_高中数学第二章基本初等函数(Ⅰ)阶段质量评估新人教A版必修1
新人教A版必修1第二章基本初等函数

logc b loga b (a 0,且a 1; c 0,且c 1; b 0) logc a
三、重点内容
(三)基本性质:
y a x (a 0,且a 1)
0<a<1
y
a>1
y
1
图象
0
1
x
0
x
定义域 值域 性质
(0, )
当x>0时0<y<1; 当x<0时y>1; 当x=0时y=1; 在R上是减函数
R
(0, )
当x>0时y>1; 当x<0时0<y<1; 当x=0时y=1; 在R上是增函数
R
三、重点内容
(三)基本性质: y loga x(a 0,且a 1)
0 a 1
y
a 1
y
图象
定义 域 值域 性质
O
1
x
O
1
x
(0, )
R
(0, )
R
( 3 )) 0过定点 x 1时, y 0; (1)(过定点 3) x 1时, y 0; (1,0) ( 1 (1,0)
四、例题分析 若f ( x) x 2 x b, 且f (log 2 a ) b, log 2 [ f (a )] 2(a 1).
高中数学必修1(人教A版)第二章基本初等函数2-1知识点总结 含同步练习题及答案

(2 x )2 + 2 x − 6 = 0,
令 t = 2 x ,则 t > 0 ,所以
t 2 + t − 6 = 0.
解得 t = 2 或 t = −3.因为 t > 0 ,所以 t = 2 ,即 2 x = 2 ,所以 x = 1. 若 a−5x > ax+7 (a > 0 且 a ≠ 1),求 x 的取值范围.
< 1 的解为
(
)
B.−2 < t < 1 C.−2 < t < 2 D.−3 < t < 2
A.1 < t < 2
答案: A 解析: 若不等式
x2 − 2ax + a > 0,对 x ∈ R 恒成立,则 Δ = 4a2 − 4a < 0 ∴ 0 < a < 1 又 2 a2t+1 < at +2t−3 < 1 ,则 2t + 1 > t 2 + 2t − 3 > 0 t + 1 > t 2 + 2t − 3 ∴ 1 < t < 2 . 即 { 22 t + 2t − 3 > 0
2
3 3 ] 上是增函数,在 [ , +∞) 上是减函数,所以 2 2 3 3 −x2 +3x+2 在 f (x) = 2 (−∞, ] 上是增函数,在 [ , +∞) 上是减函数. 2 2 x (2)函数的定义域为 R,令 t = 2 (t > 0),则 y = (2 x )2 − 2 × 2 x + 5 = t 2 − 2t + 5 = (t − 1)2 + 4,根据该函数的图象可得,y ∈ [4, +∞). 当 t ≥ 1 时,y = (t − 1)2 + 4 在 [1, +∞) 上为增函数,又 2 x ≥ 1 ,即 x ≥ 0,且 t = 2 x 在 [0, +∞) 上为增函数,由复合函数的单调性的判断方法知,原函数在 [0, +∞) 上是增函数.同 理,原函数在 (−∞, 0] 上为增函数.
2020届高中人教A版数学必修1单元测试:第二章 基本初等函数(Ⅰ)(一)B卷 Word版含解析

高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) 名校好题·能力卷 (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <14,则化简44a -12的结果是( ) A.1-4a B.4a -1 C .-1-4aD .-4a -12.某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y =f (x )的图象大致是( )3.设f (x )=⎝ ⎛⎭⎪⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 4.若3a >1,则实数a 的取值范围为( )A .(-∞,0)B .(0,1)C .(0,+∞)D .(2,+∞) 5.函数y =2x -12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.函数y =⎝ ⎛⎭⎪⎪⎫12 x 2-2的单调递减区间为( )A .(-∞,0]B .0,+∞)C .(-∞,2]D .2,+∞)7.函数y =⎝ ⎛⎭⎪⎪⎫12-x 2+2x 的值域是( ) A .R B.⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ C .(2,+∞) D .(0,+∞)8.设f (x )是定义在实数集R 上的函数,满足条件:y =f (x +1)是偶函数,且当x ≥1时,f (x )=5x ,则f ⎝ ⎛⎭⎪⎪⎫23,f ⎝ ⎛⎭⎪⎪⎫32,f ⎝ ⎛⎭⎪⎪⎫13的大小关系是( ) A .f ⎝ ⎛⎭⎪⎪⎫13<f ⎝ ⎛⎭⎪⎪⎫23<f ⎝ ⎛⎭⎪⎪⎫32B .f ⎝ ⎛⎭⎪⎪⎫32<f ⎝ ⎛⎭⎪⎪⎫13<f ⎝ ⎛⎭⎪⎪⎫23C .f ⎝ ⎛⎭⎪⎪⎫32<f ⎝ ⎛⎭⎪⎪⎫23<f ⎝ ⎛⎭⎪⎪⎫13D .f ⎝ ⎛⎭⎪⎪⎫23<f ⎝ ⎛⎭⎪⎪⎫32<f ⎝ ⎛⎭⎪⎪⎫139.函数y =|x |e -xx的图象的大致形状是( )10.下列函数中,与y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =|x |-1|x |C .y =-(2x +2-x )D .y =x 3-111.已知函数f (x )=⎩⎪⎨⎪⎧a x x <0,a -3x +4a x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,14 B .(0,1) C.⎣⎢⎢⎡⎭⎪⎪⎫14,1 D .(0,3)12.设函数f (x )=2-x 2+x +2,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),则( )A .K 的最大值为2 2B .K 的最小值为2 2C .K 的最大值为1D .K 的最小值为1第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.2-12+-42+12-1-1-5=________.14.函数f (x )=2a x +1-3(a >0,且a ≠1)的图象经过的定点坐标是________.15.