函数零点易错题、三角函数重难点教师版)
高考数学热点难点专题11+三角函数的图像与性质中的易错点(文)(教师版)

专题11 三角函数的图像与性质中的易错点一.学习目标1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期. 3.理解三角函数的对称性,并能应用它们解决一些问题. 二.方法总结1.三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致: (1)首先看定义域是否关于原点对称; (2)在满足(1)后,再看f (-x )与f (x )的关系.另外三角函数中的奇函数一般可化为y =A sin ωx 或y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 2.三角函数的单调性(1)函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,其基本思想是把ωx +φ看作一个整体,比如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间. 对函数y =A cos(ωx +φ),y =A tan(ωx +φ)等单调性的讨论同上.(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较. 3.求三角函数的最值常见类型:(1)y =A sin(ωx +φ)+B 或y =A tan(ωx +φ)+B , (2)y =A (sin x -a )2+B ,(3)y =a (sin x ±cos x )+b s in x cos x (其中A ,B ,a ,b ∈R ,A ≠0,a ≠0). 三.函数图象与性质需要掌握的题型 (一)三角函数图象平移 (二)三角函数的零点 (三)函数的单调性 (四)函数的解析式 (五)三角函数图象综合 (六)三角函数的奇偶性(七)三角函数的对称性(八)三角函数的最值(九)三角函数与数列的综合(十)三角函数的周期性四.典例分析(一)三角函数图象平移例1.为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】B【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.练习1.为了得到的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】【分析】逆用两角和的余弦公式,得=,再分析两个函数图象的变换. 【详解】因为,要得到函数,只需将的图象向右平移个单位长度即可.故选D.【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数.(二)三角函数的零点例2.函数的零点个数为A.1 B.2 C.3 D.4【答案】B【解析】利用两角和与差的三角函数化简函数的解析式,通过函数为0,转化为两个函数的图象交点个数问题.【详解】由已知,令,即,在同一坐标系中画出函数和的图象,如图所示,两个函数图象有两个不同的交点,所以函数的零点个数为2个,故选B.【点睛】本题主要考查了函数与方程的综合应用,其中根据三角函数的恒等变换,把函数的零点问题转化为两个函数的图象的交点问题,在同一坐标系中作出两个函数的图象是解答的关键,着重考查了转化思想和数形结合思想的应用.练习1.设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为A.10 B.8 C.16 D.20【答案】B【解析】根据函数是定义在R上的奇函数得函数图像关于原点对称,又由可得函数图像关于直线对称,故而得出函数是以4为周期的周期函数,然后利用数形结合便可得解。
专题1-1三角函数重难点、易错点突破(含答案)

专题1-1三⾓函数重难点、易错点突破(含答案)专题1-1 三⾓函数重难点、易错点突破(建议⽤时:180分钟)1 同⾓三⾓函数关系巧应⽤同⾓三⾓函数的⽤途主要体现在三⾓函数的求值和恒等变形中各函数间的相互转化,下⾯结合常见的应⽤类型举例分析,体会其转化作⽤,展现同⾓三⾓函数关系的巧应⽤. ⼀、知⼀求⼆例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.⼆、“1”的妙⽤例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式求值例3 已知tan α=2,求值: (1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.2 三⾓函数的性质总盘点三⾓函数的性质是⾼考考查的重点和热点内容之⼀,应⽤“巧⽽活”.要能够灵活地运⽤性质,必须在脑海中能及时地浮现出三⾓函数的图象.下⾯通过典型例题对三⾓函数的性质进⾏盘点,请同学们⽤⼼体会. ⼀、定义域例1 函数y =cos x -12的定义域为________.⼆、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调减区间;(2)函数f (x )在[-π,0]上的单调减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最⼩正周期为π,则函数f (x )的图象的对称轴⽅程是________.五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ=________.1 善⽤数学思想——巧解题⼀、数形结合思想例1 在(0,2π)内,使sin x >cos x 成⽴的x 的取值范围是________.