【精选资料】中考数学复习分级训练10 不等式与不等式组含答案
中考数学总复习《不等式与不等式组》专项测试题-附参考答案

中考数学总复习《不等式与不等式组》专项测试题-附参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.若不等式组 {2x −3>1,x ≤a的整数解共有 4 个,则 a 的取值范围是 ( ) A . 6≤a <7 B . 6<a ≤7 C . 6<a <7 D . 6≤a ≤72. a ,b 为实数,且 a >b ,则下列不等式的变形正确的是 ( )A . a +b <b +xB . −a +2>−b +2C . 3a >3bD . a 2<b 2 3.不等式组 −2x ≤6 的解集在数轴上表示正确的是 ( )A .B .C .D . 4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有 10 支水银温度计,若干支额温枪.水银温度计每支 5 元,额温枪每支 230 元,如果总费用超过 1000,那么额温枪至少有 ( )A . 3 支B . 4 支C . 5 支D . 6 支5.“x 的 3 倍与 5 的差大于 9”列出的不等式是 ( )A . 3x −5≤9B . 3x −5≥9C . 3x −5<9D . 3x −5>9 6.解不等式x+23>1−x−32 时,去分母后结果正确的为 ( )A . 2(x +2)>1−3(x −3)B . 2x +4>6−3x −9C . 2x +4>6−3x +3D . 2(x +2)>6−3(x −3)7.下列结论中,正确的是 ( )A .若 a ≠b ,则 a 2≠b 2B .若 a >b ,则 a 2>b 2C .若 a 2=b 2,则 a =±bD .若 a >b ,则 1a >1b8.如图,天平托盘中的每个砝码的质量都是 1 千克,则图中显示物体质量范围是 ( )A.大于2千克B.大于3千克C.大于2千克且小于3千克D.大于2千克或小于3千克二、填空题(共5题,共15分)9.将数轴上x的范围用不等式表示:.10.不等式2x−1>3的解集为.11.代数式−3x+5的值不大于4,用不等式表示为.12.用不等式表示“x与y的一半的和是非负数”.13.一个含有未知数的不等式的组成这个不等式的解集.三、解答题(共3题,共45分)14.解不等式组{5x≤3x+2①x−2<2x+1②请结合题意填空,完成本题的解答.(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上分别表示出来:原不等式组的解集为.15.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到2本.这些书有多少本?共有多少人?16.如果关于x的方程1+x2−x =2mx2−4的解,也是不等式组{1−x2>x−22(x−3)≤x−8的解,求m的取值范围.参考答案1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】D6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】 9≤a <1210. 【答案】 x >211. 【答案】 −3x +5≤412. 【答案】 x +12y ≥013. 【答案】所有的解14.【答案】(1)x ≤1(2)x >−3(3)(4)−3<x ≤1 15.【答案】解:设有x 个学生,那么共有(3x+8)本书,则: {3x +8−5(x −1)≥03x +8−5(x −1)<2解得5.5<x ≤6.5所以x=6,共有6×3+8=26本.答:有26本书,6个学生.16.【答案】解: 1+x 2−x =2mx 2−4方程两边同时乘以 (x +2)(x −2) 得x 2−4−x 2−2x =2mx =−m −2∵x ≠±2∴−m −2≠±2 ;解①得, x <53解②得, x ≤−2∴不等式组的解集为 x ≤−2 ; ∵关于 x 的方程 1+x 2−x =2m x 2−4的解,也是不等式组 {1−x 2>x −22(x −3)≤x −8的解 ∴{−m −2≤−2−m −2≠−2∴m 的取值范围 m >0 . 故答案是: m >0。
2020中考数学大一轮复习训练10:不等式及不等式组(含答案)

第10课时 不等式及不等式组1.(2019·凉山)不等式1-x ≥x -1的解集是( ) A .x ≥1 B .x ≥-1 C .x ≤1D .x ≤-12.(2019·梧州)不等式组⎩⎪⎨⎪⎧2x +6>0,2-x ≥0的解集在数轴上表示为( )3.(2019·百色)不等式组⎩⎪⎨⎪⎧12-2x <20,3x -6≤0的解集是( )A .-4<x ≤6B .x ≤-4或x >2C .-4<x ≤2D .2≤x <44.(2018·娄底)不等式组⎩⎪⎨⎪⎧2-x ≥x -2,3x -1>-4的最小整数解是 ( )A .-1B .0C .1D .25.(2018·台湾)如图10-1所示的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?( )图10-1A .112B .121C .134D .1436.(2018·天门)若关于x 的一元一次不等式组⎩⎨⎧6-3()x +1<x -9,x -m >-1的解集是x >3,则m 的取值范围是( ) A .m >4 B .m ≥4 C .m <4D .m ≤47.(2019·永州)若关于x 的不等式组⎩⎪⎨⎪⎧2x -6+m <0,4x -m >0有解,则在其解集中,整数的个数不可能是( ) A .1 B .2 C .3D .48.(2019·金华)不等式3x -6≤9的解集是________.9.(2019·长沙)不等式组⎩⎪⎨⎪⎧x +1≥0,3x -6<0的解集是________________.10.(2018·贵阳)已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥-1,①a -x <0②无解,则a 的取值范围是____________.11.(2018·山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高三者之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为________cm.图10-212.(2019·攀枝花)如图10-3,解不等式x -25-x +42>-3,并把它的解集在数轴上表示出来.图10-313.(2019·广东)解不等式组:⎩⎪⎨⎪⎧x -1>2, ①2(x +1)>4. ②14.(2017·沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对1道题得6分,答错或不答1道题扣2分,只有得分超过90分才能获得奖品.问小明至少答对多少道题才能获得奖品?15.(2018·郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A ,B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A ,B 两种奖品每件各多少元?(2)现要购买A ,B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?16.(2018·湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元?参考答案1.C 2.C 3.C 4.B 5.C 6.D7.C8.x≤59.-1≤x<210.a≥211.5512.x<2,图略.13.x>3.14.18道15.(1)A种奖品每件16元,B种奖品每件4元.(2)41件16.(1)温馨提示牌和垃圾箱的单价各是50元和150元.(2)共3种方案,即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个.当温馨提示牌52个,垃圾箱48个时,所需资金最少,最少是9 800元.。
中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练含答案一、单选题1.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b 2.不等式5x ≥的解集在数轴上表示正确的是( )A .B .C .D . 3.一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3- 4.若a b >,则下列各式正确的是( )A .33a b -<-B .0a b -<C .33a b <D .a b >5.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.不等式组 21352x x ->-⎧⎨->⎩的整数解有( ) A .3个 B .4个 C .5个 D .6个 7.若m <n ,则下列不等式正确的是( )A .m ﹣2>n ﹣2B .44m n >C .﹣6m >﹣6nD .﹣8m <﹣8n 8.下列语句或式子中正确的是( )A .任何实数的零次幂都等于1B .5的倒数的相反数是-5C .1111()()a b a b ab ---++=D .若a<b ,则a 2<b 29.已知不等式30x a +≥的负整数解恰好是3-,2-,1-.那么a 满足条件( ) A B CD10.若点P (2m +1,312m -)在第四象限,则m 的取值范围是( ) A .m <13 B .m >12- C .1123m -<< D .1123m -≤≤ 11.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小12.