高中数学《数列》二轮复习教学设计

合集下载

高中数学《数列》二轮复习教学设计

高中数学《数列》二轮复习教学设计
………………………………………………最新资料推荐………………………………………
必修 5 第 2 章 教学内容分析
《数列》是高考的热点,同时也是高考的难点,在高考中一般占 19 分,小题 5 分,
解答题 14 分,其中小题和解答题的第一问往往是基础题,所以这 9 分是学生必得的
分数。同时引导学生利用函数的思想去直观的认识数列的本质是高考能力立意的指导
(1) 设 数 列 bn1 an1 2an ,

b1=
3 2
证明{ bn
}是等比
数列。
(2)



cn
an 2n
,证明
学生分析问题,并合作解 决问题,教师适时点拨 第(1)问,注意 n 2 第(2)问,可利用第一问 结论,亦可用题设
用等差数列,等比数列的 定义证明数列,并求通项 公式和前 n 项的和;解题 时要总览全局,注意上一 问的结论可作为下面问 题的条件。
反 思
题在高考中考什么,怎么考。学生通过自主探索和合作交流中理解并掌握本节内容。 在课堂教学中充满了师生,生生之间的交流互动。
本节课不足:1、例 3 的幻灯片没设计好,存在有重叠看不清的问题,以后课前要
预看。2、还应更注重细节,讲究规范,强调反思。本节课基本达到了预定的目标,在
教学过程中学生参与度高,课堂气氛活跃。在以后的教学中努力提高教学技巧,逐步
4、 通过解题后的反思,找准自己的问题,总结成功经验,吸取失败教训。
4/5
………………………………………………最新资料推荐……………………………………… 运 用 深 化
1、在数列{ an }中, a1 =8, a4 2 且满足 an2 2an1 an
(1) 求数列{ an }的通项公式

数列复习课教学设计

数列复习课教学设计

课题名称:《数列》复习课教学背景分析(一)本课时教学内容的功能和地位数列在高考中占有重要的位置,也是高考命题的热点之一 .由于数列内容的丰富性,应用的广泛性和数列属性的多样性,决定了数列在高考中地位的特殊性 . 这就要求我们在数列的复习中,要重视基础知识和方法的学习,理解和掌握等差、等比数列的基本知识与方法,帮助学生自我构架数列知识框图,实现对数列整体把握、多样解读数列属性的目标 .(二)学情分析在北京市面对全体高中学生的调研中,多数同学认为在高中阶段的课程中,《数列》部分是最难的 .在复习《数列》之初,本人亦进行了学生的问卷调查,学生更多地觉得数列难在方法技巧多、观察分析变形难等等 .本讲面对的是进入一轮复习的高三学生,对《数列》的相关知识点有一定的掌握,学生具备一定的探究问题、分析问题和解决问题的能力,但缺乏对《数列》的整体把握和研究数列的一个“主线”,学生往往就事论事,只是一味地考虑解题情况 .(三)教学准备学生调查问卷、前测题目.教学目标( 1)通过数列复习,使学生理清本章知识网络,归纳整合知识系统.(2)通过师生整理、点评、分析的过程,诊断学习等差数列的问题,学会突破难点的基本方法;通过交流诊断分析学习数列的难点,使学生深化对数列的理解,并形成一定的元认知能力。