⼆、分类讨论思想例2 已知⾓α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与⽅程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最⼤值是________.四、转化与化归思想例4 ⽐较下列两个数的⼤⼩tan(-13π4)与tan(-17π5).2 三⾓恒等变形的⼏个技巧三⾓函数是⾼考的热点,素以“⼩⽽活”著称.除了掌握基础知识之外,还要注意灵活运⽤⼏个常⽤的技巧.下⾯通过例题进⾏解析,希望对同学们有所帮助.⼀、灵活降幂例13-sin 70°2-cos 210°=________.⼆、化平⽅式例2 化简求值: 12-12 12+12cos 2α(α∈(3π2,2π)).三、灵活变⾓例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.四、构造齐次弦式⽐,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.五、分⼦、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是⾼考的⼀个热点,它不仅能直观反映三⾓函数的性质,⽽且它还有着⼴泛的应⽤,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题. ⼀、确定函数的值域例1 定义运算a ※b =?a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为________.⼆、确定零点个数例2 函数f (x )=12x-sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f π6=f π3,且f (x )在区间π6,π3上有最⼩值,⽆最⼤值,则ω=_________.四、判断函数单调性例4 设函数f (x )=sin x +π3(x ∈R ),则f (x )________.(将正确说法的序号填上) ①在区间2π3,4π3上是单调增函数②在区间3π4,13π12上是单调增函数③在区间-π8,π4上是单调减函数④在区间π3,5π6上是单调减函数五、确定参数范围例5 当0≤x ≤1时,不等式sin πx2≥kx 恒成⽴,则实数k 的取值范围是________. 六、研究⽅程的实根例6 已知⽅程2sin x +π4=k 在[0,π]上有两个实数根x 1,x 2,求实数k 的取值范围,并求x 1+x 2的值.2 聚焦三⾓函数最值的求解策略⼀、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x 的最值.例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最⼩值,并写出y 取最⼩值时x 的集合.⼆、利⽤正弦、余弦函数的有界性求解例3 求函数y =2sin x +12sin x -1的值域.例4 求函数y =sin x +3cos x -4的值域.三、转化为⼀元⼆次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最⼩值为f (a ),写出f (a )的表达式.四、利⽤函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.例8 在Rt △ABC 内有⼀内接正⽅形,它的⼀条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的⾯积为P ,正⽅形⾯积为Q .求PQ的最⼩值.易错问题盘点⼀、求⾓时选择三⾓函数类型不当⽽致错例1 已知sin α=55,sin β=1010,α和β都是锐⾓,求α+β的值.⼆、忽视条件中隐含的⾓的范围⽽致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.三、忽略三⾓形内⾓间的关系⽽致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .四、忽略三⾓函数的定义域⽽致错例4 判断函数f (x )=1+sin x -cos x1+sin x +cos x 的奇偶性.五、误⽤公式a sin x +b cos x =a 2+b 2sin(x +φ)⽽致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.专题1-1 三⾓函数重难点、易错点突破参考答案1 同⾓三⾓函数关系巧应⽤例1 解析由sin α=255,且sin 2α+cos 2α=1得cos α=±55,因为π2≤α≤π,可得cos α=-55,所以tan α=sin αcos α=-2.答案-2点评已知某⾓的弦函数值求其他三⾓函数值时,先利⽤平⽅关系求另⼀弦函数值,再求切函数值,需要注意的是利⽤平⽅关系时,若没有⾓度的限制,要注意分类讨论.例2 证明因为sin 2x +cos 2x =1,所以1=(sin 2x +cos 2x )3,1=(sin 2x +cos 2x )2,所以1-sin 6x -cos 6x 1-sin 4x -cos 4x =(sin 2x +cos 2x )3-sin 6x -cos 6x (sin 2x +cos 2x )2-sin 4x -cos 4x =3sin 4x cos 2x +3cos 4x sin 2x 2sin 2x cos 2x =3(sin 2x +cos 2x )2=32.即原命题得证.点评本题在证明过程中,充分利⽤了三⾓函数的平⽅关系,对“1”进⾏了巧妙的代换,使问题迎刃⽽解. 