不等式组21013x x ->⎧⎨+≤⎩的解集表示在数轴上正确的是( ) A . B .C .D .13.不等式ax -2<0的解集在数轴上表示如图,那么a 的取值范围是( )A .1a <B .2a <C .1a =D .2a =14.下列不等式的解集中,不包括-3的是( )A .3x ≤-B .3x ≥-C .4x ≤-D .4x >- 15.若0<x <1,则x,2x ,3x 的大小关系是( )A .x <2x <3xB .x <3x <2xC .3x <2x <xD .2x <3x <x 16.(天津市和平区普通中学2018届初三数学中考复习综合练习题)如果m<n<0,那么下列式子中错误的是A .m −9<n −9B .−m>−nC .1m <1nD .m n>1 17.若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1 18.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是( ) A .x≥40 B .x≤50 C .40<x <50 D .40≤x≤50 19.下列说法中,错误的一项是( )A .由a (m 2+1)<b (m 2+1)成立可推a <b 成立B .由a (m 2﹣1)<b (m 2﹣1)成立可推a <b 成立C .由a (m +1)2<b (m +1)2成立可推a <b 成立D .由a (m +b )<b (m +a )成立可推am <bm 成立20.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组二、填空题21.x 的3倍与5的差小于6,用不等式表示为________.22.如果关于x 的一元二次方程210kx +=有两个不相等的实数根,则k 的取值范围是________.23.不等式11x -的非负整数解是__.24.已知一次函数()1123y a x a =-+-,如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的______半轴.(填正或负)25.若不等式|x +1|+|x ﹣2|>a 对任意实数x 恒成立,则a 的取值范围是_____.26.不等式组31432x x -<⎧⎨+≥⎩的解集是___________. 27.不等式2x ﹣1≤3x +2的负整数解的和是 ___.28.若点P (1﹣a ,1)在第二象限,则(a ﹣1)x <1﹣a 的解集为______.29.不等式7x+21>0的解集为_____30.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________.31.不等式2﹣x >0的解集是_____.32.把一些书分给几名同学,如果每人分4本,那么余3本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有本______. 33.若不等式组841x x x m +>-⎧⎨≤⎩的解集为x<3,则m 的取值范围是____________. 34.如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是________.35.不等式组2421x x -<⎧⎨-≥⎩的解集是______. 36.当_________时,34x x -++有最小值,最小值是_________;37.如果(1)20m m x +-<是关于x 的一元一次不等式,则m=_______38.若不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,且使关于x 的分式方程6mx x -=436x x +- 有整数解,那么符合条件的所有整数m 的值之和是______.39.在橙子收获旺季,某果园开展现场采摘现场销售活动,每天接待到果园采摘橙子的游客络绎不绝.果园里有A 、B 、C 三种不同品种的橙子,第一周A 、B 、C 三种橙子的采摘重量之比为4:3:5,第一周C 品种橙子的单价是A 、B 品种橙子的单价之和的3倍,第一周C 品种橙子的单价小于21元且不低于3元.第二周继续接待采摘三种橙子的游客,本周A 、C 品种橙子的采摘重量之比为2:3,B 品种橙子的采摘重量比第一周下降了15,A 品种橙子的单价与第一周相同,B 品种橙子的单价比第一周增加1倍,C 品种橙子的单价是第一周的4倍.两周结束后,经统计,第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额多1090元,第一周三种橙子的总采摘重量与第二周三种橙子的总采摘重量之差不低于166斤且小于196斤,则这两周C 种橙子的总销售额一共为 _____元,(A 、B 、C 三种不同品种橙子的单价为每斤整数元,以及每次采摘重量都是整数斤)三、解答题40.下面是小明解不等式532122x x ++-<的过程: ①去分母,得5132x x +-<+,①移项、合并同类项,得22x,①两边都除以-2,得1x >.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是___________________________________________________;(3)第①步的依据是___________________________________________;(4)该不等式的解集应该是________________. 41.解不等式组4+6>13(1)5x x x x --≤-⎧⎨⎩①② 请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式①,得_____;(3)把不等式①和①的解集在数轴上表示出来.(4)原不等式组的解集为_____.42.下面是小红同学解不等式5117263x x -≤-的过程,请认真阅读并完成相应任务. 解:5111214x x -≤-,.............第一步5121114x x -≤-,.............第二步73x -≤-....................第三步37x ≤........................第四步 任务一:填空.(1)以上解题步骤中,第___步是去分母,去分母的依据是___;(2)第___步出现错误,这一步错误的原因是___,这一步正确的结果是___,依据是___.任务二:除了任务一中出现的错误外,请根据平时的学习经验,就解不等式时还需要注意的事项给其他同学提一条建议.43.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式3x ≥ (选填“是”或“不是”3x ≤的“云不等式”).(2)若关于x 的不等式20x a -≥与不等式1211x x ->-互为“云不等式”且有2个公共的整数解,求a 的取值范围.44.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 45.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 46.2021年体育实验考试期间,商城县某初中组织本校332名九年级考生和8名领队教师到商城高中参加考试,学校准备租用45座甲种客车和30座的乙种客车.若租用1辆甲种客车和2辆乙种客车共需租金1650元;若租用2辆甲种客车和1辆乙种客车共需租金1800元.(1)求甲乙两种客车每辆的租金各是多少元?(2)为了保证安全,学校要求每辆车上至少要有一名领队教师陪同,在总租金不超过5200元的情况下,有多少种租车方案?并求出最省钱的租车方案.47.为应对新型冠状病毒,某药店老板到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌的数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?48.2019年4月29日至2019年10月7日,2019年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种. 具体如下表:小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).(1)若他们端午节去北京世园会参观购买门票共用去1360元,问买了普通票和优惠票各几张(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?49.清明节,除了扫墓踏青之外,传统时令小吃——青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的54倍,4月份鲜花牛奶青团和芒果青团总计销售60000个,且鲜花牛奶青团和芒果青团销售量之比为5:7,鲜花牛奶青团销售额为250000元.(1)求鲜花牛奶青团和芒果青团的售价?(2)5月份正值知味观店庆,决定再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的32,且不多于鲜花牛奶青团的2倍,其中,鲜花牛奶青团每个让利a元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的78,知味观如何设计生产方案使总销售额最大?参考答案:1.D【分析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.【详解】A .根据不等式的基本性质1可知,44a b +>+,此选项正确,不符合题意; B .根据不等式的基本性质1和2可知,2323a b +>+,此选项正确,不符合题意; C .根据不等式的基本性质1可知,66a b ->-,此选项正确,不符合题意;D .