2018年-七年级下册数学练习卷

合集下载

人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,3种,分别为:方案甲车乙车运费① 2 6 2×4000+6×3600=29600② 3 5 3×4000+5×3600=30000③ 4 4 4×4000+4×3600=30400所以方案①运费最少,最少运费是29600元.7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱. 11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

2018七年级(下)期末数学试卷

2018七年级(下)期末数学试卷

七年级(下)期末数学试卷一、选择题:本大题包括15个小题,每小题3分,共45分1.(3分)下列运算中,结果是b5的是()A.(b2)3B.b3•b2C.b10÷b2D.(﹣b)52.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.12cm,3cm,6cm B.8cm,16cm,8cm C.6cm,6cm,13cm D.2cm,3cm,4cm 3.(3分)目前,中东呼吸综合征在韩国的爆发引起全球的普遍关注,现知某冠状病毒的直径大约为0.00000006米,用科学记数法表示为()A.0.6×10﹣7米 B.6×10﹣8米C.6×10﹣9米D.6×10﹣7米4.(3分)下列交通标志中,轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个35.一种商品的售价为120元,由于购买的人多,商家便提价25%销售,但提价后,商品滞销,商家只好再降价x%,使商品售价恢复到了原价,那么x%=()A.25 B.20 C. 25% D. 2.6、(3分)如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()(7题图(8 (9题图)A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC8.(3分)如图,直线l1∥l2,∠A=124°,∠B=86°,则∠1+∠2=()A.30°B.35°C.36°D.40°9.(3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3km B.4km C.5km D.6km10.一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.七边形11.能够铺满地面的正多形组合是()A 正五边形和正方形B 正六边形和正方形C正八边形和正方形 D 正十边形和正方形12.(3分)如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形13.(3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n214.(3分)一列从济南开往日照的动车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图,有下列结论:①火车的长度为180米;②火车的速度为40米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为1000米.其中正确的结论是()A.①②③B.②③C.③④D.②③④(14)(15(18)15.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,下列结论正确的有()个.=S四边形GHCE.①BF=AC;②AE=BF;③∠A=67.5°;④△DGF是等腰三角形;⑤S四边形ADGEA.5个 B.2个 C.4个 D.3个二、填空题:本大题包括6小题,每小题3分,共18分16.(3分)已知16b2a﹣12a2b+4ab=A•B,其中A=4ab,则B=.17.(3分)已知等腰三角形的两边长分别是4和9,则周长是.18.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=89°,则∠2=.19.(3分)如果9x2﹣mx+4是完全平方式,则m=.20.(3分)如图,DE 是AB 的垂直平分线,交AC 于点D ,若AC=6 cm ,BC=4 cm ,则△BDC 的周长是 .(20题图) (21题图) (23题图)21.(3分)如图,已知AB=20米,MA ⊥AB 于A ,MA=10米,射线BD ⊥AB 于B ,P 点从B 点向A 运动,每秒走2米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发 秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等.三、解答题:本大题包括7小题,共57分22 1解方程:)10(4371-=--x x 2 解方程组⎩⎨⎧=+=-n m n m 25332(2)先化简,再求值:(y +x )(y ﹣x )﹣y (x +2y )+y 2,其中x=1,y=﹣2.23.(7分)(1)如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,请问∠1与∠2有怎样的数量关系?(2)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE ,请问△ABC 与△DEC 全等吗?如果全等请说明理由.243.(8分)(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .填空:①∠AEB的度数为;②AD与BE的数量关系.(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一只显示行,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.26.(9分)观察下面的几个算式:①16×14=224=1×(1+1)×100+6×4;②23×27=621=2×(2+1)×100+3×7;③32×38=1216=3×(3+1)×100+2×8;…(1)仿照上面的书写格式,请迅速写出81×89的结果;(2)请你自己模仿上面数的特点再举出一个例子,并按照上面格写出结果;(3)用多项式的乘法验证你所发现的规律(提示:可设这两个两位数分别是(10n+a),(10n+b),其中a+b=10)27.(9分)外国语学校1号班车与2号班车每天从初中部出发往返于初中部与高中部两地之间.2号班车比1号班车多往返一趟,如图表示2号班车距初中部的路程y(单位:千米)与所用时间x (单位:小时)之间变化关系的图象.已知1号班车比2号班车晚半小时出发.到达高中部后休息1小时,然后按原路原速返回.结果比2号班车最后一次返回初中部早了半个小时.(1)2号班车的速度为千米/销售;(2)请在图中画出1号班车距初中部的路程y(千米)与所用时间x(小时)的变化关系的图象;(3)两车在图中相遇的次数为次;3、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?2014-2015学年山东省济南外国语学校七年级(下)期末数学试卷参考答案一、选择题:本大题包括15个小题,每小题3分,共45分1.B;2.D;3.B;4.B;5.D;6.C;7.C;8.A;9.B;10.A;11.B;12.A;13.C;14.B;15.C;二、填空题:本大题包括6小题,每小题3分,共18分16.4b﹣3a+1;17.22;18.44°;19.±12;20.10cm;21.4;三、解答题:本大题包括7小题,共57分22.;23.;24.;25.60°;AD=BE;26.;27.60;2;28.;。