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎪⎫13x,x ≥0,则不等式|f (x )|≥13的解集为________.16.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则当x <0时,f (x )=________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(满分10分)函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式;(2)若函数g (x )=f x -1f x +1,试判断函数g (x )的奇偶性并给出证明.18.(本小题满分12分) 已知函数f (x )=2x -4x .(1)求y =f (x )在-1,1]上的值域; (2)解不等式f (x )>16-9×2x ;(3)若关于x 的方程f (x )+m -1=0在-1,1]上有解,求m 的取值范围.19.(满分12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的关系近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)进一步测定:每毫升血液中的含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.20.(满分12分)已知函数f(x)=a2+22x+1是奇函数.(1)求a的值;(2)判断f(x)的单调性,并用定义加以证明;(3)求f(x)的值域.21.(满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎪⎫13x ,x ∈-1,1],函数φ(x )=f (x )]2-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m >n >3,当h (a )的定义域为n ,m ]时,值域为n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.22.(满分12分)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎪⎫13x +⎝ ⎛⎭⎪⎪⎫19x.(1)当a =-12时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在0,+∞)上是以4为上界的有界函数,求实数a 的取值范围.详解答案1.A 解析:∵a <14,∴4a -1<0,∴44a -12=1-4a .2.D 解析:经过x 年后y =(1+110.4%)x =2.104x .3.D 解析:函数f (x )的定义域R 关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎪⎫12|-x |=⎝ ⎛⎭⎪⎪⎫12|x |=f (x ),所以f (x )是偶函数.又f (x )=⎝ ⎛⎭⎪⎪⎫12|x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎪⎫12x,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数.4.C 解析:因为3a >1,所以3a >30,3>1,∴y =3a 是增函数.∴a >0. 5.A 解析:函数y =2x -12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x-12-x +1=12x -112x+1=1-2x1+2x =-f (x ),所以该函数是奇函数. 6.B 解析:函数y =⎝ ⎛⎭⎪⎪⎫12u为R 上的减函数,欲求函数y =⎝ ⎛⎭⎪⎪⎫12 x 2-2的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为0,+∞).7.B 解析:令t =-x 2+2x ,则t =-x 2+2x 的值域为(-∞,1],所以y =⎝ ⎛⎭⎪⎪⎫12-x 2+2x =⎝ ⎛⎭⎪⎪⎫12t 的值域为⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. 解题技巧:本题主要考查了指数型函数的值域,解决本题的关键是先求出指数t =-x 2+2x 的值域,再根据复合函数的单调性求出指数型函数的值域.8.D 解析:∵y =f (x +1)是偶函数,∴y =f (x +1)的对称轴为x =0,∴y =f (x )的对称轴为x =1.又x ≥1时,f (x )=5x ,∴f (x )=5x 在1,+∞)上是增函数,∴f (x )在(-∞,1]上是减函数.∵f ⎝ ⎛⎭⎪⎪⎫32=f ⎝ ⎛⎭⎪⎪⎫12,且23>12>13,∴f ⎝ ⎛⎭⎪⎪⎫23<f ⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫13,即f ⎝ ⎛⎭⎪⎪⎫23<f ⎝ ⎛⎭⎪⎪⎫32<f ⎝ ⎛⎭⎪⎪⎫13.9.C 解析:由函数的表达式知,x ≠0,y =e -x |x |x =⎩⎪⎨⎪⎧e -x,x >0,-e -x,x <0,所以它的图象是这样得到的:保留y =e -x ,x >0的部分,将x <0的图象关于x 轴对称.故选D.10.C 解析:设函数f (x )=y =-3|x |,x ∈R ,∴f (-x )=-3|-x |.∵f (x )=f (-x ),∴f (x )为偶函数.令t =|x |,∴t =|x |,x ∈(-∞,0)是减函数,由复合函数的单调性知,y =-3|x |在x ∈(-∞,0)为增函数.选项A 为奇函数,∴A 错;选项B 为偶函数但是在x ∈(-∞,0)为减函数,∴B 错;选项C 令g (x )=-(2x +2-x ),g (-x )=-(2-x +2x ),∴g (x )=g (-x ),∴g (x )为偶函数.由复合函数的单调性知,g (x )在x ∈(-∞,0)为增函数.故选C.11.A 解析:∵对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,∴f (x )是R 上的减函数.