根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a<-3b ,故D 错误;故选D .【点睛】本题考查了不等式的基本性质,解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.2.C【分析】不等式的解集在数轴上表示的方法:①定点,根据不等式中的实数确定数轴上的点(“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示);①定向,根据不等号方向确定(>,≥向右画;<,≤向左画),按要求操作即可得出.【详解】解:根据5和≥确定在数轴上取对应的数字为5的实心点,然后方向向右,从而得到:,故选:C .【点睛】本题考查了不等式的解集在数轴上表示的方法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.D【分析】由一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),利用一次函数图象上点的坐标特征即可得出关于m 的方程,解之即可得出m 的值,由y 的值随着x 的值的增大而减小,利用一次函数的性质可得出m -2<0,解之即可得出m <2,进而可得出m =-3.【详解】解:①一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),①m 2-3=6,即m 2=9,解得:m =-3或m =3.又①y 的值随着x 的值的增大而减小,①m -2<0,①m <2,①m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.4.A【分析】根据不等式的性质和绝对值的定义,结合“a b >”,依次分析各个选项,选出正确的选项即可.【详解】解:A 、若a b >,则33a b -<-,正确,该选项符合题意;B 、若a b >,则0a b ->,原变形错误,该选项不符合题意;C 、若a b >,则33a b >,原变形错误,该选项不符合题意; D 、若a 和b 同为负数,若a b >,a b <,该选项不符合题意;故选:A .【点睛】本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.5.A【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由①,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A . 【点睛】此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【详解】解:解不等式213x ->-得:1x >-,解不等式52x ->得:3x <,所以,不等式组的解集是13x -<<,所以,不等式组的整数解有0、1、2共3个.故选:A .【点睛】本题主要考查了一元一次不等式组整数解的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.C【分析】根据不等式的基本性质,逐项判断即可.【详解】解:A 、①m <n ,①m ﹣2<n ﹣2,①选项A 不符合题意;B 、①m <n ,①44m n <,①选项B 不符合题意; C 、①m <n ,①﹣6m >﹣6,①选项C 符合题意;D 、①m <n ,①﹣8m >﹣8n ,①选项D 不符合题意.故选:C .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.C【分析】根据零次幂,相反数,负指数幂,不等式一一判定即可.【详解】A.0的零次幂没有意义,故错误;B. 5的倒数的相反数是-15,故错误; C. ()()1111a b a b ab---++=,正确; D.当a ,b 都为负数时,不等式不成立,故错误.故选C【点睛】本题考查了相反数,不等式的性质,熟练掌握概念和性质是解题的关键. 9.D【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】解不等式30x a +≥,得:3a x ≥-, 根据题意得:433a -<-≤-, 解得:912a ≤<.故选D . 【点睛】本题考查了不等式的整数解,根据x 的取值范围正确确定3a -的范围是解题的关键.在解不等式时要根据不等式的基本性质.10.C【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:①点P (2m +1,312m -)在第四象限. ①2103102m m +>⎧⎪⎨-<⎪⎩. 解得1123m -<<. 故选:C .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.11.A【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y . 在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.A【分析】先求出不等式组的解集,再表示在数轴上即可解答;【详解】解:210x ->,解得:12x >; 13x +≤,解得:2x ≤;①原不等式组的解集为:122x <≤, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组及解集在数轴上的表示,掌握相关知识并正确求解是解题的关键.13.D【分析】先根据题意得出不等式的解集,进而可得出结论.【详解】①数轴上点1处是空心圆点,且折线向左,①不等式的解集为x <1,解不等式ax-2<0得,x <2a, ①2a=1, 解得a=2.故选D . 【点睛】本题考查的是在数轴上表示不等式的解集,熟知不等式解集的表示方法是解答此题的关键.14.C【分析】不包括-3即-3不在解集内,由此可得出答案.【详解】解:根据题意,不包括-3即-3不在解集内,只有C选项,x≤ -4,不包括-3.故选C.【点睛】本题考查不等式的解集,熟练掌握是解题的关键.15.C【详解】试题分析:当0<x<1时,则3x<2x<x.本题可以利用特殊值法来进行比较.考点:数的大小比较16.C【详解】A、根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.m<n两边减去9,得到:m−9<n−9,成立;B、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时乘以−1得到−m>−n,成立;C、由m<n<0,可设m=−2,n=−1,验证1m>1n,不成立.D、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时除以负数n得到mn>1,成立.故选C.17.C【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【详解】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、①a>b,①a+1>b+1,①b+1>b﹣1,①a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是关键.18.D【分析】设大约需x分钟才能将污水抽完,利用总的抽水量超过1200t而不足1500t列出不等式组解决问题.【详解】设大约需x 分钟才能将污水抽完,由题意得:301200{301500x x ≥≤ , 解得:40≤x≤50.故选D .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.B【分析】根据不等式的基本性质逐一判断即可.【详解】解:①m 2+1>0,则不等式的两边同时除以m 2+1,则不等式不变号,①A 正确;①a (m 2﹣1)<b (m 2﹣1)中,m 2﹣1可以是正数也可以是负数或0,①B 错误; ①a (m +1)2<b (m +1)2成立,①(m +1)2≠0,可得(m +1)2>0,则不等式的两边同时除以(m +1)2,则不等式不变号,①C 正确;①a (m +b )<b (m +a )可以化为am +ab <bm +ab ,则不等式的两边同时减去ab ,则不等式不变号,①D 正确;故选:B .【点睛】本题考查不等式的基本性质;熟练掌握不等式的基本性质是解题的关键. 20.D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤. 所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.21.356x <【分析】根据运算的顺序列不等式即可.【详解】解:x 的3倍与5的差小于6,用不等式表示为:356x <,故答案为:356x <.【点睛】本题考查列一元一次不等式,解题关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.22.113k -≤<且0k ≠【分析】根据一元二次方程的定义和根的判别式得出0k ≠,310k +≥,(2410k ∆=-⨯>,据此求解即可 【详解】解:关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根, ①0k ≠,310k +≥且(2410k ∆=-⨯>, 解得:113k -≤<且0k ≠, 故答案是:113k -≤<且0k ≠.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.23.0x =,1,2【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x +,合并同类项得:2x ,故不等式的非负整数解是0x =,1,2.