例3 解析 (1)因为cos α≠0,分⼦分母同除以cos α,得2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.(2)2sin 2α-3cos 2α=2sin 2α-3cos 2αsin 2α+cos 2α,因为cos 2 α≠0,分⼦分母同除以cos 2α,得2sin 2α-3cos 2αsin 2α+cos 2α=2tan 2α-3tan 2α+1=2×22-322+1=1.答案 (1)-1 (2)1点评这是⼀组在已知tan α=m 的条件下,求关于sin α、cos α的齐次式值的问题.解这类问题需注意以下⼏点:(1)⼀定是关于sin α、cos α的齐次式(或能化为齐次式)的三⾓函数式;(2)因为cos α≠0,所以分⼦、分母可同时除以cos n α(n ∈N +).这样可以将所求式化为关于tan α的表达式,整体代⼊tan α=m 的值求解.2 三⾓函数的性质总盘点例1解析由题意得cos x ≥12,所以2k π-π3≤x ≤2k π+π3,k ∈Z .即函数的定义域是[2k π-π3,2k π+π3],k ∈Z .答案 [2k π-π3,2k π+π3],k ∈Z点评解本题的关键是先列出保证函数式有意义的三⾓不等式,然后利⽤三⾓函数的图象或者单位圆中三⾓函数线求解.例2 解析因为03π,f (x )=cos x 的图象如图所⽰:可知cos 23π≤cos(x +π3)2).答案 [-12,12)点评解本题的关键是从x 的范围⼊⼿,先求得ωx +φ的范围,再结合余弦函数的图象对应得出cos(ωx +φ)的范围,从⽽可得函数的值域或者最值.例3 解由f (x )=sin(π3-2x )可化为f (x )=-sin(2x -π3).所以原函数的单调减区间即为函数y =sin(2x -π3)的单调增区间.(1)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,解得k π-π12≤x ≤k π+5π12,k ∈Z .所以f (x )=sin(π3-2x )的单调减区间为[k π-π12,k π+5π12],k ∈Z .(2)在减区间[k π-π12,k π+5π12],k ∈Z 中,令k =-1、0时,可以得到当x ∈[-π,0]时,f (x )=sin(π3-2x )的单调减区间为[-π,-7π12],[-π12,0].点评解本题的关键是先把函数化为标准形式y =sin(ωx +φ),ω>0,然后把ωx +φ看做⼀个整体,根据y =sin x 的单调性列出不等式,求得递减区间的通解;如果要求某⼀个区间上的单调区间,再对通解中的k 进⾏取值,便可求得函数在这个区间上的单调区间.例4 解析由T =π=2π2ω得ω=1,所以f (x )=sin(2x -π3),由2x -π3=π2+k π,k ∈Z ,解得f (x )的对称轴为x =5π12+k π2,k ∈Z .答案 x =5π12+k π2,k ∈Z点评解本题的关键是先由周期公式求得ω的值,再解决对称轴问题,求解对称轴有两种⽅法:⼀种是直接求得函数的对称轴;另⼀种是根据对称轴的特征——对应的函数值为函数的最值解决.同样地,求解对称中⼼也有两种⽅法.例5 解析函数是偶函数,所以函数关于x =0对称. 由x +φ3=π2+k π,k ∈Z ,可得函数的对称轴⽅程是x =x 3π2+3k π-φ,k ∈Z .令3π2+3k π-φ=0,k ∈Z ,解得φ=3π2+3k π,k ∈Z ,⼜φ∈[0,2π),故φ=3π2.答案3π2点评解本题的关键是把奇偶性转化为对称性解决:偶函数?函数图象关于y 轴对称;奇函数?函数图象关于原点对称.1 善⽤数学思想——巧解题例1 解析在同⼀坐标系中画出y =sin x ,y =cos x ,x ∈(0,2π)的图象如图:由图知,x ∈(π4,5π4).答案 (π4,5π4)点评求解三⾓函数的⽅程、不等式时,通常利⽤函数的图象使问题变得更简单. 例2 解⾓α的终边在直线3x +4y =0上,在⾓α的终边上任取⼀点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t , r =x 2+y 2=(4t )2+(-3t )2=5|t |.当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34,综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.点评 (1)若⾓的终边位置象限不确定,应分类讨论.(2)若三⾓函数值含有变量,因变量取不同的值会导致不同的结果,需要讨论.例3 解析 f (x )=3cos x -sin 2x =cos 2x +3cos x -1=(cos x +32)2-74,设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,⼜函数f (t )=(t +32)2-74在[12,32]上是单调增函数,故f (t )max =f (32)=54,所以f (x )的最⼤值为54. 答案 54点评遇平⽅关系,可想到构造⼆次函数,再利⽤⼆次函数求解最⼤值. 例4 解 tan(-13π4)=-tan π4,tan(-17π5)=-tan 2π5.因为0<π4<2π5<π2,且y =tan x 在(0,π2)上是单调增函数,所以tan π4-tan 2π5,即tan(-13π4)>tan(-17π5).点评三⾓函数值⽐较⼤⼩问题⼀般将其转化到某⼀三⾓函数的⼀个单调区间内,然后利⽤三⾓函数的单调性⽐较⼤⼩.