(3)通过合作学习,让学生在团队协作中,自我探究,进一步让学生学会思考问题的方法,严谨的推理,多角度思考问题。

教学重点和难点诊断学习数列的难点及分析、尝试寻找如何突破难点的一些对策。

教学方法启发式、讨论式 .教学过程教学环师生活动节(一)教师活动:数据1.PPT 展示学生前测题目的答题情况(柱状与表现图) .反馈2.PPT展示学生完成调查问卷的反馈情况.学生活动:观看反馈情况.设计意图前测题目立足于学业水平测试,难度不太高,综合性不强 .通过这些问题对学生前面的学习效果作一反馈;通过调查问卷,了解学生学习数列的难点 .(二)教师活动:知识整1. PPT 展示学生在调查问卷中画出的《数体把握列》一章的“知识框图” .2.PPT展示学生代表的“知识框图”与前测答题情况的对比 .3.PPT 展示老师画的“知识框图” ,并举例说明由等差数列的定义到通项公式经历的认知过程 .学生活动1:三名学生代表说说自己画的结让学生自己动手构建知识框图,了解学生对数列的研究内容、研究方法的掌握情况 .通过学生间的讨论互评,查找漏洞 .通过教师展示的“知识框图”,让学生体会,知识整体把握及理清知识间关系的重要性 .通过对比三名同学的“知识框图”和答题情况,引导学生感构框图 .学生活动 2:其他同学结合“知识框图”谈自己的想法 .前测题目:( 1 )如果数列的前 n项和S n a1 a2a n满足条件 log 2 S n n ,那么 { a n} ()A.是公比为 2 的等比数列B.是公比为 1/2 的等比数列C.是公差为 2 的等差数列D.既不是等差数列,也不是等比数列( 2)如果等差数列{ a n} 的前n 项和 S n,a4 =2, S1010 ,那么 a n =受题目不会做背后的原因,其实是数列本身的知识没有掌握,对知识的整体把握不够,知识间的联系不清楚 .( 3)已知数列 { a n } 中,a n 13an2( n∈3),且 a3+a5+a6+a8=20,那么 a10等于()A.8B.5C.26D.7 3( 4 )在数列 { a n } 中,已知前n 项的和S n4n2n ,那么 a100等于()A.810B.805C. 800D.795( 5)等比数列 { a n} 中, a4 =2, a5 =5 ,则数列 {lg a n} 的前 8 项和等于 ()A.4B.5C.6D.7( 6)数列 a n的通项公式为a n 2n 49 ,当 S n达到最小时,n等于().A.23B.24C.25D.26(三)教师活动:结合前测题目中多数同学存在问通过前面“知识框图” 的解题任题的第 4 题.整体把握,使原本没做出务分析1.让原本没思路的同学谈想法 .题目的同学可以谈出新的想法;通过题目做对的2.挑选做对的同学谈解题过程 .同学谈解题过程,引导学3.结合对知识框图的完善和第 4 题的讲评,生能够说出“看待数列问让学生小组讨论后谈谈对数列新的认识 .题应该是多角度的” .师生共同评价、整理意见,4.教师进行汇总归纳,数列的难点在于其丰完成对数列的诊断与分富多样的属性:析,并尝试给出一些对通项公式策 .通过尝试找出突破数递推式列之“难”的一些对策,表示S n从而实现对数列内容的数列属性“整体把握” .一般函数特殊学生活动:1.学生代表(前测没做出此题)谈新的想法.2.学生代表(前测做出此题)谈解题方法.3.小组讨论,学生代表谈对数列的新认识.(四)教师活动:由学生整理对数列反馈、小结概1.结合本节课,谈谈你的想法 .诊断、分析后的“处方”。

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

高考数学第二轮专题复习教案数列的综合

高考数学第二轮专题复习教案数列的综合

第26课时 数列的综合一、基础练习1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______2、f(n)=1+2+3+…+n ,则f(n 2)=______3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+1nb =0的两个根,数列{b n }的前n 项和S n =______5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________二、例题例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:(1)到2002年,该内河可行驶的河段长度为多少公里?(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。

(1)求x 1,x 2和x n 的表达式。

(2)求f(x)的表达式,并写出其定义域。

例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。

(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =21n nS a +,且{b n }为等比数列,求a 1的值。

(2)在(1)的条件下,设c n =2()72n n n a b n n++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >3m ?若存在,求出m 的值;若不存在,请说明理由。

数列复习课的教案

数列复习课的教案

数列复习课的教案一、教学目标:1. 理解数列的概念和特征;2. 掌握数列的常见表示方法;3. 能够求解数列的通项公式;4. 能够应用数列解决问题。

二、教学内容:1. 数列的定义和性质;2. 数列的表示方法;3. 数列的通项公式;4. 数列的求和公式;5. 数列的应用。

三、教学过程:1. 导入(5分钟)通过提问和讲解,复习数列的概念,引导学生回忆数列的定义和性质。

2. 知识讲解(15分钟)a) 数列的表示方法:递推公式和通项公式;b) 数列的通项公式的推导方法和步骤;c) 数列的求和公式的推导方法和应用;d) 数列在实际问题中的应用。

