +
4
π)的导数为 A 3sin 2(3x +4π)cos(3x +4π) B 9sin 2(3x +4π)cos(3x +4
π) C 9sin 2(3x +4π) D -9sin 2(3x +4π)cos(3x +4π) 4函数y =cos(sin x )的导数为 A -[sin(sin x )]cos x B -sin(sin x ) C [sin(sin x )]cos x D sin(cos x ) 5函数y =(1+sin3x )3是由___________两个函数复合而成 6曲线y =sin3x 在点P (3
π,0)处切线的斜率
课下训练 1函数y =cos2x +sin x 的导数为 A -2sin2x +x
x
2cos B 2sin2x +x x 2cos C -2sin2x +x x 2sin D 2sin2x -x x
2cos 2过曲线y =11
+x 上点P (1,21
)且与过P 点的切线夹角最大的直线的方程为 A 2y -8x +7=0 B 2y +8x +7=0 C 2y +8x -9=0 D 2y -8x +9=0 3函数y =x sin(2x -2π)cos(2x +2
π)的导数是 4函数y =)32cos(π
-x 的导数为 5函数y =cos 3x 1的导数是___________ 6已知函数y =(x )是可导的周期函数,试求证其导函数y =f ′(x )也为周期函数
7若可导函数f (x )是奇函数,求证:其导函数f ′(x )是偶函数。

相关文档
最新文档