2018年人教版七年级下册数学期末试题及答案

2018年人教版七年级下册数学期末试题及答案

2018年人教版七年级下册数学期末试题及答案2018年中学七年级下册数学期末测试题一、选择题(每小题4分,共48分)1.25的算术平方根是().A。

5B。

-5C。

5D。

±52.6+3的相反数是().A。

6-3B。

-6+3C。

-6-3D。

6+33.点A(-2,1)是平面直角坐标系中的一点,则点A在()A。

第三象限B。

第二象限C。

第四象限D。

第一象限4.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()1)ABCD5.如右图,下列不能判定AB∥CD的条件有(。

).A。

∠3=∠4B。

∠1=∠5C。

∠1+∠4=180°D。

∠3=∠56.为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是:()A。

抽取的100台电视机B。

这批的电视机使用寿命C。

抽取的100台电视机的使用寿命D。

1007.点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是()A。

(3,-2)B。

(2,-3)C。

(-2,3)D。

(3,2)8.不等式3x-5<3+x的正整数解有()A。

1个B。

2个C。

3个D。

4个9.在下列实数。

中无理数有()A。

3个B。

4个C。

5个D。

6个10.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A。

55°B。

65°C。

75°D。

125°11.方程组,则被遮盖的两个数分别为()A。

5,1B。

1,3C。

2,3D。

2,4二、填空题(每小题4分,共24分)13.若点M(a+3,a-2)在y轴上,则点M的坐标是 (3,a-2)。

14.如果一个数的平方根为a+1和2a-7,这个数为 (a+1)^2或 (2a-7)^2.15.已知点P(-2,3),Q(n,3)且PQ=6,则n= 4 或 -8.16.已知关于x的不等式组的整数解共有3个,则m的取值范围是多少?17.四位同学甲、乙、丙、丁围成一圈依次循环报数,规定:甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;若报出的数为3的倍数,则报该数的同学需拍手一次。

2018年七年级下学期数学期末测试卷及答案

2018年七年级下学期数学期末测试卷及答案

2018年七年级(下)数学期末测试卷考试时间:120分钟,满分:150分一、选择题(每小题4分,共40分). 1.下列各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有( )A .1个 B.2个 C.3个 D.4个2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-43.下列调查中,适宜采用全面调查方式的是( ) A.了解我市的空气污染情况 B.了解电视节目《焦点访谈》的收视率 C.了解七(3)班每个同学身高情况 D.考查某工厂生产的一批手表的防水性能4.下列四个命题:①对顶角相等; ②内错角相等; ③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等。

