抽样信号的傅里叶变换PPT课件

合集下载

§3.10-抽样信号的傅里叶变换

§3.10-抽样信号的傅里叶变换

1.矩形脉冲抽样
第 3

(1)抽样信号
f(t)
连 续 信 号 f t
抽样信号
fs t
o
t
p(t)
抽样脉冲
pt
o TS
t
连续:信f号 t
抽样脉冲 : p序 t 列
fS(t)
抽样 : fst信 ftp 号 t o TS
t
X
频谱关系 连续:信 ft号 ;
第 4 页
f t F ( m m )
抽样脉冲:序 pt列 pt P,
限带
信号
抽样:信 fst号
fst F s
fstftpt Fs21πFP
•越小,越能反刻 映之 离, 值 散从 时信号传输, 角
更关f心 st中有无 ft的全部信息,必 fst须 的考 频虑
谱结构。
X

抽样信号的频谱结构
5 页
F sF ftpt2 1 πF P
pt P2πP nns n
Ts
o m
事 业 单 位 人员 进行2017年 度 个人的 意义在 于使事 业单位 人员不 断提升 自身的 政 治 素 养 、 业务水 平和综 合能力 。以下 是小编 为大家 精心整 理的事 业单位 人员 2017年 度 , 欢 迎 大 家阅读 。 事 业 单 位 人员 2017年 度个人 工作总 结一在 局领导 和 部 门 领 导 的正确 带领下 ,与同 事们的 齐心协 力、共 同努力 、大力 支持与 密切配 合 下 , 使 我 的工作 取得了 一定的 成绩。 对于不 利于团 结的话 不说, 不力于 工作的 事 不 做 , 对 于违法 的事坚 决不干 。现将 一年来 的工作 总结如 下: 一 、 学 习方 面 深 入 学 习科 学发展 观,并 且认真 学习邓 小平理 论和三 个代表 重要思 想、中 央 新 疆 工 作 座谈会 精神, 全面提 高了自 己的思 想道德 素质和 科学文 化素质 ;全心全 意 为 局 里 的 大事小 事服务 、处处 事事以 集体利 益为重 ,增强 了责任 感和自 觉性。 在 工 作 中 , 通过学 习和实 践科学 发展观 ,以及 相关业 务知识 ,不断 提高自 己的综 合 素质。 二 、工作 方面 1、电 话方面 :对待 上级部 门的来 电,问 清什么 事, 什 么 要 求 , 及时向 领导汇 报。对 待北京 的来电 ,问清 什么事 ,都是 让他们 通过

信号与系统8-1采样信号的傅里叶分析课件

信号与系统8-1采样信号的傅里叶分析课件
第8章 采样信号的傅里叶分析
现实中存在的大多都是连续信号(如速度、温度、压 力等),而计算机处理的则是离散信号。对连续信号进行 采样就可得到离散信号。
采样信号的频谱是怎么样的? 怎么才能够保留原连续信号中的信息量而不受损失?
1
信号的采样
意义
电影是连续画面的采样: 电影是由一组按时序的单个画面所组成,其中每一 幅画面代表着连续变化景象的一个瞬时画面(时间 样本),当以足够快的速度来看这些时序样本时, 就会感觉到是原来连续活动景象的重现。
f1(2t)
根据傅里叶变换的尺度变换性质,f1(t)的频谱扩展2倍(时域压缩), 所以最高频率为4kHz。
该信号的奈奎斯特频率为
fN 2 fm 8kHz
f2(t-3)
根据傅里叶变换的时移性质, f2(t-3)的幅度频谱不变(时移只改变 相位),所以最高频率为3kHz。
该信号的奈奎斯特频率为
时域:周期连续信号采样周期离散信号 频域:非周期离散频谱——周期离散频谱 (周期为S) 满足采样定理:频谱无混叠。
信号的时域采样,意味着信号频谱的周期性 信号时域的周期性,意味着信号频谱的离散性 信号时域的非周期性,意味着信号频谱的连续性
10
例 8.1
已最知高信频号率f分1(t量)是为最3k高H频z的率带分限量信为号2k。H求z的下带列限信信号号的,奈f奎2(t斯)是特 频率fN。
t N0T
(2)采样信号的频谱是离散的周期函数,周期s 。
F ( j)
0 0
最 ()
=
S
0
S
F~S ( j)
/T
S
0 0 S
当 S 20 时
1 T
F(
j) s
(t)