故答案为:x =0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.24.正【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,从而得到103a ->,即可求解.【详解】解:①函数值y 随着自变量x 的增大而减小,①120a -<, 解得:12a >, ①103a ->, ①这个函数图像与y 轴的交点M 位于y 轴的正半轴.故答案为:正【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.25.a <3.【分析】根据绝对值的几何意义,求得|x +1|+|x ﹣2|的最小值为3,从而得到实数a 的取值范围.【详解】解:①|x +1|+|x ﹣2|表示数轴上的x 对应点到﹣1、2对应点的距离之和, ①它的最小值为3,①不等式|x +1|+|x ﹣2|>a 对任意的实数x 恒成立,①a <3,故答案为:a <3.【点睛】本题主要考查了绝对值的意义,以及绝对值不等式的解法.解题的关键是利用绝对值不等式的几何意义,体现了数形结合的思想.26.513x -≤< 【分析】分别求出两个不等式的解集,再进行求解即可.【详解】解:解314x -<得53x <, 解32x +≥得1x ≥-,①不等式组的解集为:513x -≤<,故答案为:513x -≤<. 【点睛】本题考查了不等式组的求解,正确的计算是解决本题的关键.27.6-.【分析】先求出不等式的解集,找出不等式的负整数解即可.【详解】解:2132x x -≤+,①233x x -≤,①3x -≤,①3x ≥-;①负整数解有:3-,2-,1-;①负整数解的和是:3(2)(1)6-+-+-=-;故答案为:6-.【点睛】本题主要考查一元一次不等式的整数解,不等式的性质,解一元一次不等式等知识点的理解和掌握,能求出不等式的解集是解此题的关键.28.x <﹣1【分析】根据点P 在第二象限得出a >1,据此知a ﹣1>0,再将不等式两边都除以a ﹣1即可得答案.【详解】解:①点P (1﹣a ,1)在第二象限,①1﹣a <0,则a >1,①a ﹣1>0,①不等式(a ﹣1)x <1﹣a 的解集为x <﹣1,故答案为:x <﹣1.【点睛】本题考查了第二象限内点的坐标特征,不等式的性质,解不等式,系数化为1的过程中,在解不等式时,一定要先判断两边所除的式子的符号.29.x >-3【分析】先移项、然后按不等式的基本性质进行解答即可.【详解】解:7x+21>07x >-21x >-3故答案为x>-3.【点睛】本题主要考查了解一元一次不等式,掌握不等式的基本性质是解答本题的关键.30.32 a<【分析】据已知不等式的解集,结合x的系数确定出2a-3为负数,求出a的范围即可.【详解】解:①不等式(2a-3)x<1的解集是123xa>-,①2a-3<0,①32a<,即a的取值范围是32a<,故答案为32a<.【点睛】本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.31.x<2【分析】利用不等式的基本性质解出不等式的解集即可【详解】根据不等式的基本性质将2﹣x>0变形为2>x,故不等式2﹣x>0的解集是x<2【点睛】主要考查一元一次不等式的解法32.19【分析】设共有x名同学分书,则这批书共有(4x+3)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设共有x名同学分书,则这批书共有(4x+3)本,依题意,得436(1) 436(1)2x xx x+>-⎧⎨+≤-+⎩,解得:7292x≤<,又①x为正整数,①x=4,①4x+3=19.故答案为:19.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.33.m≥3【分析】化简不等式组得3x x m <⎧⎨≤⎩,根据不等式组的解集为x<3,即可得出m 的取值范围. 【详解】解:解不等式组得3x x m <⎧⎨≤⎩, ①不等式组解集为x<3,①m≥3.故答案为:m≥3.【点睛】本题主要考查的是不等式组的解集,掌握不等式组的解集是解题的关键.34.52k <- 【分析】解出方程的解为522k x --=,再根据题意得到5202k -->,转化为解一元一次不等式即可解答.【详解】解:325x k x +=- 解得522k x --= 关于x 的方程325x k x +=-的解是正数,5202k --∴> 520k ∴-->52k ∴<- 故答案为:52k <-. 【点睛】本题考查方程的解、解一元一次方程、解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.35.3x ≥【分析】先求出每一个不等式的解集,后确定不等式组的解集.【详解】①2421x x -<⎧⎨-≥⎩①②①解不等式①,得x >-2,解不等式,①,得x ≥3,①不等式组的解集为x ≥3,故答案为:x ≥3.【点睛】本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键. 36. 43x -≤≤ 7【分析】根据题意以及绝对值的非负性,再利用分类讨论的数学思想可以解答本题.【详解】当x >3时,34x x -++=34217x x x -++=+>;当43x -≤≤时,34x x -++34x x =-++=7;当x <-4时,34x x -++=34=217x x x ----->.∴当43x -≤≤时,34x x -++有最小值7.故答案为:43x -≤≤;7.【点睛】本题考查了绝对值相关最值的求解,涉及不等式运算,解答本题的关键是明确绝对值的定义,利用分类讨论的数学思想解答.37.1【分析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】①(1)20m m x +-<是关于x 的一元一次不等式,①1m +≠0且|m|=1,①m =1.故答案是:1.【点睛】考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.38.11【分析】根据不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立确定出m 的范围,再由m 是整数得到m 的值,分式方程去分母后将m 的值代入检验,使分式方程的解为整数即可.【详解】①3x <6,①x <2,①不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,①不等式(m-1)x <m+5的解集是51m x m +<-, ① 521m m +≥-, 解之得1<m≤7,①m 是整数,①m=2,3,4,5,6,7, ①6mx x -=436x x +-, ①mx=3x-18+4x , ①187x m=- , ①分式方程6mx x -=436x x +- 有整数解, ①m=2, 185x =,舍去;m=3, 92x =,舍去;m=4, 6x =,是增根,舍去;m=5, 9x =;m=6, 18x =;m=7,x 无解,舍去;①5+6=11.故答案为11.【点睛】本题主要考查的是分式方程的解法,一元一次不等式组的解法的有关知识,熟练掌握分式方程的解法是解答本题的关键.39.2880【分析】设第一周A 、B 、C 三种橙子的采摘重量分别为4m 斤、3m 斤、5m 斤,第一周A 、B 单价分别为x 元,y 元;设第二周A 、C 三种橙子的采摘重量分别为2m 斤、3m 斤;则第一周C 品种橙子的单价为3(x +y )元,第二周A 、B 、C 三种橙子的单价分别为x 元,2y 元;12(x +y )元,通过第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额。
初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)

初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、填空题(共50题)1、关于的不等式的解集如图所示,则的值是________.2、用不等式表示“x 与 5 的差不大于1”:________.3、不等式组的解集是________。
4、关于x的分式方程的解为正数,则m的取值范围是________.5、已知不等式≥3,那么这个不等式的解集是________6、若关于x的不等式的解集在数轴上表示如图,请写出此解集为________.7、不等式组的正整数解的乘积为________.8、若关于x的一元二次方程没有实数解,则关于x的不等式的的解集为________.(用含的式子表示)9、不等式组的解集是________.10、已知关于x的不等式>x-1,当m=1时,该不等式的解集为________;若该不等式的解集中的每一个x都能使关于x的不等式x>a成立,则此时m的取值范围为________,a的取值范围是________.11、不等式的解集是________.12、不等式组的解集是________ .13、不等式组的解集是________.14、“a的2倍减去b不小于2”用不等式表示是________.15、不等式组的解集是________.16、点 P(1,a﹣3)在第四象限,则a的取值范围是________.17、将不等式“ ”化为“ ”的形式为:________.18、若x>y,且(m-5)x <(m-5)y ,则m的取值范围是________.19、不等式组的解集是________.20、已知关于x的一元一次不等式与2﹣x<0的解集相同,则m=________.21、抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是________.22、若式子在实数范围内有意义,则x的取值范围是________.23、关于、的二元一次方程组的解满足,则的取值范围是________.24、不等式3x-6≤9的解是________.25、某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是________km.26、不等式组的解集是________.27、关于的不等式的解集是写出一组满足条件的的值________.28、苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克________元.29、x与y的平方和一定是非负数,用不等式表示为________30、若m<n,则不等式组的解集是________.31、一元二次方程x2+2x+a=0有实根,则a的取值范围是________.32、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣 5 分.