其中真命题的个数是( )A 、1个B 、2个C 、3个D 、4个 5.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )1-10342A2430-11B2430-11C 2430-11D6.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是( )A .3B .1C .-1D .-37.若点P (x ,y )满足xy <0,x <0,则P 点在( )A .第二象限 B.第三象限 C.第四象限 D.第二、四象限 8. 如图点O 为直线AB 上一点,OC ⊥OD. 如果∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .65°9.不等式组⎩⎨⎧+-ax x x <<5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a 10.如图,AB ∥CD ,∠A=125°,∠C=145°,则∠E 的度数是( )A .10° B.20° C.35° D.55°二.填空题(每小题4分,共24分) 11.9的算术平方根是__________.12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°,那么∠DBC = °.13.已知a 、b 为两个连续的整数,且a <11 <b ,则=+b a .14. 《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》 最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七, 不足四. 问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为____________.15.若点P (x ,y )的坐标满足x+y=xy ,则称点P 为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标______________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN , 再按如图所示的样子放置三角板. 小颖认为AC ∥DF ; 小静认为BC ∥EF.你认为_____的判断是正确的,依据是_______________________ .2 1D C BAOAB C M NDE F2018年三会中学七年级数学期末测试答题卡一、选择题(本题共40分,每小题4分) 题号 1 2 3 4 5 6 7 8 9 10 答案CCCBDAACDB二、填空题(本题共24分,每小题4分)10. ______3_______ 12.______54___________ 13.________7_________14.____83,74.x y x y -=⎧⎨+=⎩__ 15.____(3,23)______ 16.小静;同位角相等,两条直线平行 三.解答题(共86分)17.(8分)计算:2)3()31(223-+---解:332232++--=原式……………………6分 33+= ……………………8分 18.(8分)解方程组:2312 4.x y x y +=⎧⎨-=⎩,解:231,2 4.x y x y +=⎧⎨-=⎩①②由②,得42x y =+.③ ……2分把③代入①,得 843 1.y y ++= 解得 1.y =- ……4分把1y =-代入③,得 2x =.……6分∴原方程组的解是 2,1.x y =⎧⎨=-⎩……8分(也可以用加减法求解)19.(8分)解不等式组 331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥ 并把它的解集表示在数轴上.解:由①得:1≤x ……………………2分由②得:2->x ……………………4分画数轴(略) ……………………6分∴不等式组的解集为:12≤<-x ……………………8分20.(8分)填空:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,可得AD 平分∠BAC . 证明:(在括号内填理由)∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知) ∴∠ADC=∠EGC=90°,( 垂直定义 ) ∴AD ∥EG ,( 同位角相等,两直线平行 ) ∴∠1=∠2,( 两直线平行,内错角相等 ) ∠E=∠3,(两直线平行,同位角相等) 又∵∠E=∠1(已知)∴ ∠2 = ∠3 (等量代换)∴AD 平分∠BAC ( 角平分线定义 )21.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为(﹣4,5),(﹣1,3). (1)请在如图所示的网格平面内作出平面直角坐标系;(3分) (2)请把△ABC 先向右移动5个单位,再向下移动3个单位得到△A ′B ′C ′,在图中画出△A ′B ′C ′;(3分) (3)求△ABC 的面积.(4分)解:(1)∵点A 的坐标为(﹣4,5), ∴在A 点y 轴向右平移4个单位,x 轴向下 平移5个单位得到即可;(2)如图所示:△A ′B ′C ′即为所求; (3)△ABC 的面积为:3×4﹣×3×2﹣×1×2﹣×2×4=4.22.(10分)我们知道0=+b a 时,033=+b a 也成立,若将a 看成3a 的立方根,b 看成3b 的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数。

2018年人教版七年级数学下册期末测试题及答案(共三套)

2018年人教版七年级数学下册期末测试题及答案(共三套)

李庄2018学年第二学期期末教学质量检测(一)七年级 数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( ) (A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.C 1A 1ABB 1CD乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2018年初一下学期,期末数学试题,word版含答案