信号课件第三章傅里叶变换

信号课件第三章傅里叶变换
• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1

演示文稿

演示文稿
相卷积
相乘
Fs ( )
n
P F ( n )
n s

p(t )
抽样脉冲序列
FT
P( ) 2
n
P ( n )
n s

1、周期矩形脉冲抽样的频谱
1 f s (t ) f (t ). p (t ) Fs ( ) F ( ) * P ( ) 2 T 1 2s 1 jns t jns t 2 Pn p ( t ) e dt Ee dt Ts Ts 2 Ts 2 ns E Pn Sa ( ) Ts 2 E Fs ( ) Ts ns Sa ( )F ( ns ) 2 n
m c s m。滤除高频成份,即可重现原信号。
二、频域抽样
F ( )
F1 ( ) F ( ) ( )
( )
n
( n )
1
IFT IFT来自f1 (t ) 1
1 n
f (t nT )
1

IFT
f (t )
1 f1 (t ) f (t ) * T (t ) 1
从时域的相乘关系解释上图: g 0 (t ) [ g (t ) cos(0t )]cos(0t ) 1 = g (t )[1 cos(20t )] 2 1 1 = g (t ) g (t ).cos(20t ) 2 2 FT [ g 0 (t )] G0 1 1 G G 20 G 20 2 4
(t nT )

f1 (t )
1
1 n


f (t nT1 )
上式表明:若f (t )的频谱F ( )被间隔为1的 冲激序列在频域中抽样则在时域中等效于f (t ) 2 以T1 ( )为周期而重复。

抽样信号的傅立叶变换

抽样信号的傅立叶变换
42
❖ 第二步,用自适应噪声抵消方法从ECG 信号中消除较强的低频干扰。
Yeldman 等人的研究表明,仅仅运用自适 应噪声抵消方法而又没有任何预处理滤 波器,要消除所有ECG信号干扰是不可 能的。
43
一种基于LMS算法的数字式 自适应滤波器
44
特点
❖ 因为同时存在两个不同的干扰,所以采用双参考信 道
(5)
25
应用上述五点结论推导权系数更新表达式 应用(1)结论有: 再应用(2)(3)(4)(5)结论,有
26
❖ 由此可见,当迭代次数无限增加时,权
系数向量的数学期望值可收敛至Wiener
解,其条件是对角阵
的所有对
角元素均小于1,即
❖或
27
基本LMS自适应算法 (软件实现)
28
LMS自适应滤波器(硬件实现)
或其统计特性是随时间变化的.
因此,用维纳或卡尔曼滤波器实现不了最优滤波. 在此情况下,自适应滤波能够提供优良的滤波性能。
3
引言
自适应滤波概念
利用前一时刻已获得的滤波器参数等 结果,自动地调节(更新)现时刻的滤波 器参数,以适应信号和噪声未知的统计特 性,或者随时间变化的统计特性,从而实 现最优滤波。
29
第二节 自适应噪声抵消器
❖ 自适应噪声抵消的目的是:
主信号由有用信号和背景噪声组成;
去除主信号中的背景噪声;
背景噪声与参考信号中的噪声相关;
因此,自适应噪声抵消技术主要依赖于从主信号 和噪声中获取参考信号。
30
8.2.1 自适应噪声抵消原理
最佳噪声抵消器
❖ 其中 ❖ 估计误差 e (n)
31
低通滤波器。采用LMS算法。
64

§3-8 抽样信号的傅里叶变换与抽样定理

§3-8 抽样信号的傅里叶变换与抽样定理
1 T
X s ( j)
T 0
T 2T
t
s
0
s
2s

4
三、自然抽样
上述开关函数s(t)若是周期性矩形脉冲,抽样称为自然抽样。 于是,信号抽样的图形如下:
x(t )
X ( j )
0
t
0
S ( j)

(s )
s (t )
1

3T 2T T
T
2T
3T
t
s
T
s
X s ( j)
写出指数形式和三角形式的傅里叶级数展开式,并画出双边与单边频谱图。 二、已知
x(t ) 2 cos(
n 三、设系统的频率响应:H ( j) 4Sa(4) ,已知: x(t ) [2 (1) u (t 4n)] 1
试求系统响应y(t)。 四、两系统对输入ej5t的响应分别是ej5(t-1)与cos5t,试问哪个系统是非线性的? 五、一RL电路如图,输入为电流源is(t),输出是电感中
xs (t )
s(t )
xs (t ) x(t ) s(t )
信号s(t)称为开关信号。上式关系可以用右图表示。
根据开关信号的不同,可以产生不同的抽样信号。这里只介绍 两种常见的抽样信号:理想抽样与自然抽样。 理想抽样是不能实现的,但它在说明抽样定理时,有重要的理 论价值,我们会经常用到它。 自然抽样是一种现实的抽样,它不仅有理论价值,还有实用价 值。
is (t ) io (t )
1H
的电流io(t),试:列出电路的输入输出方程,求出其
频率响应,若输入x(t)=cost,求输出的时间函数。 六、周期性三角脉冲如图所示,试求其傅里叶级数展开式。