另外诱导公式的使⽤也充分体现了将未知化为已知的化归与转化思想.2 三⾓恒等变形的⼏个技巧例1 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评常⽤的降幂技巧还有:因式分解降幂、⽤平⽅关系sin 2θ+cos 2θ=1进⾏降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.例2 解因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2.点评⼀般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平⽅式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2.例3 解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案-79点评正确快速求解本题的关键是灵活运⽤已知⾓“π6-α”表⽰待求⾓“2π3+2α”,善于发现前者和后者的⼀半互余.例4 解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3.答案 3点评解本题的关键是先由⼆倍⾓公式和平⽅关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的⼆次齐次弦式⽐.例5 解原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评这类问题的解决⽅法是分⼦、分母同乘以最⼩⾓的正弦的倍数即可.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题例1 解析根据题设中的新定义,得f (x )=?sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,作出函数f (x )在⼀个周期内的图象,如图可知函数f (x )的值域为?-1,22. 答案 ?-1,22点评有关三⾓函数的值域的确定,常常作出函数的图象,借助于图象直观、准确地求解. 例2 解析在同⼀直⾓坐标系内,画出y =12x及y =sin x 的图象,由图象可观察出交点个数为2. 答案 2点评有关三⾓函数的交点个数的确定,常常作出函数的图象,借助于图象直观、准确求解.例3 解析∵f (x )=sin ωx +π3(ω>0)且f π6=fπ3,⼜f (x )在区间π6,π3内只有最⼩值、⽆最⼤值,画出函数⼤致图象,如图所⽰,∴f (x )在π6+π32=π4处取得最⼩值.∴π4ω+π3=2k π-π2(k ∈Z ).∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间π6,π3内已存在最⼤值.故ω=143. 答案143点评本⼩题考查对y =A sin(ωx +φ)的图象及性质的理解与应⽤,求解本题应注意两点:⼀是f (x )在π4处取得最⼩值;⼆是在区间π6,π3内只有最⼩值⽽⽆最⼤值,求解时作出其草图可以帮助解题.例4 解析作出函数y =sin x +π3的图象如图所⽰.由图象可知②正确. 答案②点评形如f (x )=|A sin(ωx +φ)+k |(A ≠0,ω≠0)的函数性质,可作出其图象,利⽤数形结合思想求解. 例5 解析作出函数y =πx2,y =kx 的函数图象,如图所⽰.当k ≤0时,显然成⽴;当0πx2≥kx 在[0,1]上成⽴.综上所述,k ≤1. 答案 (-∞,1]点评数形结合时,函数图象要根据题⽬需要作得精确可信,必要时应结合计算判断.本题讨论y =kx 与y =sinπx2的图象关系时,不要忘记k ≤0的情况. 例6 解在同⼀坐标系内作出函数y 1=2sin x +π4(0≤x ≤π)与y 2=k 的图象,如图所⽰.当x =0时,y 1=2sin0+π4=1. 所以当k ∈[1,2)时,两曲线在[0,π]上有两个交点,即⽅程有两个实数根x 1、x 2,且x 1、x 2关于x =π4对称,x 1+x 2=π2.故实数k 的取值范围是[1,2),且x 1+x 2=π2.点评本题通过函数图象的交点个数判断⽅程实数根的个数,应重视这种⽅法.2 聚焦三⾓函数最值的求解策略例1 解原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x=1+12sin 2x 1-12sin 2x 21-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14.例2 解原函数化简得:y =sin 2x +cos 2x +2=2sin ?2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式⼦,都能转化成y =A sin(2ωx +φ)+B 的形式求最值.例3 解原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴??y +12(y -1)≤1,解出y ≤13或y ≥3.即函数的值域为-∞,13∪[3,+∞).例4解原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2.∵|sin(x +φ)|≤1,解不等式-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 即值域为??-12-2615,-12+2615.点评对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d 的这类函数,均可利⽤三⾓函数中弦函数的有界性去求最值.