2018年初一下学期,期末数学试题,word版含答案

2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。

2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。

一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。

2018年七年级(下)期末数学综合测试卷(一)及答案6

2018年七年级(下)期末数学综合测试卷(一)及答案6

七年级(下)期末数学综合测试卷一、选择题(每小题3分,共24分)1.下列事件中是随机事件的是( )A .在标准大气压下,当温度为2℃时,冰就溶化为水B .任意抛掷一枚图钉,结果钉尖着地C .在一个装着白球和黑球的袋中摸球,摸出红球D .掷一石块,石块下落2.在△ABC 中,∠A :∠B =2,∠C =60°,则∠A =( )A .40°B .30°C .90°D .80°3.下列等式正确的是( )A .(a -b )2 =a 2 -b 2B .9a 2 -b 2 +6ab =(3a -b )2C .3a 2 +2ab -b 2 =(3a -6)(a +b )D .-a 1+ab =-a b +1- 4.计算:(-31)0×(-21)-2的值为( ) A .4 B .-4 C. 41 D. -41 5.小红驾驶着摩托车行驶在公路上,她从反光镜中看到后面一辆汽车的车牌为根据有关数学知识,此汽车的牌照为( )A .浙95836B .浙63829C .浙63859D .浙928366.二元一次方程2x -3y =5,用含x 的代数式表示y ,下列各式正确的是( )A .x=253+yB .y=352-xC .y=325x -D .x=235y - 7.若m +n =7,mn =12,则m 2-mn +n 2的值是 ( )A .61B .37C .13D .118.三种不同类型的长方形地砖长宽如图所示,若现有A 类2块,B 类4块,C类4块,要拼成一个正方形,则应多余出1块某种类型的地砖,其余地砖拼成的正方形的边长是( )A .m +nB .2m +2nC .2m +nD .m +2n二、填空题(每小题3分,共30分)9.当x =________时,分式11-+x x 无意义. 10.写出二元一次方程2x +y =9的任意一个解:________.11.计算:(a 2) 3÷a 2=_______.12.如图,已知∠CAB =∠ABD ,要使△ABC ≌△BAD ,应添加的条件是________.(写出l 个即可)13.多项式x 2-6x +m 是一个二项式的完全平方式,则m =__________.14.一个三角形有两边相等,已知它的某两边长分别为4cm 和9cm ,则此三角形的周长为________cm .15. 计算:(12x 3-8x 2+16x )÷(8x )=__________.16.如图,一块含有30°角(∠BAC =30°)的直角三角板ABC ,在水平桌面上绕点C按顺时针方向旋转到A ′B ′C 的位置.则旋转角的度数为________度.17.一次足球赛ll 轮(即每队均需赛ll 场),胜一场记3分,平一场记l 分,负一场记0分.北京国安队所负场数是所胜场数的1/2,结果共得14分.问国安队共胜了________场.18.如图,OP 是∠MON 的角平分线,点A 是ON 上一点,作线段OA 的垂直平分线交OM 于点B ,过点A 作CA ⊥OP 交OP 于点C ,连结BC ,AB =10cm ,CA =4cm .则△OBC 的面积为________cm 2.三、解答题(本题有6小题,共46分)19. (每小题3分,共6分)因式分解.(1)2x 3—8x (2)(a -2b ) 2-a +2b20.(3分+4分+4分,共11分)(1)计算:(a -2) 2-a (a -3)(2)先化简,再求值;(1+21-x )÷4212--x x ,其中,x =3.(3)解方程:21221-=+--x x x21.(6分)如图,在lO×l0的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上)(1)在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形A1B1C1D1;(2)在给出的方格纸中,画出四边形ABCD关于直线l对称的四边形A2B2C2D2.