最新冀教版2018-2019学年数学八年级上学期第一次月考检测试题及答案解析-精编试题
最新冀教版八年级数学上册第一次月考考试(完整版)

最新冀教版八年级数学上册第一次月考考试(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.83.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A .①,②B .①,④C .③,④D .②,③7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .14二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.函数132y x x =--+中自变量x 的取值范围是__________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=________厘米.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.若x,y为实数,且y=14x-+41x-+12.求xyyx++2-xyyx+-2的值.4.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.5.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、C6、D7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23x -<≤3、14、35、50°6、4.三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =.2、12x x +-,55+34、(1)略;(2)105°5、(1)略;(2)78°.6、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价25元时,商场日盈利可达到2000元.。
最新冀教版八年级数学上册第一次月考考试及答案【完美版】

最新冀教版八年级数学上册第一次月考考试及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.当m=____________时,解分式方程533x mx x-=--会出现增根.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,将Rt ABC绕直角顶点C顺时针旋转90,得到DEC,连接AD,若25BAC∠=,则BAD∠=________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x xx x++=--(2)()()21112xx x x=+++-2.先化简,再求值:(x+2)(x-2)+x(4-x),其中x=14.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、D6、A7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、23、14、705、(-2,0)6、42.三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、-3.3、(1)11x -;(2)14、(1)略;(2)4.5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
最新冀教版八年级数学上册第一次月考考试及答案【完整版】

最新冀教版八年级数学上册第一次月考考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B . C . D .10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分) 1.已知1<x <52(1)x -+|x-5|=________.21273=___________. 3.分解因式:3x -x=__________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 7,则图中阴影部分的面积为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
最新冀教版八年级数学上册第一次月考考试卷及答案【完美版】

最新冀教版八年级数学上册第一次月考考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .152 2.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.下列各式,化简后能与3合并的是( )A .18B .24C .12D .9 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.在数轴上表示实数a的点如图所示,化简2(5)a +|a-2|的结果为____________.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.5.如图,将周长为16的三角形ABC 沿BC 方向平移3个单位得到三角形DEF ,则四边形ABFD 的周长等于________.6.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y .3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围; (2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、A6、B7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、223、3.4、1.55、226、12.5三、解答题(本大题共6小题,共72分)1、原方程组的解为=63x y ⎧⎨=-⎩2、132 3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略(2)略5、(1)略(2)菱形6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
冀教版八年级数学上册第一次月考考试卷及答案【新版】

冀教版八年级数学上册第一次月考考试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)13x x =,则x=__________21273=___________. 323(1)0m n -+=,则m -n 的值为________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、B6、B7、C8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.23、44、a+c5、46、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、-3.3、(1)见解析;(2)经过,理由见解析4、(1)y=x+5;(2)272;(3)x>-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
最新冀教版八年级数学上册第一次月考测试卷及答案【完整】

最新冀教版八年级数学上册第一次月考测试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.比较大小:3133.若m+1m=3,则m2+21m=________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1的度数为__________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、D5、A6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、<3、74、20°.5、36、6三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、22x-,12-.3、0.4、(1)y=x+5;(2)272;(3)x>-3.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
最新冀教版八年级数学上册第一次月考考试题【及参考答案】

最新冀教版八年级数学上册第一次月考考试题【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是()A.9B.7C.20D.1 32.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或119B.13或15 C.13 D.156.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或07.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.16的算术平方根是___________.3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________.4.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB ′=________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:()()22141a a a +--,其中18a =.3.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、C6、B7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、43、-1或2或14、1.55、406、12三、解答题(本大题共6小题,共72分)1、x=12、23、24x -<≤,数轴见解析.4、(1)证明略;(2)证明略;(3)10.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
冀教版八年级数学上册第一次月考测试卷(带答案)