例5 解y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2cos x -a 22-a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=1(a <-2),-a22-2a -1(-2≤a ≤2),1-4a (a >2).点评形如y =a sin 2x +b sin x +c 的三⾓函数可转化为⼆次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 解设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2,2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评⼀般地,既含sin x +cos x (或sin x -cos x )⼜含sin x cos x 的三⾓函数采⽤换元法可以转化为t 的⼆次函数解最值.注意以下结论的运⽤,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cosx =12(1-t 2).例7 解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利⽤函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0;当t =3即sin x =1时,y max =83.例8 解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正⽅形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的⾼h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-x a sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2.从⽽P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+sin 2θ4+1sin 2θ. 易知函数y =1t +t 4在区间(0,1]上是减少的,所以当sin 2θ=1时,P Q min =94. 点评⼀些复杂的三⾓函数最值问题,可以通过适当换元转化为简单的代数函数后,利⽤函数单调性巧妙解决.易错问题盘点例1 [错解] 因为α和β都是锐⾓,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈0,π2,则α+β∈(0,π).所以α+β=π4或3π4. [剖析] 由sin α=55,sin β=1010,α和β都是锐⾓,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有⼀个是错误的.这是因为sin(α+β)在第⼀、第⼆象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐⾓,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈0,π2,则α+β∈(0,π),所以α+β=π4.温馨点评根据条件求⾓,主要有两步:(1)求⾓的某种三⾓函数值;(2)确定⾓的范围,从⽽确定所求⾓的值.完成第⼀步⼀般要选择相对⾓的范围区分度⽐较⼤的三⾓函数,且确定范围要尽量缩⼩.例2 [错解] 由题意知tan α、tan β是⽅程x 2+6x +7=0的两根,由根与系数的关系得:tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π,∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,⾓α、β都是钝⾓.上述解法忽视了这⼀隐含条件.[正解] 由?tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π.∴π<α+β<2π.⼜∵tan(α+β)=1,∴α+β=54π.例3 [错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =16 65.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内⾓A 、B 、C 的和为π,解题时要充分利⽤这⼀定理.本题得到cos A =±45后,没有对cos A =-45这⼀结果是否合理进⾏检验,从⽽导致结论不正确.[正解] 由cos B =513>0,∴B ∈0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内⾓⽭盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.例4 [错解] f (x )=1+sin x -cos x 1+sin x +cos x=1+2sin x 2cos x 2-1-2sin 2x 21+2sin x 2cos x 2+2cos 2x 2-1=2sin x2cos x 2+sin x 22cos x 2sin x 2+cos x 2=tan x2,由此得f (-x )=tan -x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析] 运⽤公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩⼤致错.