(3)能由四边形A1B1C1D1经两次变换(平移、旋转、轴对称、相似中两种)后得四边形A2B2C2D2吗?若能,写出变换过程.22.(6分)一只箱子里共有3个球,其中2个白球,l个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球.小明洋洋得意地对小红说:“这样吧,若两次摸得的都是白球,则我胜;若两次摸得的球是一红一白,则你胜.否则平局,重新摸球.”你说小明能占到便宜吗?用你学过的知识说明你的结论(画树状图或列表).23.(9分)作图、说理和计算:如图,已知△ABC.(1)完成下列作图:①用尺规作AC边上的中线BD(保留痕迹,不写作法);②画AB边上的高CE.(2)把△ABD绕点D旋转l80°,画出经变换后的像△CDF,连结AF,线段AF与线段BC相等吗?说明理由.(3)在上述(1),(2)所画图形中,已知CE=4,S△ADF=10,求S△ABC及AB的长.24.(8分)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品.生产产品件数与所用时间之间的关系见下表:信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.信息四:由于甲产品的劳动强度较大,企业规定,若每月生产甲产品超过500件,则甲产品每件奖励0.3元,且每月至少生产甲产品300件.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟?(2)若小王某月获得收入1500元,则该月小王生产甲、乙两种产品各多少件?参考答案一、l .B 2.D 3.C 4.A 5.B 6.B 7.C 8.D二、9.1 10.09x y =⎧⎨=⎩ (答案不唯一) 11.a 4 12.∠C =∠D (答案不唯一)13. 9 14. 22 15. 21x 2-x +2 16. 120 l 7. 2 18.20 三、l 9.(1)原式=2x (x 2-4)=2x (x +2)(x -2)(2)原式=(a -2b ) 2-(a -2b )=(a -2b )(a -2b -1)20.(1)原式=a 2-4a +4-a 2+3a =-a +4(2)原式=)2(2)1)(1(212-+-÷-+-x x x x x =12)1)(1()2(221+=-+-⋅--x x x x x x 当x =3时,原式=21. (3)去分母,得:l -x +2(x -2)=1 去括号,得:l -x +2x -4=1 移项、合并同类项,得:x =4经检验:x =4是原方程的根.21.(1)图略(2)图略(3)能.先把四边形A 1B 1C 1D 1关于直线胙轴对称变换,然后把所得的像向上平移5个单位.(其他合理答案也可)22.(1)任意摸出一个球是白球的概率为(2)第一次第二次其中两次摸得的球是两白的概率为P =94,两次摸得的球是一红一白的概率为P =94.∴小明不能占到便宜. 23.(1)①如图,线段BD 即为所求的AC 边上的中线;②如图,线段CE 即为所求的AB 边上的高,(2)线段AF 与线段BC 相等,理由如下:AD =CD ,在△ADF 与△BCD 中, ∠ADF =∠CDB ,DF =BD∴△ADF ≌△BCD ,∴AF =BC .(3)∵△ADF ≌△BCD ,∴S △BCD =S △ADF =10 ∵AD =BC ∴S △ABD =2S △BCD =20,∴21×AB ×CE =20 ∵CE =4,∴AB =10.24.(1)设小王每生产一件甲种产品和一件乙种产品分别需要x min 、y min ,则由题意, 得10103503020850x y x y +=⎧⎨+=⎩ 解得1520x y =⎧⎨=⎩即小王每生产一件甲种产品和一件乙种产品分别需要15 min 、20 min .(2)设该月小王生产甲乙两种产品各a 件、b 件,则①若a ≤500,由题意,得: 1.5 2.81500152025860a b a b +=⎧⎨+=⨯⨯⎩ 解得300375a b =⎧⎨=⎩②若a >500,由题意,得: 1.8 2.81500a b +=⎧⎨ 解得600a =⎧⎨综上可知,该月小王生产甲、乙两种产品各为300件、375件或600件、l50件.。