冀教版八年级数学上册第一次月考测试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.4的平方根是.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、C6、B7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、±2.4、8.5、46、4三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、22x-,12-.3、(1)-3x+2<-3y+2,理由见解析;(2)a<34、(1)略;(2)2.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期第一次月考数学试卷一、选择题:(每小题3分,共36分)1.(3分)下列是分式的是()A.B.C.D.2.(3分)下列各式正确的是()A.B.C.D.3.(3分)下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0 D.对顶角相等4.(3分)下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形5.(3分)若△ABC≌△DEF,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=DF 6.(3分)如图,△ABC≌△CDA,AB=5,BC=7,AC=6,则AD边的长为()A.5 B.6 C.7 D.不确定7.(3分)下列各分式中,最简分式是()A.B.C.D.8.(3分)化简的结果是()A.B.C.D.9.(3分)若把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍10.(3分)当x为任意实数时,下列分式一定有意义的是()A.B.C.D.11.(3分)若分式方程有增根,则a的值是()A.1 B.0 C.﹣1 D.﹣212.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.B.C.D.二、填空题:(每小题3分,共18分)13.(3分)当x时,分式没有意义.14.(3分)若有增根,则增根为.15.(3分)计算:=.16.(3分)已知a﹣=3,那么a2+=.17.(3分)如图,若△ABC≌△EBD,且BD=4cm,∠D=60°,则∠ACE=°.18.(3分)阅读下列材料:方程的解是x=1;方程的解是x=2;方程的解是x=3;…根据上述结论,写出一个解为5的分式方程.三、解答题:19.计算:(1)(2)(3)(4)(﹣x﹣2)20.(10分)解分式方程:(1)(2).21.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.22.(8分)先化简,再求值:÷(﹣1),其中x=﹣2.23.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?24.(10分)观察下列各式:并解答后面的问题.;;;…①由此可以推测=.②用含n的式子(n是正整数)表示这一规律:.③用上述规律计算:++.参考答案与试题解析一、选择题:(每小题3分,共36分)1.(3分)下列是分式的是()A.B.C.D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选B.点评:π不是字母,是常数,所以不是分式,是整式.2.(3分)下列各式正确的是()A.B.C.D.考点:分式的基本性质.分析:分式的基本性质:分式的分子、分母同乘以或同除以一个不为0的数或整式,分式的值不变.只有C是符合的.解答:解:根据分式的基本性质:分式的分子、分母同乘以或同除以一个不为0的数或整式,分式的值不变,A、D是分子、分母同加或同减是不符合分式基本性质的;B,分式的分子分母同乘以b,而b是有可能是0的,B不正确;C,符合分式的基本性质,是正确的.故选C.点评:做题的根据是看是否符合分式的基本性质,特别要注意同乘或同除的数或整式是否为0.3.(3分)下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0 D.对顶角相等考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题,再对逆命题判断即可.解答:解:A.直角都相等的逆命题是相等的角是直角,是假命题,B.钝角都小于180°的逆命题是小于180°的角都是钝角,是假命题,C.如果x2+y2=0,那么x=y=0的逆命题是如果x=y=0,那么x2+y2=0,是真命题,D.对顶角相等的逆命题是相等的角是对顶角,是假命题.故选:C.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(3分)下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形考点:全等图形.分析:能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.解答:解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选C.点评:本题考查了全等形的特点,做题时一定要严格按照全等的定义进行.5.(3分)若△ABC≌△DEF,则下列结论错误的是()A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=DF考点:全等三角形的性质.分析:根据全等三角形对应边相等,全等三角形对应角相等解答.解答:解:∵△ABC≌△DEF,∴BC=EF,∠B=∠E,∠C=∠F,AC=DF.∴结论∠B=∠D错误.故选B.点评:本题考查了全等三角形的性质,对应顶点的字母写在对应位置上是准确确定对应边和对应角的关键.6.(3分)如图,△ABC≌△CDA,AB=5,BC=7,AC=6,则AD边的长为()A.5 B.6 C.7 D.不确定考点:全等三角形的性质.分析:根据全等三角形对应边相等可得AD=BC.解答:解:∵△ABC≌△CDA,∴AD=BC=7.故选C.点评:本题考查了全等三角形的性质,熟记对应顶点的字母写在对应位置上找出对应边是解题的关键.7.(3分)下列各分式中,最简分式是()A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;B、=m﹣n,故本选项错误;C、=,故本选项错误;D、=,故本选项错误.故选A、点评:本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.8.(3分)化简的结果是()A.B.C.D.考点:约分.分析:首先把分式分子分母因式分解,然后把相同的因子约掉.解答:解:=,=﹣,故选:B.点评:解答本题主要把分式分子分母进行因式分解,然后进行约分.9.(3分)若把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍考点:分式的基本性质.专题:计算题.