小明得分要超过90分,他至少要答对________道题.33、已知不等式x﹣1≥0,此不等式的解集在数轴上表示为________34、若不等式组的解集是,则m的取值范围是________.35、我们定义,例如,若均为整数,且满足,则的值是________.36、不等式组的解集是________.37、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.38、若关于x的一元二次方程有实数根,则n的取值范围是________.39、若关于x的不等式组无解,则a的取值范围为________.40、关于x的不等式组只有4个整数解,则a的取值范围是________.41、要使式子在实数范围内有意义,则实数a的取值范围是________.42、已知关于x的不等式组无解,则实数a的取值范围是________43、如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________44、用不等号连接下列各组数:(1)π________ 3.14;(2)(x﹣1)2________ 0;(3)﹣________ ﹣45、若不等式(m-2)x>2的解集是,则m的取值范围是________.46、不等式-3x+2≥5的解集是________。
中考数学《不等式组》专题训练(附答案解析)

中考数学《不等式组》专题训练(附答案解析)一、单选题(共10小题 每小题3分 共计30分)1.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤【答案】D 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1 得:x≤1解不等式x−1≥−2(x +2) 得:x≥−1则不等式组的解集为−1≤x≤1故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是( )A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A 分别解不等式组中的两个不等式 再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴ 不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组 掌握解不等式组的方法是解题的关键.3.(贵州贵阳市·)已知a b < 下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D 根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1 不等式仍成立 即a−1<b−1 故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2 不等号方向改变 即22a b ->- 故本选项不符合题意; C 、不等式a <b 的两边同时乘以12 不等式仍成立 即:1122a b < 再在两边同时加上1 不等式仍成立 即111122a b +<+ 故本选项不符合题意; D 、不等式a <b 的两边同时乘以m 当m>0 不等式仍成立 即ma mb <;当m<0 不等号方向改变 即ma mb >;当m=0时 ma mb =;故ma mb >不一定成立 故本选项符合题意故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时 一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时 一定要对字母是否大于0进行分类讨论.4.不等式213x -≤的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 先求出不等式的解集 再在数轴上表示出来即可.【详解】解:移项得 2x ≤3+1合并同类项得 2x ≤4系数化为1得 x ≤2在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右 在表示解集时≥ ≤要用实心圆点表示;< >要用空心圆点表示”是解答此题的关键.5.关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个 则m 的取值范围是( ) A .21m -<≤- B .21m -≤≤- C .21m -≤<- D .32m -<≤-【答案】C 不等式组整理后 表示出不等式组的解集 根据整数解共有4个 确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩ 解集为m <x <3由不等式组的整数解只有4个 得到整数解为2 1 0 -1∴-2≤m<-1故选:C .【点睛】本题主要考查对解一元一次不等式 不等式的性质 解一元一次不等式组 一元一次不等式组的整数解等知识点的理解和掌握 能根据不等式组的解集得到-2≤m<-1是解此题的关键. 6.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解 则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<【答案】C 先求出不等式组的解集(含有字母a ) 利用不等式组有三个整数解 逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥解不等式28x a -<得:82a x +<∴不等式组的解集为:822a x +≤<∵不等式组35128x x a -⎧⎨-<⎩有三个整数解 ∴三个整数解为:2 3 4 ∴8452a +<≤ 解得:02a <≤故选:C .【点睛】本题考查了解一元一次不等式组 一元一次不等式组的整数解的应用 解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.某单位为响应政府号召 需要购买分类垃圾桶6个 市场上有A 型和B 型两种分类垃圾桶 A 型分类垃圾桶500元/个 B 型分类垃圾桶550元/个 总费用不超过3100元 则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】B 设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x ) 然后根据题意列出不等式组 确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x )个由题意得:500550631006x x x +-≤⎧⎨≤⎩() 解得4≤x ≤6 则x 可取4、5、6 即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用 弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】C 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集 从而得出答案.【详解】解:解不等式x ﹣1>0 得:x >1解不等式5﹣x ≥1 得:x ≤4则不等式组的解集为1<x ≤4所以不等式组的整数解有2、3、4这3个故选:C .【点睛】此题考查求不等式组的整数解 正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(山东聊城市·)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解 则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 求出第一个不等式的解集 根据口诀:大大小小无解了可得关于m 的不等式 解之可得.【详解】 解不等式1132x x +<- 得:x >8 ∵不等式组无解∴4m≤8解得m≤2故选A .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(四川广安市·)若m n > 下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D 根据不等式的性质:不等式两边加(或减)同一个数(或式子) 不等号的方向不变;不等式两边乘(或除以)同一个正数 不等号的方向不变;不等式两边乘(或除以)同一个负数 不等号的方向改变 即可得到答案.【详解】解:A 、不等式的两边都加3 不等号的方向不变 故A 错误;B 、不等式的两边都乘以﹣3 不等号的方向改变 故B 错误;C 、不等式的两边都除以3 不等号的方向不变 故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质 “0”是很特殊的一个数 因此 解答不等式的问题时 应密切关注“0”存在与否 以防掉进“0”的陷阱.