《傅里叶变换》课件

《傅里叶变换》课件
特点
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、

3.2抽样信号的傅里叶变换及抽样定理

3.2抽样信号的傅里叶变换及抽样定理

设:
F (ω ) = F [ f (t )]
(−ωm < ω < ωm )
(连续信号 连续信号) 连续信号 (抽样脉冲 抽样脉冲) 抽样脉冲 (抽样信号 抽样信号) 抽样信号 p(t)是周 期信号
P ( ω ) = F [ p ( t )]
Fs (ω ) = F [ f s ( t )]
满足: 满足: f s ( t ) = f ( t ) p ( t )
T 1
t
卷 积
− ω1 0 ω1
ω
− T -tm 0 tm T 1 1
t
抽样定理
时域抽样定理

• 频域抽样定理
1、时域抽样定理
惟一地表示。 的范围, 惟一地表示。 的范围,则信号f (t )可用等间隔的抽样值来 1 1 T (ωm = 2π fm ), 其抽样间隔必须不大于 ,即 s ≤ 2 fm 2 fm 或者说最低抽样率为 2 fm。
2.理想抽样(周期单位冲激抽样)
f ( t ) ↔ F (ω ) (−ωm < ω < ωm )
p ( t ) ↔ P (ω )
fs ( t ) ↔ Fs (ω )
p(t ) = δ T (t ) =
n =−∞
∑ δ (t − nT ) ↔ ωs ∑ δ (ω − nωs )
s


n =−∞
f s (t ) = f (t )δ T (t )
根据时域卷积定理
f1(t ) = F−1[F (ω)] = f (t ) ∗δT(t ) = f (t ) ∗ 1 =
∑δ (t − nT1) ω1 n=−∞
1

∑ f (t − nT1) ω1 n=−∞
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 3.9 抽样信号的傅里叶变换
• 主要内容
•抽样、抽样信号的概念、提出及抽样方式 •时域抽样 •频域抽样
• 重点:矩形脉冲抽样和冲激抽样 • 难点:频域抽样
一、抽样、抽样信号的概念、提出及抽样方式
1.抽样
抽样:利用抽样脉冲序列p(t)从边续信号f(t) 中“抽取”一系列的离散样值的过程,称之。
2.抽样信号
抽样信号:经抽取后的一系列的离散信号称之。
请同学们注意区别:抽样信号与抽样函数 Sa(t)=sint/t是完全不同的两个含义。 抽样也称为“采样”或“取样”。
3.实现抽样的原理及框图
(1)原理
抽样原理:连续信号经抽样成抽样信号,再经量化、 编码变成数字信号。将这种数字信号经传输,进行 上述逆过程,就可恢复出原连续信号。
相乘。即:
fs (t) f (t) p(t)
p(t)是周期信号,其傅里叶变换

P(w) 2 Pn (w nws )
其中
n
1
Pn T
Ts
2 Ts
p(t)e jnwst dt
2
是p(t)的傅里叶级数的系数
根据频域卷积定理:
1
Fs (w) 2 F (w) * P(w)

E
Ts
Sa( nws
2
)
得到矩形抽样信号的频谱:
Fs ቤተ መጻሕፍቲ ባይዱw)
E
Ts
Sa( nws
n
2
)F (w nws )
说明:矩形抽样在脉冲顶部不是平的,而是随 f(t)变化的,故称之“自然抽样”。
SUCCESS
THANK YOU
2019/7/23
2.冲激抽样(理想抽样)
若抽样脉冲p(t)是冲激序列
1.矩形脉冲抽样(自然抽样)
2.冲激抽样(理想抽样)
1.矩形脉冲抽样(自然抽样)
抽样脉冲p(t)是矩形,它的脉冲幅度为E,脉宽 为,抽样角频率为s(抽样间隔为Ts),
f (t)
F (w)
频谱
0
t
0
w
E p(t)