分析:根据题意,分式中的x和y都扩大2倍,则==;解答:解:由题意,分式中的x和y都扩大2倍,∴==;分式的值是原式的,即缩小2倍;故选C.点评:本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.10.(3分)当x为任意实数时,下列分式一定有意义的是()A .B .C .D .考点: 分式有意义的条件.分析: 根据分式有意义的条件:分式有意义的条件是分母不等于零进行分析即可. 解答: 解:A 、当x=±是,x 2﹣2=0,分式无意义,故此选项错误; B 、无论x 为何值,x 2+1≠0,分式有意义,故此选项正确;C 、当x=0时,x 2=0,分式无意义,故此选项错误;D 、当x=﹣2时,x+2=0,分式无意义,故此选项错误;故选:B .点评: 此题主要考查了分式有意义,关键是掌握分式有意义的条件是分母不等于零.11.(3分)若分式方程有增根,则a 的值是() A . 1B . 0C . ﹣1D . ﹣2考点: 分式方程的增根.分析: 分式方程去分母转换为整式方程,由分式方程有增根,得到x ﹣2=0,求出x 的值,代入整式方程即可求出a 的值.解答: 解:去分母得:1+3x ﹣6=﹣a+x ,根据题意得:x ﹣2=0,即x=2,代入整式方程得:1+6﹣6=﹣a+2,解得:a=1.故选:A .点评: 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设江水的流速为x千米/时,根据一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可列方程求解.解答:解:设江水的流速为x千米/时,=.故选A.点评:本题考查理解题意的能力,关键知道路程=时间×速度,本题以时间做为等量关系列方程.二、填空题:(每小题3分,共18分)13.(3分)当x=1时,分式没有意义.考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义.解答:解:当分母x﹣1=0,即x=1时,分式没有意义.故答案为:=1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)若有增根,则增根为x=4.考点:分式方程的增根.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,让分式方程的最简公分母为0,得到方程求解即可.解答:解:∵原方程有增根,∴最简公分母x﹣4=0,即增根为x=4.点评:确定分式方程的增根的方法:让分式方程的最简公分母为0.15.(3分)计算:=1.考点:分式的加减法.专题:计算题.分析:初看此题,分母不同,但仔细观察会发现,分母互为相反数,可化为同分母分式相加减.解答:解:原式===1.故答案为1.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.16.(3分)已知a﹣=3,那么a2+=11.考点:分式的加减法.专题:计算题.分析:对已知条件两边平方,整理后不难求解.解答:解:∵=3,∴(a﹣)2=9,即a2﹣2+=9,∴a2+=9+2=11.故答案为11.点评:此题的关键是根据a与互为倒数的特点,利用完全平方公式求解.17.(3分)如图,若△ABC≌△EBD,且BD=4cm,∠D=60°,则∠ACE=120°.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠ACB=120°,即可求出答案.解答:解:∵△ABC≌△EBD,∠D=60°,∴∠ACB=∠D=60°,∴∠ACE=180°﹣∠ACB=120°,故答案为:120.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等.18.(3分)阅读下列材料:方程的解是x=1;方程的解是x=2;方程的解是x=3;…根据上述结论,写出一个解为5的分式方程﹣=﹣.考点:分式方程的解.专题:规律型.分析:从条件中所给的三个方程的解的过程中发现规律:方程的解是分式无意义的中间的数,即可写出解为5的分式方程.解答:解:由方程的解是分式无意义的中间的数,得写出一个解为5的分式方程﹣=﹣,故答案为:﹣=﹣.点评:本题考查了分式方程的解,发现规律是解题关键.三、解答题:19.计算:(1)(2)(3)(4)(﹣x﹣2)考点:分式的混合运算.分析:(1)把除法变乘法,约分即可;(2)先对分子与分母因式分解,再约分即可;(3)通分再约分即可;(4)先算括号里面的,再把除法变乘法,约分即可.解答:解:(1)原式=﹣•=﹣;(2)原式=•﹣=﹣=;(3)原式=﹣==x+2;(4)原式=(﹣)==•=.点评:本题考查了分式的混合运算,解决问题的关键是因式分解和约分.20.(10分)解分式方程:(1)(2).考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:2﹣2+x=3x+6,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=3+3x﹣5+5x,移项合并得:8x=3,解得:x=,经检验是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.考点:全等三角形的判定与性质.专题:证明题.分析:由HL可得Rt△DCE≌Rt△BAF,进而得出对应线段、对应角相等,即可得出(1)、(2)两个结论.解答:证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C=∠A,∴AB∥CD.点评:本题主要考查了全等三角形的判定及性质问题,能够熟练掌握.22.(8分)先化简,再求值:÷(﹣1),其中x=﹣2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=÷=÷=×=,当x=﹣2时,原式==4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱.某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?考点:分式方程的应用.分析:设第一天有x人,第二天有(x+50)人,根据已知第一天捐款4800元,第二天捐款6000元,且两天人均捐款数相等,可列方程求解.解答:解:设第一天有x人,第二天有(x+50)人,由题意得:=解得:x=200,经检验x=200是分式方程的解.200+200+50=450(人).答:两天共有450人捐款.点评:本题主要考查分式方程的应用,设出捐款的人数,根据两天平均捐款相等可列方程求解.注意不要忘记检验.24.(10分)观察下列各式:并解答后面的问题.;;;…①由此可以推测=﹣.②用含n的式子(n是正整数)表示这一规律:=﹣.③用上述规律计算:++.考点:分式的加减法.专题:规律型.分析:①观察一系列式子得出结果即可;②归纳总结得到一般性规律,写出即可;③原式利用得出的规律变形,计算即可得到结果.解答:解:①根据题意得:==﹣;②根据题意得:=﹣;③原式=﹣+﹣+…+﹣=﹣=.故答案为:①﹣;②.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.。