∴⎩⎪⎨⎪⎧0<a <1,a 0≥4a ,解得a ∈⎝⎛⎦⎥⎥⎤0,14.故选A. 12.B 解析:∵函数f (x )=2-x 2+x +2的值域为1,22],又∵对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),∴K ≥2 2.故选B.13.-22 解析:2-12+-42+12-1-1-5=12-42+2+11-1=-32+2=-22.14.(-1,-1) 解析:由指数函数恒过定点(0,1)可知,函数f (x )=2a x +1-3(a >0,且a ≠1)的图象恒过定点(-1,-1).15.-3,1] 解析:当x <0时,|f (x )|≥13,即1x ≤-13,∴x ≥-3;当x ≥0时,|f (x )|≥13,即⎝ ⎛⎭⎪⎪⎫13x≥13,∴x ≤1. 综上不等式的解集是x ∈-3,1].解题技巧:本题主要考查了关于分段函数的不等式,解决本题的关键是分段求出不等式的解集,最后取并集.16.-2-x +3 解析:当x <0时,-x >0.∵当x >0时,f (x )=2x -3,∴f (-x )=2-x -3.又f (x )是定义在R 上的奇函数,∴当x <0时,f (-x )=2-x -3=-f (x ),∴f (x )=-2-x +3.17.解:(1)由函数图案过点A (0,1)和B (3,8)知,⎩⎪⎨⎪⎧k =1,k ·a -3=8,解得⎩⎪⎨⎪⎧k =1,a =12,∴f (x )=2x .(2)函数g (x )=2x -12x +1为奇函数.证明如下:函数g (x )定义域为R ,关于原点对称;且对于任意x ∈R ,都有g (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x+1=-g (x )成立.∴函数g (x )为奇函数.18.解:(1)设t =2x ,因为x ∈-1,1],∴t ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2,y =t -t 2=-⎝ ⎛⎭⎪⎪⎫t -122+14, ∴t =12时,f (x )max =14,t =2时,f (x )min =-2.∴f (x )的值域为⎣⎢⎢⎡⎦⎥⎥⎤-2,14. (2)设t =2x ,由f (x )>16-9×2x 得t -t 2>16-9t , 即t 2-10t +16<0,∴2<t <8,即2<2x <8,∴1<x <3, ∴不等式的解集为(1,3).(3)方程有解等价于m 在1-f (x )的值域内,∴m 的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤34,3. 19.解:(1)当t ∈0,1]时,设函数的解析式为y =kt ,将M (1,4)代入,得k =4,∴ y =4t .又当t ∈(1,+∞)时,设函数的解析式为y =⎝ ⎛⎭⎪⎪⎫12t -a,将点(3,1)代入得a =3,∴ y =⎝ ⎛⎭⎪⎪⎫12t -3.综上,y =f (t )=⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝ ⎛⎭⎪⎪⎫12t -3,t >1.(2)由f (t )≥0.25,解得116≤t ≤5.所以服药一次治疗疾病的有效时间为5-116=7916(小时).20.解:(1)由题知,f (x )的定义域是R ,∵f (x )是奇函数,∴f (0)=0,即f (0)=a2+220+1=0,解得a =-2.经验证可知,f (x )是奇函数, ∴a =-2.(3)f (x )=-1+22x +1,∵2x>0,∴2x+1>1,∴0<22x +1<2,-1<-1+22x +1<1,∴-1<y <1.故f (x )的值域为(-1,1).21.解:(1)因为x ∈-1,1],所以⎝ ⎛⎭⎪⎪⎫13x ∈⎣⎢⎢⎡⎦⎥⎥⎤13,3. 设t =⎝ ⎛⎭⎪⎪⎫13x ,t ∈⎣⎢⎢⎡⎦⎥⎥⎤13,3,则φ(x )=t 2-2at +3=(t -a )2+3-a 2. 当a <13时,y min =h (a )=φ⎝ ⎛⎭⎪⎪⎫13=289-2a 3;当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2; 当a >3时,y min =h (a )=φ(3)=12-6a .∴h (a )=⎩⎪⎨⎪⎧289-2a 3⎝ ⎛⎭⎪⎪⎫a <13,3-a 2⎝⎛⎭⎪⎪⎫13≤a ≤3,12-6a a >3.(2)假设满足题意的m ,n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数.∵h (a )的定义域为n ,m ],值域为n 2,m 2],∴⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减,得6(m -n )=(m -n )(m +n ). 由m >n >3,∴m +n =6,但这与m >n >3矛盾,∴满足题意的m ,n 不存在.22.解:(1)当a =-12时,f (x )=1-12×⎝ ⎛⎭⎪⎪⎫13x +⎝ ⎛⎭⎪⎪⎫19x .令t =⎝ ⎛⎭⎪⎪⎫13x ,∵x <0,∴t >1,f (t )=1-12t +t 2.∵f (t )=1-12t +t 2在(1,+∞)上单调递增,∴f (t )>32,即f (x )在(-∞,1)的值域为⎝ ⎛⎭⎪⎪⎫32,+∞. 故不存在常数M >0,使|f (x )|≤M 成立,∴函数f (x )在(-∞,0)上不是有界函数.(2)由题意知,|f (x )|≤4,即-4≤f (x )≤4对x ∈0,+∞)恒成立.令t =⎝ ⎛⎭⎪⎪⎫13x ,∵x ≥0,∴t ∈(0,1],∴-⎝ ⎛⎭⎪⎪⎫t +5t ≤a ≤3t -t 对t ∈(0,1]恒成立, ∴⎣⎢⎢⎡⎦⎥⎥⎤-⎝ ⎛⎭⎪⎪⎫t +5t max ≤a ≤⎝ ⎛⎭⎪⎪⎫3t -t min . 设h (t )=-⎝ ⎛⎭⎪⎪⎫t +5t ,p (t )=3t -t ,t ∈(0,1]. 由于h (t )在t ∈(0,1]上递增,p (t )在t ∈(0,1]上递减,h (t )在t ∈(0,1]上的最大值为h (1)=-6,p (t )在1,+∞)上的最小值为p (1)=2,则实数a 的取值范围为-6,2].。
高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