0 Ts
频谱 …
t
E P(w)
Ts
2

ws0 ws
w
频谱
相 乘
fs (t) f (t) p(t)
n
结论
不管矩形脉冲抽样或冲激抽样,其抽样后的信号 其频谱是离散周期的信号,其频谱的周期为:
ws

2
Ts
对于矩形脉冲抽样,其频谱的幅度随Sa函数变化。
对于冲激抽样,其频谱的幅度为常数。
冲激抽样是矩形脉冲抽样的一种极限情况。实际 抽样为矩形脉冲抽样。
三、频率抽样
设连续信号 f (t) FT F (w)


Fs (w)

PnF (w nws )
n
1 Fs (w)

Ts

ws 0
ws
w
1
Pn T
Ts
2 Ts
2
p(t)e jnwst dt

1 T
Ts
2 Ts
2
T
(t )e
jnwst dt

1 Ts
得到冲激抽样信号的频谱:
1
Fs (w)

Ts
F (w nws )
5.抽样方式
抽样有两种方式: 1.时域抽样 2.频域抽样
二、时域抽样
设连续信号 f (t) FT F (w)
抽样脉冲信号 p(t) FT P(w)
抽样后信号fs(t) fs (t) FT Fs (w)
若采用均匀抽样,抽样周期为Ts,抽样频率为
抽样过程:通过抽w样s 脉2冲序fs 列p2T(ts)与连续信号f(t)
若已知连续信号频谱 F (w) IFT f (t) 对 F (w) w (w) F1(w) 即在频域上抽样:
则抽样后的频谱:
F1 ( w)

F
(w)

w1
(w)
其中理想抽样信号为: w1(w) (w nw1)
n
w1 ( w)



n
(w
fs (t) 0
频谱
t
1
Fs (w) 2 F (w)* P(w)


积 Fs (w) PnF (w nws )
E nFs (w)
Ts
2

ws0 ws
w
求得频谱包络幅度:
1
Pn T
Ts
2 Ts
2
p(t)e jnwst dt

1 T
Ts
2 Ts
2
Ee jnwst dt
频域抽样,时域周期延拓。
时域抽样,频域周期延拓。
抽样信号与周期信号的特性
抽样特性1:时域周期信号(T1) f (t) F
频域离散频谱(n1);
时域连续信号f (t) 抽样
时域抽样信号(Ts ) fs (t) F
频域重复频谱(s )
抽样特性2:时域周期信号(T1) f1(t) F 1

nw1)
IFT
1 w1
T
(t)
根据时域卷积定理
F1(w) IFT
f1(t)
1 f (t) *
w1

(t nT 1)
n

1 w1

f
n
(t

nT 1)
连续信号f (t)的频谱F ()抽样后对应的
信号f1 (t )等效于f
(t )以T1

2 1
周期重复
f (t)
F (w)
频谱
0
t
0
w
E p(t)
频谱
P(w) ws


Ts0 Ts 2Ts
t

p(t) T (t) (t nTs )
n


ws 0
ws
w
相 乘
fs (t) f (t) p(t)
频谱
fs (t) 0 Ts
频谱
t
求得频谱包络幅度:
1
Fs (w) 2 F (w) * P(w)
频域抽样频谱(1 )
F 时域连续信号f (t)
例3-12:
画出周期矩形信号经冲激抽样后的频谱。

化简 Fs (w) PnF (w nws ) n
结论:
信号时域抽样: (1)其频谱Fs(w)是连续信号频谱F(w)是原信号 频谱的周期延拓; (2)其周期为抽样频率ws, (3)其幅度被Pn加权。由于Pn仅是n的函数,所 以其形状不会发生变化。
可采用不同的抽样脉冲进行抽样,讨论两种典型 的抽样脉冲序列:
(2) 框图
连续信号 f(t)
抽样
抽样信号 fs(t)
数字信号 量化编码
抽样脉冲 p(t)
抽样过程方框图
4.抽样后,提出的问题
抽样后,有两个问题要解决:
1.抽样信号fs(t)的傅里叶变换?它和未经抽样 的原连续信号f(t)的傅里叶变换有什么联系? (本节讨论的内容)
2.连续信号被抽样后,它是否保留了原信号 f(t)的全部信息? 即 在什么条件下,可从抽样信号fs(t)中无失真地恢 复出原连续信号f(t)?(下节讨论)
相关文档
最新文档