二、填空题(共5小题 每小题4分 共计20分)11.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解 则a 的取值范围是________________. 【答案】-114≤a <-52解不等式组求得不等式组的解集 根据不等式组有四个整数解 进而求出a 的范围.【详解】 ()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得 x >8;解不等式②得 x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解∴12<2-4a ≤13∴-114≤a <-5212.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解 则m 的取值范围是______. 【答案】1≤m <4解不等式组得出其解集为﹣2<x ≤23m + 根据不等式组有且只有三个整数解得出1≤23m +<2 解之可得答案. 【详解】解不等式2143x x--<得:x>﹣2解不等式2x﹣m≤2﹣x得:x≤2 3 m+则不等式组的解集为﹣2<x≤2 3 m+∵不等式组有且只有三个整数解∴1≤23m+<2解得:1≤m<4故答案为:1≤m<4.13.若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立则实数m的取值范围是_______.【答案】236≤m≤6解不等式52x+>﹣x﹣72得x>﹣4据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4∵x>﹣4都能使不等式(m﹣6)x<2m+1成立①当m﹣6=0即m=6时则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0则不等式(m﹣6)x<2m+1的解要改变方向∴m﹣6<0即m<6∴不等式(m﹣6)x<2m+1的解集为x>216 mm+-∵x>﹣4都能使x>216mm+-成立∴﹣4≥216 mm+-∴﹣4m+24≤2m+1∴m≥23 6综上所述m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.世纪公园的门票是每人5元一次购门票满40张每张门票可少1元.若少于40人时一个团队至少要有________人进公园买40张门反而合算.【答案】33先求出购买40张票 优惠后需要多少钱 然后再利用5x >160时 求出买到的张数的取值范围再加上1即可.【详解】解:设x 人进公园若购满40张票则需要:40×(5-1)=40×4=160(元) 故5x >160时解得:x >32∴当有32人时 购买32张票和40张票的价格相同则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园 买40张票反而合算.故答案为:33.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝 并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数 同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4 则阅读过《水浒传》的人数的最大值为_____.【答案】6根据题中给出阅读过《三国演义》的人数 则先代入条件(3)可得出阅读过《西游记》的人数的取值范围 然后再根据条件(1)和(2)再列出两个不等式 得出阅读过《水浒传》的人数的取值范围 即可得出答案.【详解】解:设阅读过《西游记》的人数是a 阅读过《水浒传》的人数是b (,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<b ∴最大可以取6;故答案为6.三、解答题(共5小题 每小题10分 共计50分)16.如图 “开心”农场准备用50m 的护栏围成一块靠墙的矩形花园 设矩形花园的长为()a m 宽为()b m .(1)当20a =时 求b 的值;(2)受场地条件的限制 a 的取值范围为1826a ≤≤ 求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤(1)根据等量关系“围栏的长度为50”可以列出代数式 再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式 用含有b 的式子表示a,再结合1826a ≤≤ 列出关于b 的不等式组 接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意 得250a b +=当20a =时 20250b +=.解得15b =.(2)∵1826a ≤≤ 502a b =-∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组 得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式 正确理解题意得出关系式是解题关键.还考查了解不等式组 难度不大.17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩ 并把它的解集在数轴上表示出来.【答案】-2≤x<3 解集在数轴上表示见解析.先求出两个不等式的解集 再求其公共解.【详解】解:3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式① 得x<3.解不等式② 得x ≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法 其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大 同小取小 大小小大中间找 大大小小找不到(无解).18.第33个国际禁毒日到来之际 贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动 某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下 为什么说学习委员搞错了;(2)学习委员连忙拿出发票 发现的确错了 因为他还买了一本笔记本 但笔记本的单价已模糊不清 只能辨认出单价是小于10元的整数 那么笔记本的单价可能是多少元?【答案】(1)方程见解析 因为钢笔的数量不可能是小数 所以学习委员搞错了;(2)可能是2元或者6元(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支 则单价为10元的钢笔买了(100x -)支根据题意 得610(100)1300378x x +-=-解得:19.5x =.因为钢笔的数量不可能是小数 所以学习委员搞错了(2)设笔记本的单价为a 元 根据题意 得610(100)1300378x x a +-+=-整理 得13942x a =+ 因为010a << x 随a 的增大而增大 所以19.522x << ∵x 取整数∴20,21x =.当20x 时 420782a =⨯-=当21x =时 421786a =⨯-=所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.解不等式31212x x -->. 解:去分母 得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数 不等号的方向不变;B .不等式两边都乘(或除以)同一个负数 不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .(1)按照去括号、移项、合并同类项的步骤进行补充即可; (2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母 得2(21)31x x ->-去括号 得4231x x ->-移项 得4312x x ->-+合并同类项 得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数 不等号的方向不变31212x x -->两边同乘以正数2 不等号的方向不变 即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质 熟练掌握一元一次不等式的解法是解题关键. 20.某水果店销售苹果和梨 购买1千克苹果和3千克梨共需26元 购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克 且总价不超过100元 那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元 每千克梨6千克;(2)最多购买5千克苹果(1)设每千克苹果售价x 元 每千克梨y 千克 由题意列出x 、y 的方程组 解之即可;(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意列出a 的不等式 解之即可解答.【详解】(1)设每千克苹果售价x 元 每千克梨y 千克 由题意得:326222x y x y +=⎧⎨+=⎩解得:86x y =⎧⎨=⎩ 答:每千克苹果售价8元 每千克梨6千克(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意得:8a+6(15-a)≤100解得:a ≤5∴a 最大值为5答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用 解答的关键是认真审题 分析相关信息 正确列出方程组和不等式.。