3. 讲解例题(15分钟)通过讲解一些典型的数列例题,引导学生掌握数列的解题方法和技巧。

4. 练习巩固(20分钟)学生自主完成一些练习题,巩固数列的相关知识和解题方法。

5. 拓展延伸(10分钟)引导学生思考更复杂的数列问题,并提供一些拓展题目,激发学生的兴趣和思维。

6. 总结归纳(5分钟)对数列的相关知识点进行总结和归纳,帮助学生梳理思路,加深对数列的理解。

四、教学手段:1. 板书:列举数列的定义、性质、表示方法、通项公式和求和公式等重要概念和公式。

2. 多媒体教学:通过投影仪展示例题、解题步骤和相关应用,提高学生的理解和兴趣。

3. 互动讨论:通过提问、回答和讨论,激发学生思维,培养学生的问题解决能力。

五、教学评价:1. 课堂表现:观察学生的听讲、思考和回答问题的情况,评价学生的积极性和参与度。

2. 练习评价:对学生完成的练习题进行批改,评价学生对数列的掌握情况。

3. 问题解决能力评价:观察学生解决复杂数列问题的能力,评价学生的问题解决能力和思维发展。

六、教学反思:通过数列复习课的教学,学生对数列的概念、性质、表示方法、通项公式和求和公式等知识有了更深入的理解。

课堂中的讲解和练习巩固相结合,有效提高了学生的学习兴趣和解题能力。

但是,还需要进一步加强数列的应用训练,培养学生解决实际问题的能力。

数列二轮专题复习教案解析

数列二轮专题复习教案解析

数列二轮专题复习教案解析随着高考日趋临近,各位同学的复习也进入了最为紧张的阶段。

其中,数学中的数列部分是占据重要比重的,也是考生们难点之一。

因此,本文将从数列二轮专题复习教案解析的角度,为大家进行详细的讲解和分析。

第一部分:知识点总结数学中的数列部分包含了三个部分:等差数列、等比数列和通项公式。

在复习的过程中,我们需要掌握以下几个方面的知识点:1.等差数列的概念和性质等差数列意味着每相邻两项之间的差值都是相等的。

其中,常见的性质有:通项公式、前n项和公式以及公差与项数之间的关系等。

2.等比数列的概念和性质等比数列意味着每相邻两项之间的比值都是相等的。

其中,常见的性质有:通项公式、前n项和公式以及首项、公比和项数之间的关系。

3.通项公式的推导通项公式是等差数列和等比数列的重要公式,能够方便我们求出数列中的任意一项。

在学习中,我们需要掌握如何推导出这个公式,并能够在运用时灵活运用。

第二部分:题型解析在数列的学习中,常见的题型通常包括等差数列、等比数列的总和、通项公式以及变形运用等。

下面我们通过一些具体的例子进行讲解。

例1:已知等差数列的前3项分别为5、9和13,求它的第7项?我们可以先求出这个等差数列的公差,根据数列的定义,有:公差=后一项-前一项那么,我们可以先求出公差d。

由于该数列的前3项分别为5、9和13,那么可以得到:d=9-5=4接着,我们可以用通项公式来求第7项。

由于这是一个等差数列,因此通项公式为:an=a1+(n-1)d带入已知条件,可以得出:a7=5+(7-1)×4=25因此,该等差数列的第7项为25。

例2:一个等比数列,第3项为2,第6项为16,求这个等比数列的前12项和。

我们可以先求出这个等比数列的公比,根据数列的定义,有:公比=后一项/前一项那么,我们可以先求出公比q。

由于该数列的第3项为2,第6项为16,那么可以得到:q=16/2=8接着,我们可以用公式来求前12项的和。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

高三数学二轮复习数列[1]

高三数学二轮复习数列[1]

高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点 的关系。
可编辑
(一)知识目标
-------------精选文档-----------------
1、能灵活运用等差数列,等比数列的定义,性质,通项公式,求和公式解题。
2、能熟练的求一些简单数列的通项公式和前 n 项的和。
3、是学生系统掌握等差,等比数列综合题的解题规律。
教学 (二)能力目标
目标 深化数学思想方法在解题实践中的指导作用,灵活地应用数列知识和方法解决问题。通过
然数都成立,求 k 的取值范围。
例 4:已知抛物线 x2 4 y ,过原
点做斜率为 1 的直线交抛物线
于点
P1
,又过点
P1
作斜率为
1 2

直线交抛物线于点 P2 ,在过点 P2 作斜率为 1 的直线交抛物线于 学生探究直线与抛物线交 强化已解析几何为载体
4
P3 ……如此继续,一般的,过 Pn 点的坐标关系,试寻找交 的数列问题解法,展示放
指导思想。在解答题中在正确求和的基础上涉及函数最值的恒成立问题,不等式的放
缩问题,这些都是高考中常见的问题。因此本节课主要是针对高考对《数列》进行专
题的二轮复习。
高中数学教学设计
编写人:周亚新
教学 课题
《数列》专题复习
课程 类型
复习课
课时
一课时
学生已经对数列的知识有了一轮的复习,对数列的概念及通项公式和求和方法有了一