2018年七年级下学期期末数学试题(有答案)★

2018年七年级下学期期末数学试题(有答案)★

2018年七年级下学期期末数学试题(有答案)★第一篇:2018年七年级下学期期末数学试题(有答案)2018年七年级下学期期末数学试题(有答案)又到了一年一度的期末考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇七年级下学期期末数学试题,希望可以帮助到大家!一、选择题(每小题2分,共16分)1.要调查下列问题,你认为哪些适合抽样调查(▲)①市场上某种食品的某种添加剂的含量是否符合国家标准②调查某单位所有人员的年收入③检测某地区空气的质量④调查你所在学校学生一天的学习时间A.①②③B.①③C.①③④D.①④2.下列计算正确的是(▲)A.B.C.D.3.如图,在所标识的角中,同位角是(▲)A.1和B.1和C.1和D.2和34.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法中正确的是(▲)A.总体是300B.样本容量为30C.样本是30名学生D.个体是每个学生5.-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为(▲)A.6B.7C.8D.96.甲和乙两人玩打弹珠游戏,甲对乙说:把你珠子的一半给我,我就有10颗珠子,乙却说:只要把你的给我,我就有10颗,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是(▲)A.B.C.D.7.如图,△ACB≌△,则的度数为(▲)A.20B.30C.35D.408.如图,OA=OB,B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在O的平分线上,其中正确的结论是(▲)A.只有①B.只有②C.只有①②D.有①②③二.填空题(每小题2分,共20分)9.某种流感病毒的直径大约为0.000 000 08米,用科学记数法表示为▲ 米.10.某班级45名学生在期末学情分析考试中,分数段在120~130分的频率为0.2,则该班级在这个分数段内的学生有▲ 人.11.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是▲.12.如果,则▲.13.如图,AD、AE分别是△ABC的角平分线和高,B=60,C=70,第11题图则EAD= ▲.14.如图,把边长为3cm的正方形ABCD先向右平移l cm,再向上平移l crn,得到正方形EFGH,则阴影部分的面积为▲ cm2.15.如图,△ABC中,C=90,DB是ABC的平分线,点E是AB的中点,且DEAB,若BC=5cm,则AB= ▲ cm.16.已知x=a,y=2是方程的一个解,则a= ▲.17.一个三角形的两边长分别是2和6,第三边长为偶数,则这个三角形的周长是▲.18.如图a是长方形纸带,DEF=25,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的CFE的度数是▲.三、计算与求解.19.(每小题4分,共8分)计算:(1)(2).20.(每小题4分,共8分)分解因式:(1);(2).21.(本小题6分)先化简再求值:,其中.22.(本小题6分)解方程组:四、操作与解释.23.(本小题6分)如图,在△ABC中,CDAB,垂足为D,点E在BC上,EFAB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果2,且3=115,求ACB的度数.24.(本小题6分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有_______________名学生;(2)将骑自行车部分的条形统计图补充完整;(3)在扇形统计图中;求出乘车部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.25.(本小题8分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)△OAB 与△OCD全等吗?为什么?(2)过点O任意作一条与AB、AC都相交的直线MN,交点分别为M、N,OM与ON相等吗?为什么?五、解决问题(本题满分8分)26.某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元.(1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?(2)若有顾客同时购买汉堡包和橙汁且购买费用恰好为20元,问汉堡店该如何配送?六、探究与思考(本题满分8分)27.如图,已知△ABC中,AB=AC=6 cm,BC=4 cm,点D为AB 的中点.(1)如果点P在线段BC上以1 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案及评分标准一、选择题(每小题2分,共16分)题号12345678答案CDCBADBD二.填空题(每小题2分,共20分)9.8 10.9;11.三角形的稳定性;12.6;13.5;14.4;15.10;16.;17.14;18.105;三.计算与求解19.解:(1)原式= 2分=..3分=..4分(2)原式=..3分=9..4分20.