2.2.1 第1课时 对数--第二章基本初等函数(I)《新课程同步进阶攻略(人教A版必修一》

2.2 对数函数2.2.1对数与对数运算第1课时对数[目标] 1.记住对数的定义,会进行指数式与对数式的互化;2.记住对数的性质,会利用对数的性质解答问题.[重点] 对数的概念及对数的性质.[难点] 对数概念的理解及对数性质的应用.知识点一对数的概念[填一填]1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.对数与指数间的关系:当a>0,a≠1时,a x=N⇔x=log a N.2.两种重要对数(1)常用对数:以10为底的对数叫做常用对数,并把log10N记为lg N.(2)自然对数:以无理数e(e=2.718_28…)为底的对数称为自然对数,并把log e N记为ln N.[答一答]1.在对数概念中,为什么规定a>0且a≠1呢?提示:(1)若a<0,则N取某些数值时,log a N不存在,为此规定a不能小于0.(2)若a=0,则当N≠0时,log a N不存在,当N=0时,则log a N有无数个值,与函数定义不符,因此,规定a≠0.(3)若a=1,当N≠1时,则log a N不存在,当N=1时,则log a N有无数个值,与函数定义不符,因此,规定a≠1.2.判一判(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.(×)(2)对数式log32与log23的意义一样.(×)(3)对数的运算实质是求幂指数.( √ )(4)等式log a 1=0对于任意实数a 恒成立.( × ) 知识点二 对数的基本性质[填一填]1.对数的性质 (1)负数和零没有对数; (2)log a 1=0(a >0,且a ≠1); (3)log a a =1(a >0,且a ≠1). 2.对数恒等式 a log a N =N .[答一答]3.为什么零与负数没有对数?提示:因为x =log a N (a >0,且a ≠1)⇔a x =N (a >0,且a ≠1),而a >0且a ≠1时,a x 恒大于0,即N >0,故0和负数没有对数.4.你知道式子a log a N =N (a >0,a ≠1,N >0)为什么成立吗? 提示:此式称为对数恒等式.设a b =N ,则b =log a N , ∴a b =a log a N =N .类型一 对数的意义[例1] 求下列各式中的实数x 的取值范围: (1)log 2(x -10);(2)log (x -1)(x +2).[分析] 根据对数的定义列出不等式(组)求解. [解] (1)由题意有x -10>0,∴x >10, ∴实数x 的取值范围是{x |x >10}. (2)由题意有⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1,且x ≠2,∴x >1,且x ≠2.∴实数x 的取值范围是{x |x >1,且x ≠2}.求形如log f (x )g (x )的式子有意义的x 的取值范围,可利用对数的定义,即满足⎩⎪⎨⎪⎧g (x )>0,f (x )>0,f (x )≠1,进而求得x 的取值范围.[变式训练1] 求下列各式中实数x 的取值范围: (1)log (2x -1)(3x +2); (2)log (x 2+1)(-3x +8).解:(1)因为真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧3x +2>0,2x -1>0,2x -1≠1,解得x >12,且x ≠1.即实数x 的取值范围是{x |x >12,且x ≠1}.(2)因为底数x 2+1≠1,所以x ≠0. 又因为-3x +8>0,所以x <83.综上可知,x <83,且x ≠0.即实数x 的取值范围是{x |x <83,且x ≠0}.类型二 利用对数式与指数式的关系求值[例2] 求下列各式中x 的值: (1)4x =5·3x ;(2)log 7(x +2)=2; (3)lne 2=x ;(4)log x 27=32;(5)lg0.01=x .[分析] 利用指数式与对数式之间的关系求解. [解] (1)∵4x=5·3x,∴4x3x =5,∴⎝⎛⎭⎫43x =5,1.log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,转化前后底数不变.2.对于对数和对数的底数与真数三者之间,已知其中两个就可以利用对数式和指数式的互化求出第三个.[变式训练2] 求下列各式中x 的值. (1)log 2x =32;(2)log x 33=3;(3)x =log 51625;(4)log 2x 2=4.解:(1)由log 2x =32,得x =232=23=2 2.(2)由log x 33=3,得x 3=33=(3)3,∴x = 3. (3)由x =log 51625,得5x =1625=5-4,∴x =-4. (4)由log2x 2=4,得x 2=(2)4=4,∴x =±2. 类型三 对数基本性质的应用[例3] 求下列各式中x 的值:[解](1)∵log3(log2x)=0,∴log2x=1.∴x=21=2.对数的基本性质及对数恒等式是进行对数化简、求值的重要工具,要熟记并能灵活应用. [变式训练3]求下列各式中的x:解:(1)∵ln(lg x)=1,∴lg x=e,∴x=10e.(2)∵log2(log5x)=0,∴log5x=1,∴x=5.1.把对数式m=log n q化为指数式是(B)A.m n=q B.n m=q C.n q=m D.q m=n解析:利用对数定义得n m=q.2.log 3181等于( B )A .4B .-4 C.14 D .-14解析:log 3181=log 33-4=-4.3.=34.4.log 5[log 3(log 2x )]=0,则x -12 =24.解析:∵log 5[log 3(log 2x )]=0,∴log 3(log 2x )=1.∴log 2x =3.∴x =23.5.把下列各式中的对数式化为指数式,指数式化为对数式. (1)5-2=125;(2)8x =30;(3)3x =1;(4)log 13 9=-2;(5)x =log 610;(6)x =ln 13;(7)3=lg x .解:(1)-2=log 5125;(2)x =log 830;(3)x =log 31;(4)(13)-2=9;(5)6x =10;(6)e x =13;(7)103=x .——本课须掌握的三大问题1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2) a log a N =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化学习至此,请完成课时作业18。