1、在数列{ an }中, a1 =8, a4 2 且满足 an2 2an1 an
(1) 求数列{ an }的通项公式
(2) Sn a1 a2 ……+ an (12
an )
,Tn
b1
b2
bn 是否存在最大整数 m,使得对任意 n∈ N* 均
有 Tn
解决探索性问题,进一步培养学生阅读理解和创新能力。
(三)情感目标
培养学生善于分析问题,富于联想,综合应用数学思想方法分析,解决问题的能力。培养
学生主动探索的精神和科学理性的思维方法。
教学
本节课采用“课前自学+课堂点拨”的教学方法,一问题解决为中心,注重学生学习过
方法 程。以学生发现为主,教师引导为辅,着重培养学生分析问题解决问题的能力。
+1

可编辑
1 的大小 3n 10
-------------精选文档-----------------


1、 证明数列是等差数列、等比数列常用定义


2、 在解决等差数列、等比数列相关问题时,基本量法是常用方法。
3、 注意 Sn 与 an 之间的关系转化 4、 通过解题后的反思,找准自己的问题,总结成功经验,吸取失败教训。
学情 定的了解和掌握,这有利于学生实现从“旧知”向“新知”的迁移。对大部分学生而言,
分析 毕竟他们理解掌握的程度参差不齐,因此在学习工程中难免会有困难。具体体现在对数列
通项公式的求解,以及数列求和的正确计算,特别是数列的综合问题。
教学 重点
本节课的重点是数列通项公式的研究,以及数列求和。
教学
数列与其他知识的综合,要突破这一难点关键是引导学生准确理解题意,把握数量间
成等 的通项
学生观察,思考考察的知 识及解题策略
从实际出发,让学生感受 高考的题目,引出本节课 的教学重难点。
公式;
(2)设 求数列


的前 项和.
典 例
例 1:已知数列{ an }中,首项是


1,求满足下列条件的通项公式
(1) an1 an 3 (2) an1 2an
学生完成各题
(3) an1 an n
问题的条件。
例 3 : 已 知 数 列 { an } 中 ,
a1 >0,q>1 且 q≠0 的等比数列, 设数列{ bn }满足 bn an1 kan2 , 教师板演,规范过程,学 数列{ an },{ bn }的前 n 项和分别 生体会理解 是 Sn , Tn 。若 Tn kSn 对一切自
熟悉递推数列的的题型, 本题由探索 Sn 和 Tn 的关 系入手,谋求解题思路
m 32
成立,若存在,求
m
的值,若不存在,请说明理由。
2、2015 天津高考数列解答题。
可编辑
-------------精选文档-----------------

本节课是高三第二轮的复习课,为更好地将知识点连贯起来,对数列及求和等问



题有一个更深的认识。首先展示了 2015 年天津高考理的数列大题,让学生知道数列问
公式和前 n 项的和;解

b1=
3 2
证明{ bn
}是等比
第(2)问,可利用第一问
题时要总览全局,注意上
数列。
结论,亦可用题设
一问的结论可作为下面
可编辑
-------------精选文档-----------------
(2)
设数列 cn
an 2n
,证明{ cn }
是等差数列。
(3) 求数列 的通项公式及 前 n 项和
作斜率为 1 的直线交抛物线于 2n
点横坐标见得联系,教师
缩法、数学归纳法在数列
点 Pn1 ,设 Pn ( xn , yn )
给予适当的引导。
解题中的应用
(1) 令 bn x2n1 x2n1 ,求证
数列{ bn }是等比数列。
(2) 设 数 列 { bn }的 前 项 和 为
Sn
,试比较
3 4
Sn
教学 手段
本节课选择电子白板辅助教学,增大课堂容量,提高课堂效率。
教学步骤
教师活动
教学过程设计 学生活动
设计意图
可编辑
-------------精选文档-----------------

让学生直观感知 15 高考



18. 已知数列
满足

直 观
( 为实数,且


),
,,,

,,
差数列.
(1)求 的值和
-------------精选文档-----------------
必修 5
第 2 章 教学内容分析
《数列》是高考的热点,同时也是高考的难点,在高考中一般占 19 分,小题 5
分,解答题 14 分,其中小题和解答题的第一问往往是基础题,所以这 9 分是学生必
得的分数。同时引导学生利用函数的思想去直观的认识数列的本质是高考能力立意的
(4) an1 n 1
an
n
辨析等差数列、等比数列 及递推公式,并能掌握其 通项公式的求解方法
例 2:已知数列 中,sn 是 an 的 学生分析问题,并合作解 用等差数列,等比数列的
前 n 项和,且 sn1 4an 2 ,a1 =1 决问题,教师适时点拨 定义证明数列,并求通项
(1) 设数列 bn1 an1 2an , 第(1)问,注意 n 2
相关文档
最新文档