解:(1)原式= 2分4分(2)原式 2分 4分21.解:原式 3分4分5分当时,原式=96分22.解:①10,得③ 1分②-③,得 2分3分把代入③,得 4分5分原方程组的解是 6分四.操作与解释23.(1).理由如下:∵,.2分.3分(2)∵,.4分∵,..5分分1.6分24.(1)40.1分(2)略.3分(3).5分(4)60020%=120(名).6分25.(1)△OAB 与△OCD全等.理由如下:在△OAB 与△OCD中,△OAB≌△OCD(SAS).(2)OM与ON相等.理由如下:5分∵ △OAB≌△OCD,.6分分1在△OAB 与△OCD中,7分△MOB≌△NOD(ASA)..8分26.解:(1)设每个汉堡为x元和每杯橙汁y元.1分根据题意,得 3分解之,得 4分所以.5分答:他应收顾客52元钱.6分(2)设配送汉堡a只,橙汁b杯.根据题意,得.7分.又∵ a、b为正整数,;,.答:汉堡店该配送方法有两种:外送汉堡1只,橙汁3杯或外送汉堡2只,橙汁27.(1)①△BPD与△CQP全等.理由如下:∵ D是AB的中点,.经过1秒后,.∵,.1杯.8分在△BPD与△CQP中,△BPD≌△CQP(SAS).3分②设点Q的运动速度为x cm/s,经过t秒后△BPD≌△CQP,则,.解得即点Q的运动速度为 cm/s时,能使△BPD与△CQP全等.5分(2)设经过y秒后,点P与Q第一次相遇,则,解得.7分此时点P的运动路程为24 cm.∵ △ABC的周长为16,点P、Q在边上相遇.8分编辑老师给您带来的七年级下学期期末数学试题,希望可以更好的帮助到您!第二篇:七年级期末数学试题(无答案)2017年下学期期末考试试卷初一年级数学学科命题人:阳岳红审题人:熊琦一、选择题(每题 3 分,共 36 分)1.-的相反数是()A.B.-C.2 D. 2 -2.据统计,2017 年双十一当天,天猫成交额 1682 亿,1682 亿用科学记数法可表示为()元.A.16.82⨯1010B.0.1682⨯1012C.1.682⨯1011D.1.682⨯10123.如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是()121212A.雅B.教C.集D.团4.已知axb2与aby的和是13158xyab,则(x-y)y等于()15A.2 B.1 C. 2 - D. 1 - 5.下列各式计算正确的是()A.19a2b-9ab2=10a2bB.3x+3y=6xyC.16y2-7y2=9D.2x-5x=-3x-6.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,C是AB的中点,D是BC的中点,下列等式不正确的是()A.CD=AD-BCB.CD=AC-ABC.CD=ABD.CD=AB-DB 8.下列解方程步骤正确的是()A.由2x+4=3x+1,得2x-3x=1+4 B.由7(x-1)=3(x+3),得7x-1=3x+3 C.由0.2x-0.3x=2-1.3x,得2x-3=2-13xD.由---9.如图,AB ∥CD,直线 EF 分别与直线 AB、CD 相交于点 G、H,已知∠3 =50°,GM平分∠HGB交直线CD 于点M,则∠1 等于()x-1x+2-=2,得2x-2-x-2=123613129题图11题图A.60°- B.80°- C.50°- D.130°10.在雅礼社团年会上,各个社团大放光彩,其中话剧社52 人,舞蹈社 38 人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3 倍.设从舞蹈队中抽调了 x 人参加话剧社,可得正确的方程是()=38+xB.52+x=3(38-x)C.52-3x=38+x D.52-x=3(38-x)--A.3(52-x)11.如图,在△ ABC中,∠A =90,点 D 在 AC 边上,DE∥ BC,若∠1= 155°,则∠B的度数为()A.65°- B.25°- C.55°-D.155°12.如图,都是由边长为1 的正方体叠成的立体图形,例如第⑴个图形由 1 个正方体叠成,第⑵个图形由 4 个正方体叠成,第⑶个图形由 10 个正方体叠成,依次规律,第⑺个图形由()个正方形叠成.A.86 B.87 C.85 D.84二、填空题题(每题 3分,共 18分)13.一个角的补角比这个角的余角的2 倍大18°,则这个角的度数为________. 14.若 a 的相反数是-3,b的绝对值是 4,且|b|=-b,则 a-b=________. 15.已知代数式x-3y-1的值为 3,则代数式5+6y-2x的值为________. 16.如果线段 AB=5cm,BC=4 cm,且 A、B、C 在同一条直线上,那么 A、C 两点的距离是________.17.如图,直线a∥b,直角三角形ABC的直角顶点C在直线b 上,∠1=1 20,∠2=2∠A,则∠A = ________.18.按照下列程序计算输出值为 2018 时,输入的 x 值为________.三、解答题有(本大题有8 个小题,共66 分)19.(本小题8分)计算:⑴(-+--------------20.(本小题8分)解方程:⑴ 2x+3=12-3(x-3)--(2)----21.(本小题 6 分)先化简,再求值:x2-3(2x2-4y)+2(x2-y),其中|x+2|+(5y-1)2=0 16351)⨯(-12)--⑵-|-5|⨯(-1)2-4÷(-)2-- 41223x-22x-1 =2-4322.