高一数学人教a版必修一_习题_第二章_基本初等函数(ⅰ)_2.1.1_word版有答案

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列运算结果中正确的为( )A .a 2·a 3=a 6B .(-a 2)3=(-a 3)2C .(a -1)0=1D .(-a 2)3=-a 6解析: a 2·a 3=a 5,(-a 2)3=(-1)3·(a 2)3=-a 6,而(-a 3)2=a 6,∴在a ≠0时(-a 2)3≠(-a 3)2;若a =1,则(a -1)0无意义,所以只有D 正确.答案: D2.⎝⎛⎭⎫1120-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( ) A .-13B.13C.43D.73解析: 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73. 答案: D3.将⎝⎛⎭⎪⎫x 13·3x -2-85化成分数指数幂为( ) A .x -13B .x 415C .x -415D .x 25解析: 原式=⎝⎛⎭⎫x 16·x -23×12-85=⎝⎛⎭⎫x 16-13-85=x -16×⎝⎛⎭⎫-85=x 415.答案: B4.下列说法中,正确说法的个数为( )①n a n =a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2. A .0B .1C .2D .3解析: ①中,若n 为偶数,则不一定成立,故①是错误的;②中,因为a 2-a +1=⎝⎛⎭⎫a -122+34≠0,所以(a 2-a +1)0=1是正确的;③是错误的;④左边为负数,而右边为正数,是错误的,故选B.答案: B二、填空题(每小题5分,共15分)5.[(-5)4]14-150的值是________.解析: [(-5)4]14-150=(54)14-150=5-1=4. 答案: 46.设α、β为方程2x 2+3x +1=0的两个根,则⎝⎛⎭⎫14α+β=________________________________________________________________________.解析: 由根与系数关系得α+β=-32,所以⎝⎛⎭⎫14α+β=⎝⎛⎭⎫14-32=(2-2)-32=23=8. 答案: 87.已知x 2-4x +4+y 2+6y +9=0,则y x 的值为________.解析: 因为x 2-4x +4+y 2+6y +9=0, 所以(x -2)2+(y +3)2=0,即|x -2|+|y +3|=0,所以x =2,y =-3.即y x =(-3)2=9.答案: 9三、解答题(每小题10分,共20分)8.计算下列各式(式中字母都是正数):(1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56; (2)⎝⎛⎭⎫m 14n -388. 解析: (1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56 =[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a ;(2)⎝⎛⎭⎫m 14n -388=⎝⎛⎭⎫m 148⎝⎛⎭⎫n -388=m 2n -3 =m 2n 3. 9.计算:(1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23; (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34. 解析: (1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23=⎣⎡⎦⎤⎝⎛⎭⎫32212-⎝⎛⎭⎫342+136×⎣⎡⎦⎤⎝⎛⎭⎫233-23=32-⎝⎛⎭⎫342+136×⎝⎛⎭⎫23-2 =32-916+136×94=1.(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34=()2323-(2-1)-3+⎝⎛⎭⎫3-12-6×⎣⎡⎦⎤⎝⎛⎭⎫324-34=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4.。
高中数学第二章基本初等函数I2.1.1.1根式课件新人教版必修1

n 的奇偶性
a 的 n 次方根的 表示符号
a 的取值范围
n 为奇数
பைடு நூலகம்
n a
a∈R
n 为偶数
n
±a
[0,+∞)
(3)根式 n
式子__a__叫做根式,这里 n 叫做_根__指__数__,a 叫做被开方数.
2.根式的性质
n
(1) 0=_0_ (n∈N*,且 n>1);
n
(2)( a)n=_a_ (n∈N*,且 n>1);
3.掌握两个公式:(1)(n a)n=a,n 为奇数;(2)n an=a,n 为偶
数,n an=|a|=a-a
(a≥0), (a<0).
1.若 m 是实数,则下列式子中可能没有意义的是( )
A.4 m2
B.3 m
C.6 m
5
D.
-m
解析 C 中,6 m隐含 m≥0;当 m<0 时,没有意义.
编后语
常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
一、释疑难
对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已 经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。
(2)设 m<0,则( -m)2=________.
解析 (1)依题意,x 是 3 的 4 次方根,∴x=±4 3.
(2)∵m<0,∴-m>0,∴( -m)2=-m.