中考数学 不等式(组)专题训练(含答案)精选全文完整版

可编辑修改精选全文完整版2020中考数学 不等式(组)专题训练(含答案)一、单选题(共有10道小题)1.实数a b c ,,在数轴上对应的点如下图所示,则下列式子中正确的是()A .ac bc >B .––a b a b =C .–a b c -<<D .––––a c b c >2.如图,在数轴上表示不等式组1010x x ->⎧⎨+≥⎩的解集,其中正确的是()3.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是( )A . -1B . 0C .1D . 2 4.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥35.不等式组102123x x ⎧->⎪⎨⎪-<⎩的解集为( )A.12x >B.1x <-C.211x <<-D.12x >- 6.一元一次不等式()122573x x --≥-的解集为()A.109x ≥B.209x ≥C.109x ≤D.209x ≤ xcb aABDC7.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为( )A . 8B .6C .5D .48.不等式2<10x 的解集在数轴上表示正确的是( )9.不等式210x ->的解集是( )A.12x>B. 12x <C. 12x >-D. 12x <-10.若不等式02>-ax 的解集为x <-2,则关于y 的方程02=+ay 的解为( )A .y =-1B .y =1C .y =-2D .y =2二、填空题(共有7道小题)11.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米12.不等式组8<4-121>7-3x x x x +⎧⎪+⎨⎪⎩的解集为 .13.不等式()133x m m ->-的解集为1x >,则m 的值为 14.不等式组11343x x ⎧≤⎪⎨⎪-<⎩的解集是________.15.解不等式组21 1 21 3 x x +≥-⎧⎨+≤⎩①②,请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:16.不等式组()32423x x x --≥⎧⎪⎨<⎪⎩的解集是________.A C DB17.已知关于x 的不等式组2132x x x m+⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m 的取值范围是三、计算题(共有2道小题) 18.已知3=x 是关于x 的不等式32223xax x >+-的解,求a 的取值范围.19.解不等式组:()3242113x x x x ⎧-≥-⎪⎨+>-⎪⎩ 并写出它的所有的整数解.四、解答题(共有5道小题)20.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本。
2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。
部编数学七年级下册专题10《不等式与不等式组》解答题重点题型分类(解析版)含答案

专题10 《不等式与不等式组》解答题重点题型分类专题简介:本份资料专攻《不等式与不等式组》中“求一元一次不等式组中待定字母的值的情况”、“利用一元一次不等式(组)解决实际问题”、“方程组与不等式组相结合解决实际问题”、“利用不等式计算获利问题”、“运用一元一次不等式组进行方案设计”解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:求一元一次不等式组中待定字母的值的情况方法点拨:1.已知关于x 的不等式组21321x m x m ->ìí-<-î(1)如果不等式组的解集为67x <<,求m 的值;(2)如果不等式组无解,求m 的取值范围;【答案】(1)11;(2)5m £【分析】(1)解两个不等式得出12m x +>且213m x -<,根据不等式组的解集为67x <<得1622173m m +ì=ïïí-ï=ïî,解之可得答案;(2)根据不等式组无解,利用“大大小小找不到”可得12123m m +-…,解之可得答案.【详解】解:(1)由21x m ->,得:12m x +>,解不等式321x m -<-,得:213m x -<,Q 不等式组的解集为67x <<,∴1622173m m +ì=ïïí-ï=ïî,解得11m =;(2)Q 不等式组无解,\12123m m +-…,解得5m ….【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.对于任意实数a ,b ,定义一种新运算:a #b =a ﹣3b +7,等式右边是通常的加减运算.例如:3#5=3﹣3×5+7.(1)求5#x >0解集;(2)若3m <2#x <7有解,求x 的取值范围;(3)在(2)的条件下,若x 的解集中恰有3个整数解,求m 的取值范围.【答案】(1)x <4;(2)233x m <<-;(3)-1≤m <0【分析】(1)根据新定义得出关于x 的不等式,解之即可;(2)根据新定义列出关于x 的不等式组,再分别求解即可得出其解集;(3)由不等式组整数解的个数得出关于m 的不等式组,再进一步求解即可.【详解】解:(1)由题意得5-3x +7>0,解得x <4;(2)由题意,得:32373727x m x î-+>-+<ìí①②,解不等式①,得:23x >,解不等式②,得:x <3-m ,则不等式组的解集为233x m <<-;(3)∵该不等式组有3个整数解,∴3<3-m ≤4,解得-1≤m <0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.已知不等式()132x m m ->-.()1若其解集为3x >,求m 的值;()2若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围.【答案】(1) 1.5m =;(2) 1.5m ³【分析】(1)根据已知等式求出m 的范围即可;(2)根据题意确定出m 的范围即可.【详解】解:(1)不等式整理得:63x m m ->-,解得:62,x m >-由不等式的解集为3,x >得到623,m -=解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -£,解得: 1.5m ³【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.4.若不等式组0122x a x x +³ìí->-î有3个整数解,则a 的取值范围是多少.【答案】2≤a <3【分析】先求出不等式组解集,然后再根据已知不等式组有3个整数解,列出不等式组确定a 的取值范围即可.【详解】解:0122x a x x +³ìí->-î①②解不等式①得:x ≥-a ,解不等式②x <1,∴不等式组的解集为-a ≤x <1,∵不等式组恰有3个整数解,∴-3<-a ≤-2,解得:2≤a <3.【点睛】本题主要考查了解一元一次不等式(组),不等式组的整数解等知识点,能根据不等式组的解集得出关于a 的不等式组是解答本题的关键.5.不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,求a 的取值范围.【答案】113a -<£【分析】先求出不等式组2153136215x x x +-ì-<ïíï-£î的解集为13x -<£,然后分别讨论当0a >时,当0a <时,当0a =时,不等式1ax >-的解集,然后根据不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分进行求解即可.【详解】解:2153136215x x x +-ì-<ïíï-£î①②解不等式①得:1x >-,解不等式②得:23x -££,∴不等式的解集为13x -<£,∵1ax >-,∴当0a >时,1x a>-∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴11a-£-,∴01a <£;同理当0a <时,1x a<-,∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴13a->,∴103-<<a ;当0a =时,01>-恒成立,即关于x 的一元一次不等式1ax >-的解集为一切实数,∴此时也满足不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴综上所述,113a -<£.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.6.已知关于x 的不等式4(x +2)﹣2>5+3a 的解都能使不等式(31)(23)32a x a x ++>成立,求a 的取值范围.【答案】115a -…【分析】先求出不等式4(x +2)-2>5+3a 的解集,再根据不等式(31)(23)32a x a x ++>用a 表示出x 的取值范围,最后解不等式组即可求出a 的取值范围.【详解】解:解不等式4(2)253x a +->+得:314a x ->,Q (31)(23)32a x a x ++>,解得:92ax >\31942a a -…解得:115a -….【点睛】本题考查的是解一元一次不等式,正确理解不等式的解集是解此题的关键.7.已知关于x 的不等式组()42127,6 1.7x x x a x ì-+>ïí-<+ïî(1)若该不等式组有且只有三个整数解,求a 的取值范围;(2)若不等式组有解,且它的解集中的任何一个值均不在5x ≥的范围内,求a 的取值范围.