(本小题8 分)如图,在△ABC中,GD ⊥AC 于点D,∠AFE=∠ABC,∠1 +∠2=180°,∠AEF=65°,求∠1的度数.解:∵∠AFE=∠ABC(已知)-∴ ____________________(同位角相等,两直线平行)∴∠1= _________ ---(两直线平行,内错角相等)∵∠1 +∠2=180°(已知)∴- ________________(等量代换)∵-EB∥ DG()∴∠GDE=∠ BEA ---()∵GD⊥ AC(已知)-∴ ____________________(垂直的定义)∴∠BEA =90°(等量代换)∵∠AEF=65°(已知)∴∠1=∠ _____-∠ ______ =90°-65°= 25 °(等式的性质)23.(本小题8分)如图:∠ BCA=64,CE平分∠ACB,CD平分∠EC B,DF∥BC 交 CE 于点 F,求∠CDF和∠DCF的度数.24.(本小题 8 分)中雅七年级⑴班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?⑴根据这段对话,你能算出篮球和排球的单价各是多少吗?⑵六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999 减 100,1999 减 200;两种活动不重复参与,学校打算买 15 个篮球,13 个排球作为奖品,请问如何安排更划算?25.(本小题10分)“幸福是奋斗出来的”,在数轴上,若C到A 的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”⑴如图1,点A表示的数为-1,则 A的幸福点 C所表示的数应该是___________;⑵如图2,M、N为数轴上两点,点 M 所表示的数为4,点N所表示的数为-2,点 C就是 M、N的幸福中心,则C所表示的数可以是___________(填一个即可);⑶如图3,A、B、为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是 A和 B的幸福中心?26.(本小题10分)已知AM//CN,点B为平面内一点,AB⊥BC于点 B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年 七年级下册数学练习卷
一、选择题: 1.4的平方根是( )
A .2
B .2
C .±2
D .±2 2.如图,点P 是直线a 外的一点,点A,B,C 在直线a 上,且PA ⊥a 于A,PA ⊥PC,则下列错误语句是( )
A .线段P
B 的长是点P 到直线a 的距离
B .PA,PB,P
C 三条线段中,PB 最短 C.线段AC 的长是点A 到直线PC 的距离
D .线段PC 的长是点C 到直线PA 的距离 3.在﹣2,4,22,3.14,3
22,(2)0中有理数的个数是( ) A .5 B .4 C .3
D .2 4.如图,能判定EB ∥AC 的条件是( )
A .∠C=∠ABE
B .∠A=∠EBD
C .∠C=∠ABC
D .∠A=∠ABE
5.如图,直线AB ∥CD,∠A=40°,∠D=45°,则∠1的度数是( )
A .80°
B .85°
C .90°
D .95°
6.下列语句:
①三条直线只有两个交点,则其中两条直线互相平行;
②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; ③过一点有且只有一条直线与已知直线平行,其中( )
A .①、②是正确的命题
B .②、③是正确命题
C.①、③是正确命题 D .以上结论皆错
7.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,
﹣2)的对应点N 的坐标是( )
A .(﹣1,0)
B .(﹣6,0)
C .(0,﹣4)
D .(0,0)
8.当a <0时,-a 的平方根是( )
9.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A .向右平移了3个单位长度
B .向左平移了3个单位长度 C.向上平移了3个单位长度 D .向下平移了3个单位长度
10.若方程组的解满足x=y ,则k 的值是( )
A .1
B .2
C .3
D .4
二、填空题: 11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是____________. 12.若()1231a a x y --+=是二元一次方程,则a=
13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M(-4,-1),N(0,
1),将线段MN 平移后得到线段M ′N ′(点M ,N 分别平移到点M ′,N ′的位置).若点M ′的坐标为(-2,2),则点N ′的坐标为____________.
14.计算:①;②;③④,观察你计算的
结果,用你发现的规律直接写出下面式子的值= . 三、解答题:
15.计算:20.25(2)12----. 16.解方程组:
17.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.。

相关文档
最新文档