人教版数学高一-数学人教A版必修一章末检测 第二章 基本初等函数

章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4(e -3)2=( ) A .e -3 B .3-e C.3-eD .±3-e解析:∵e<3,∴e -3<0, ∴4(e -3)2=[(e -3)2] 14=[(3-e)2] 14=(3-e)124⨯=3-e.答案:C2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( ) A .[2,8] B.[0,8] C .[1,8]D .[-1,8]解析:当x =0时,y min =30-1=0, 当x =2时,y max =32-1=8, 故值域为[0,8]. 答案:B3.已知函数f (x )=⎩⎨⎧e x -1,x ≤1,ln x ,x >1,那么f (ln 2)的值是( )A .0 B.1 C .ln(ln 2)D .2解析:∵0<ln 2<1,∴f (ln 2)=e ln 2-1=2-1=1. 答案:B4.函数f (x )=x |x |·a x(a >1)的图象的大致形状是( )解析:当x >0时,f (x )=a x , 当x <0时,f (x )=-a x , 则f (x )=x |x |·a x(a >1)的图象为B. 答案:B5.幂函数的图象过点⎝ ⎛⎭⎪⎫2,14,则它的单调递增区间是( )A .(0,+∞) B.[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:设幂函数f (x )=x α,∴2α=14,∴α=-2, ∴f (x )=x -2=1x 2,图象如图所示: ∴f (x )的增区间为(-∞,0). 答案:C6.若0<a <b <1,则( ) A .3b <3a B.log a 3<log b 3 C .log 4a <log 4bD .⎝ ⎛⎭⎪⎫14a <⎝ ⎛⎭⎪⎫14b解析:对于选项A :∵y =3x 是增函数,∴3a <3b .对于选项B :∵log a 3-log b 3=lg 3lg a -lg 3lg b =(lg b -lg a )lg 3lg a lg b ,∵0<a <b <1,∴lg b <0,lg a <0,lg 3>0,lg b -lg a >0,∴log a 3-log b 3>0,∴log a 3>log b 3. 对于选项C :∵y =log 4x 是增函数,∴C 正确. 对于选项D :∵y =⎝ ⎛⎭⎪⎫14x 是减函数,∴⎝ ⎛⎭⎪⎫14a >⎝ ⎛⎭⎪⎫14b .答案:C7.已知函数f (x )=⎩⎨⎧3x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=6,则a 的值等于( )A .-1B.1C.2 D.4解析:∵0<1,∴f(0)=30+1=2,而2≥1,∴f(f(0))=f(2)=22+2a=6,∴a=1.答案:B8.已知a=0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是() A.b>c>a B.b>a>cC.a>b>c D.c>b>a解析:a=0.3=0.312=0.30.5,∵y=0.3x是减函数,∴0.30.5<0.30.2<0.30=1,即a<c<1;而y=2x是增函数,∴20.3>20=1,∴b>c>a.答案:A9.下列函数中,定义域为R的是()A.y=x-2 B.y=x 1 2C.y=x2D.y=x-1答案:C10.若a=ln 22,b=ln 33,c=ln 55,则有()A.a>b>c B.b>a>c C.b>c>a D.a>c>b解析:∵a-b=ln 22-ln 33=3ln 2-2ln 36=ln 8-ln 96<0,∴a<b,∵a-c=ln 22-ln 55=5ln 2-2ln 510=ln 32-ln 2510>0,∴a>c∴b>a>c.答案:B11.已知f (x )=ln (1+x 2+x ),且f (a )=2, 则f (-a )=( ) A .1 B.0 C .2 D .-2解析:f (a )=ln (1+a 2+a ),f (-a )=ln (1+a 2-a )∴f (a )+f (-a )=ln (1+a 2+a )+ln (1+a 2-a )=ln [(1+a 2+a )(1+a 2-a )]=ln (1+a 2-a 2)=ln 1=0. 答案:D12.函数f (x )=log a x ,在[2,+∞)上恒有|f (x )|>1,则实数a 的范围是( ) A.⎝ ⎛⎭⎪⎫0,12∪(1,2) B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C.⎝ ⎛⎭⎪⎫12,1∪(1,2) D .⎝ ⎛⎭⎪⎫12,1∪(2,+∞)解析:|f (x )|>1⇒f (x )<-1,或f (x )>1,如果a >1,则log a 2>1,所以1<a <2;如果0<a <1,则log a 2<-1=log a 1a ,∴12<a <1.综上,实数a 的范围是⎝ ⎛⎭⎪⎫12,1∪(1,2).答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.函数f (x )=4-2x +(x -1)0lg (x -1)的定义域为________.解析:若解析式有意义,则⎩⎪⎨⎪⎧4-2x ≥0,x -1≠0,x -1>0,x -1≠1,⇒⎩⎪⎨⎪⎧x ≤2,x ≠1,x >1,x ≠2.∴1<x <2.答案:(1,2)14.若a >0,a 23=49,则log 23a =________.解析:∵a 23=49,∴3232324()9a ⎛⎫= ⎪⎝⎭∴a =⎝ ⎛⎭⎪⎫233,∴log 23a =log 23⎝ ⎛⎭⎪⎫233=3.答案:315.若函数f (x )=a x -x -a =0有两个解,则实数a 的取值范围是________. 解析:题设等价于a x =x +a 有两个解,即y =a x 与直线y =x +a 有两个交点,如图所示:答案:a >116. 函数y =log 2(x 2-3x +2)的增区间是________.解析:函数f (x )=log 2(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又∵底数2>1,∴要求f (x )的增区间只需求定义域内g (x )=x 2-3x +2的增区间,即(2,+∞). 答案:(2,+∞)三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)计算:(1)733-3324-6319+ 4333; (2)(0.008 1)14--[3×⎝ ⎛⎭⎪⎫780]-1×[81-0.25+(278)13-]12--10×0.02713.解析:(1)原式=733-3×233-6×333+33=733-633-233+33=0.(2)原式=[(0.3)4]14--3-1×-10×0.3133⨯=103-13×(13+23)12--10×0.3=103-13-3=0.18.(本小题满分12分)求下列各式的值:(1)12lg3249-43lg8+lg245;(2)(lg 5)2+2lg 2-(lg 2)2.解析:(1)12lg3249-43lg8+lg245=lg 3249-lg 23423⨯+lg245=lg427-lg 4+lg 7 5=lg42×757×4=lg10=12.(2)(lg 5)2+2lg 2-(lg 2)2=(lg 5)2-(lg 2)2+2lg 2=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 5-lg 2+2lg 2=lg 5+lg 2=lg 10=1.19.