【答案】(1)12a £<;(2)25a £<【分析】(1)先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出关于a 的不等式组,从而求解;(2)结合不等式组有解及它的解集中的任何一个值均不在x ≥5的范围内,得出关于a 的不等式组,从而求解.【详解】解:(1)解不等式()42127x x -+>,得2x >.解不等式617x a x -<+,得7x a <-,∵该不等式组有且只有三个整数解,∴这三个整数解为3,4,5.∴576a <-£.∴12a £<.(2)∵该不等式组有解,由(1)知72a ->.∴该不等式组的解集为27x a <<-.又它的解集中的任何一个值均不在5x ≥的范围内,∴75a -£.解不等式组7275a a ->ìí-£î得符合题意的a 的取值范围为25a £<.【点睛】本题考查的是解一元一次不等式组和不等式的整数解,根据题意列出不等式,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.若一个不等式(组)A 有解且解集为()a x b a b <<<,则称2a b +为A 的解集中点值,若A 的解集中点值是不等式(组)B 的解(即中点值满足不等式组),则称不等式(组)B 对于不等式(组)A 中点包含.(1)已知关于x 的不等式组A :23560x x ->ìí->î,以及不等式B :15x -<£,请判断不等式B 对于不等式组A 是否中点包含,并写出判断过程;(2)已知关于x 的不等式组C :272131691x m x m +>+ìí-<-î和不等式D :43135x m x m >-ìí-<î,若D 对于不等式组C 中点包含,求m 的取值范围.(3)关于x 的不等式组E :22x n x m >ìí<î(n m <)和不等式组F :523x n x m n -<ìí->î,若不等式组F 对于不等式组E 中点包含,且所有符合要求的整数m 之和为9,求n 的取值范围.【答案】(1)不等式B 对于不等式组A 是中点包含,见解析;(2)316m -<<;(3)12n £<【分析】(1)先解不等式组A ,再按照要求求中点,再判断中点是否在B 不等式中即可.(2)先解不等式组C 、D ,再根据C 组的中点在D 不等式组中建立不等式,再解出m 取值范围.(3)先解不等式组E 、F ,再根据E 组的中点在F 不等式组中建立不等式,再解出m 取值范围,再根据符合要求的整数m 之和为9,缩小m 取值范围从而确定n 取值范围.【详解】(1)解不等式组A :23560x x ->ìí->î得46x <<,∴中点值为5x =又∵5x =在不等式B :15x -<£范围内,∴不等式B 对于不等式组A 是中点包含(2)解不等式C 得:33+5m x m -<<∴不等式组C 中点为:3+3+5=2+12m m m -解不等式D 得:51343m m x +-<<∵2m -1位于4m -和5133m +之间∴5134213m m m +-<-<解得:316m -<<(3)解不等式组E 得:2n <x <2m ,则中点值为n +m解不等式组F 得:32n m +<x <5+n ∵32n m +<n +m <5+n ∴5m n m <ìí<î∵所有符合要求的整数m 之和为9∴m 可取4,3,2∴12n £<【点睛】本题考查新定义概念的运用与求解,实际还是在考查不等式组的解法和不等式的性质,掌握好不等式组的解法和不等式性质是本题解题关键.考点2:利用一元一次不等式(组)解决实际问题方法点拨:列不等式解应用题基本步骤与列方程解应用题相类似,即:(1)审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解出所列的不等式的解集;(5)答:写出答案,并检验答案是否符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( )A .x >2B .x ≥2C .x <2D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为()图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-1图X2-2-2 图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________.6.若关于x 的不等式组2,x x m ⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?B级中等题11.(2012年湖北荆门)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%13.(2012年湖北黄石)若关于x的不等式组233,35x xx a>-⎧⎨->⎩有实数解,则实数a的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400选做题17.若关于x,y的二元一次方程组31,33x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则实数a的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?参考答案1.B 2.C 3.B 4.B 5.2<x <3 6.m ≤27.m >2 解析:由第一象限点的坐标的特点可得⎩⎪⎨⎪⎧m >0,m -2>0.解得m >2.8.-1,0,1 解析:解原不等式组,得-32<x ≤1,所以x 取-1,0,1.9.解:⎩⎪⎨⎪⎧3x -2<x +2, ①8-x ≥1-3(x -1). ②由不等式①,得x <2, 由不等式②,得x ≥-2. ∴不等式组的解集为-2≤x <2. 10.解:(1)牛奶盒数为(5x +38)盒.(2)根据题意,得⎩⎪⎨⎪⎧5x +38-6(x -1)<5,5x +38-6(x -1)≥1.∴不等式组的解集为39<x ≤43. ∵x 为整数, ∴x 取40,41,42,43.答:该敬老院至少有40名老人,最多有43名老人.11.A 解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m,1-m ).又∵M (1-2m ,m -1)关于x 轴的对称点在第一象限,∴⎩⎪⎨⎪⎧1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1.在数轴上表示为.故选A.12.B 解析:设购进这种水果a 千克,进价为y 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为(1+x )y 元/千克.由题意,得 0.9a (1+x )y -ayay ×100%≥20%.解得x ≥13.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.13.a <4 解析:⎩⎪⎨⎪⎧2x >3x -3, ①3x -a >5. ②由①得,x <3,由②得,x >5+a3. ∵此不等式组有实数解, ∴5+a3<3,解得a <4. 14.解:(1)设甲票价为4x 元,则乙为3x 元.∴3x +4x =42,解得x =6. ∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元. (2)设甲票有y 张,根据题意,得⎩⎪⎨⎪⎧24y +18(36-y )≤750,y >15. 解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张. 15.解:⎩⎨⎧x2+x +13>0, ①x +5a +43>43(x +1)+a . ②解不等式①,得x >-25.解不等式②,得x <2a .由该不等式有实数解,得该不等式组的解集为-25<x <2a .又由该不等式恰有两个整数解,得1<2a ≤2. 解得12<a ≤1.∴实数a 的取值范围为12<a ≤1.16.解:(1)设有x 人生产A 种板材,则有(210-x )人生产B 种板材.根据题意列方程,得48 00060x =24 00040(210-x ). 化简,得6x =8(210-x ). 解得x =120.经检验x =120是原方程的解.生产B 种板材的人数为210-x =210-120=90(人).(2)设生产甲型板房m 间,则生产乙型板房为(400-m )间.根据题意,得⎩⎪⎨⎪⎧108m +156(400-m )≤48 000,61m +51(400-m )≤24 000.解得300≤m ≤360. 设400间板房能居住的人数为W .则有 W =12m +10(400-m ),W =2m +4 000.∵k =2>0,∴当m =360时,W 最大值=2×360+4 000=4 720(人). 答:这400间板房最多能安置4 720人. 17.a <418.解:(1)(2 420+1 980)×13%=572(元).(2)①设冰箱采购x 台,则彩电采购(40-x )台.根据题意,得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x )≤85 000,x ≥56(40-x ). 解不等式组,得18211≤x ≤2137.因为x 为整数,所以x =19或20或21. 方案一:冰箱购买19台,彩电购买21台; 方案二:冰箱购买20台,彩电购买20台; 方案一:冰箱购买21台,彩电购买19台. ②设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x )=20x +3 200. ∵k =20>0,∴y 随x 的增大而增大. ∴当x =21时,y 最大=20×21+3 200=3 620.。