(本小题满分12分)已知函数f(x)=12x-1+12,(1)求f(x)的定义域;(2)判断函数f(x)的奇偶性.解析:(1)x的取值需满足2x-1≠0,则x≠0,即f(x)的定义域是(-∞,0)∪(0,+∞).(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称,则f (-x )=12-x -1+12=2x 1-2x +12 =12-2x 2x -1,∴f (x )+f (-x )=12x -1+12+12-2x2x -1=1-2x 2x -1+1=0. ∴f (-x )=-f (x ),∴函数f (x )为奇函数.20.(本小题满分12分)若-3≤log 12x ≤-12,求f (x )=⎝ ⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫log 2x 4的最大值和最小值.解析:f (x )=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =⎝ ⎛⎭⎪⎫log 2x -322-14. 又因为-3≤log 12x ≤-12,所以12≤log 2x ≤3.所以当log 2x =32时,f (x )min =f (22)=-14. 所以log 2x =3时,f (x )max =f (8)=2.21.(本小题满分13分)对于函数f (x )=log 12(x 2-2ax +3).(1)若函数在[-1,+∞)上有意义,求a 的取值范围; (2)若函数在(-∞,1]上是增函数,求a 的取值范围.解析:(1)函数f (x )在[-1,+∞)上有意义,则u =x 2-2ax +3=g (x )>0对于x ∈[-1,+∞)恒成立,因此保证g (x )在[-1,+∞)上的图象位于x 轴上方,因此应按g (x )的对称轴x =a 分类,则得对称轴在[-1,+∞)左侧,即g (x )在[-1,+∞)上为增函数,对称轴在[-1,+∞)上,这时保证顶点都在x 轴上方即可. 则得⎩⎪⎨⎪⎧ a <-1,g (-1)>0,或⎩⎪⎨⎪⎧ a ≥-1,Δ=4a 2-12<0⇒⎩⎪⎨⎪⎧ a <-1,4+2a >0,或⎩⎪⎨⎪⎧a ≥-1,a 2-3<0,得-2<a <-1或-1≤a <3,即-2<a < 3. 故a 的取值范围是(-2,3). (2)令u =g (x )=x 2-2ax +3,f (u )=log 12u .由复合函数的单调性可知,函数f (x )在(-∞,1]上是增函数⇔g (x )在(-∞,1]上是减函数,且g (x )>0,对x ∈(-∞,1]恒成立⇔⎩⎪⎨⎪⎧ a ≥1,g (1)>0,得⎩⎪⎨⎪⎧a ≥1,4-2a >0,解得a ∈[1,2).22.(本小题满分13分)已知定义域为R 的函数f (x )=b -2x2x +a 是奇函数.(1)求a ,b 的值;(2)用定义证明f (x )在(-∞,+∞)上为减函数.(3)若对于任意t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的范围. 解析:(1)∵f (x )为R 上的奇函数, ∴f (0)=0,b =1.又f (-1)=-f (1),得a =1. (2)任取x 1,x 2∈R ,且x 1<x 2,∵x 1<x 2,∴22x -21x >0,又(21x +1)(22x +1)>0,f (x 1)-f (x 2)>0 ∴f (x )为R 上的减函数.(3)∵t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立, ∴f (t 2-2t )<-f (2t 2-k )∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2),由f (x )为减函数, ∴t 2-2t >k -2t 2.即k <3t 2-2t 恒成立,而3t 2-2t =3⎝ ⎛⎭⎪⎫t -132-13≥-13.∴k <-13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 阶段质量评估(二) 基本初等函数(Ⅰ) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷(选择题) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2013·重庆高考)函数y=1log2x-的定义域是( ) A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞) 解析:利用函数有意义的条件直接运算求解.
由 log2x-,x-2>0,得x>2且x≠3,故选C. 答案:C 2.下列关于函数f(x)=x3的性质表述正确的是( ) A.奇函数,在(-∞,+∞)上单调递增 B.奇函数,在(-∞,+∞)上单调递减 C.偶函数,在(-∞,+∞)上单调递增 D.偶函数,在(-∞,+∞)上单调递减 解析:本题主要考查幂函数的性质.函数f(x)=x3是奇函数,且在(-∞,+∞)上单调递增,故选A. 答案:A 3.设集合S={y|y=3x,x∈R},T={(x,y)|y=x2-1,x∈R},则S∩T是( ) A.(0,+∞) B.(-1,+∞) C.∅ D.R 解析:本题主要考查指数函数的值域及集合运算,集合S是指数函数y=3x的值域,而集合T表示函数y=x2-1图象上的点,两个集合中的元素不相同,所以交集是空集,故选C. 答案:C
4.已知函数f(x)= log3xx>12xx,则f f127=( ) A.-18 B.18 2
C.-8 D.8 解析:本题主要考查与指数和对数有关的分段函数的求值.因为f127=log3127=-3,
所以ff127=f(-3)=12-3=8,故选D. 答案:D 5.若P=log23·log34,Q=lg 2+lg 5,M=e0,N=ln 1,则正确的是( ) A.P=Q B.Q=M C.M=N D.N=P
解析:P=lg 3lg 2·lg 4lg 3=lg 4lg 2=2, Q=lg (2×5)=lg 10=1,M=e0=1,
N=ln 1=0.故选B.
答案:B
6.已知函数f(x)=12x,则函数f(x+1)的反函数的图象可能是( )
解析:∵f(x)=12x,∴f(x+1)=12x+1, f(x+1)的反函数为y=log12 x-1.故选D.
答案:D 7.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( ) A.1 B.-1 C.3 D.-3 解析:本题主要考查函数奇偶性的应用以及函数值的求解.因为f(x)是定义在R上的 3
奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),所以f(0)=20+b=1+b=0,解得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3,故选D. 答案:D 8.(2013·北京高考)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( ) A.ex+1 B.ex-1 C.e-x+1 D.e-x-1 解析:利用两曲线关于y轴对称的性质,逆用函数图象的平移变换规则求解. 曲线y=ex关于y轴对称的曲线为y=e-x,将y=e-x向左平移1个单位长度得到y=e-(x+1),即f(x)=e-x-1.
答案:D 9.函数f(x)=log2(x+x2+1)(x∈R)的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数 C.非奇非偶函数 D.既是奇函数又是偶函数 解析:易知f(x)的定义域为R,关于原点对称,f(-x)=log2(x2+1-x)=
log21x2+1+x=-log2(x+x2+1)=-f(x),∴f(x)是奇函数. 答案:A 10.若log(a-1)(2x-1)>log(a-1)(x-1),则有( ) A.a>1,x>0 B.a>1,x>1 C.a>2,x>0 D.a>2,x>1
解析:由题意知 2x-1>0,x-1>0,得x>1. 因为当x>1时,2x-1>x-1, 所以由对数函数性质知a-1>1,即a>2,故选D. 答案:D 11.关于x的方程ax=log1a x(a>0,且a≠1)( )
A.无解 B.必有唯一解 C.仅当a>1时有唯一解 D.仅当0<a<1时有唯一解 解析:在同一平面直角坐标系中分别画出函数y=ax,y=log1a x的图象,由图象可知, 4
必有唯一的交点. 答案:B 12.设函数f(x)定义在R上,f(2-x)=f(x),且当x≥1时,f(x)=log2x,则有( )
A.f(-3)<f(2)<f12
B.f12<f(2)<f(-3) C.f12<f(-3)<f(2) D.f(2)<f12<f(-3) 解析:本题主要考查对数函数的单调性.由f(x)=f(2-x),得f(-3)=f(5),f12=f32.当x≥1时,函数f(x)=log2x为增函数,可知f32<f(2)<f(5),即f12<f(2)<f(-
3),故选B. 答案:B 第Ⅱ卷(非选择题) 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)
13.若x12 +x-12 =3则x+x-1=______. 解析:本题主要考查指数式的运算.对x12 +x-12 =3两边平方得x+x-1+2=9,所以x+x-1=7.
答案:7
14.函数y=(2)1x 的单调递减区间是______. 解析:本题主要考查指数函数与反比例函数的复合函数的单调性,函数y=(2)1x 的单调递减区间即为y=1x的单调递减区间,也即为(-∞,0),(0,+∞). 答案:(-∞,0),(0,+∞) 15.已知函数f(x)=a2x-4+n(a>0且a≠1)的图象恒过定点P(m,2),则m+n=______. 解析:本题主要考查指数函数的图象及图象变换,当2x-4=0,即x=2时,f(x)=1 5
+n,函数图象恒过点(2,1+n),所以m=2,1+n=2,即m=2,n=1,所以m+n=3. 答案:3
16.定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f12=0,则满足f(log14 x)
<0的集合为______. 解析:本题主要考查函数的奇偶性、单调性的应用和对数不等式的解法.因为定义在R
上的偶函数f(x)在[0,+∞)上单调递减,所以在(-∞,0]上单调递增.又f12=0,所以
f-12=0,由flog14x<0可得log14 x<-12,或log14 x>12,解得x∈(0,12)∪(2,+∞).
答案:0,12∪()2,+∞ 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)计算:(1)2723 -2log23×log2 18+2lg (3+5+3-5); (2)810+41084+411. 解:(1)2723 -2log23×log218+2lg(3+5+3-5) (3分) =(33) 23 -3×log22-3+lg(3+5+3-5)2 =9+9+lg 10 =19. (7分)
(2)810+41084+411=230+220212+222=22010+21210+=28=16. (12分) 18.(本小题满分12分)设y1=loga(3x+1),y2=loga(-3x),其中0<a<1. (1)若y1=y2,求x的值; (2)若y1>y2,求x的取值范围. 解:(1)∵y1=y2, ∴loga(3x+1)=loga(-3x),
∴3x+1=-3x.解得x=-16, (3分)
经检验x=-16在函数的定义域内,∴x=-16. (4分) (2)y1>y2,即loga(3x+1)>loga(-3x)(0<a<1), (6分) 6
∴ 3x+1>0-3x>03x+1<-3x,解得-13<x<-16, (10分) ∴x的取值范围为x -13<x<-16. (12分) 19.(本小题满分12分)已知函数f(x)=b·ax(其中a,b为常量且a>0,a≠1)的图象经过点A(1,6),B(3,24). (1)试确定f(x);
(2)若不等式1ax+1bx-m≥0,在x∈(-∞,1]时恒成立,求实数m的取值范围.
解:(1)把A(1,6),B(3,24)代入f(x)=b·ax得 6=ab24=b·a3,结合a>0,且a≠1解得 a=2,b=3 ∴f(x)=3×2x. (6分) (2)要使12x+13x≥m在x∈(-∞,1]时恒成立,只需保证函数y=12x+13x在(-∞,1]上的最小值不小于m即可. ∵函数y=12x+13x在(-∞,1]上为减函数,
∴当x=1时,y=12x+13x有最小值56, ∴只需m≤56即可. (12分) 20.(本小题满分12分)设函数f(x)=(log2x+log24)(log2x+log22)的定义域为14,4. (1)若t=log2x,求t的取值范围; (2)求y=f(x)的最大值与最小值,并求出取最值时对应的x的值.
解:(1)∵t=log2 x为单调递增函数,而x∈14,4,
∴t的取值范围为log214,log24,即[-2,2]. (4分) (2)记t=log2x,则 y=f(x)=(log2x+2)(log2x+1)=(t+2)(t+1)(-2≤t≤2).(5分)
∵y=t+322-14在-2,-32上是减函数,在-32,2上是增函数, (6分)