[正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin x +π4≠-1,从⽽sin x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是?x |x ≠2k π+π,且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称.所以函数f (x )为⾮奇⾮偶函数.例5 [错解] ∵f (x )=sin(x +θ)+cos(x -θ),∴f (0)=sin θ+cos θ=2sin θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数,∴|f (0)|=f (x )max = 2. ∴f (0)=2sinθ+π4=±2,∴sin θ+π4=±1,∴θ+π4=k π+π2,k ∈Z . 即θ=k π+π4,k ∈Z .[剖析] 因为x +θ与x -θ是不同的⾓,所以函数f (x )的最⼤值不是2,上述解答把f (x )的最⼤值误当作2来处理.[正解] 因为f (x )=sin(x +θ)+cos(x -θ)是偶函数,所以f (x )=f (-x )对⼀切x ∈R 恒成⽴.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成⽴.∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成⽴.即2sin x (cos θ+sin θ)=0恒成⽴.∴cos θ+sin θ=0.∵cos θ+sin θ=2sin θ+π4=0,∴θ+π4=k π,即θ=k π-π4,k ∈Z .。
三角函数概念(重难点突破)(解析版)

突破5.2 三角函数的概念一、考情分析二、考点梳理考点1 三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy =αtan 2.三角函数的定义域:三角函数 定义域=)(x f sin x R =)(x f cos x R=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且考点2 三角函数值的符号第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.考点3 诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Z k ∈ 考点4 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线.OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.三、题型突破重难点题型突破01 判断三角函数符号的正负例1.(1)、(2019·江苏省新海高级中学高一期中)已知()cos305sin305,P ,则点P 在第( )象限 A .一 B .二C .三D .四【答案】D【分析】首先判断305位于第四象限,再根据各象限三角函数的符号特征判断即可. 【详解】解:因为270305360<<,所以305为第四象限角, 所以0cos305>,0sin305<,所以点()cos305sin305,P 位于第四象限; 故选:D(2)、(2021·全国·高一课时练习)给出下列各三角函数值: ①sin 1()00-︒;②cos 2()20-︒;③()tan 10-;④cos π. 其中符号为负的有( ) A .1个 B .2个C .3个D .4个【答案】D 【分析】确定各角所在象限,然后由象限角的三角函数值符号判断. 【详解】因为-100°角是第三象限角,所以sin 10()00-︒<;因为-220°角是第二象限角,所以cos 22()00-︒<;因为710,32⎛⎫-∈-π-π ⎪⎝⎭,所以角-10是第二象限角,所以()tan 100-<;cos 10π=-<.所以符号为负的有4个, 故选:D .【变式训练1-1】、(2021·北京·潞河中学高三月考)若2α=,则( ) A .sin 0α>且cos 0α> B .sin 0α>且cos 0α< C .sin 0α<且cos 0α< D .sin 0α<且cos 0α>【答案】B 【分析】确定α所在象限,再根据各象限内角的三角函数值的符号判断作答. 【详解】 因22ππ<<,则2α=是第二象限象限角,所以sin 0,cos 0αα><. 故选:B【变式训练1-2】、(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据α为第二象限角可求得2α为第一或第三象限角,由cos 02α<可得结果.【详解】α为第二象限角,()90360180360k k k α∴+⋅<<+⋅∈Z ,()45180901802k k k α∴+⋅<<+⋅∈Z ;当()2k n n =∈Z 时,2α为第一象限角;当()21k n n =+∈Z 时,2α为第三象限角; 2α∴为第一或第三象限角;coscos22αα=-,cos02α∴<,2α∴为第三象限角.故选:C.重难点题型突破02 三角函数的概念例2.(1)、(2021·辽宁·高三月考)已知角α的终边与单位圆交于63P ⎝⎭,则sin cos αα⋅=( )A .3B .23- C 3D 2【答案】B 【分析】根据角α的终边与单位圆交于63P ⎝⎭,利用三角函数的定义求解. 【详解】因为角α的终边与单位圆交于63P ⎝⎭, 所以1r OP ==, 所以36sin αα==, 所以362sin cos αα⋅==. 故选:B(2)、(2021·全国·高一课时练习)已知角α的终边经过点()3,P m ,且2sin mα=,求cos α,tan α的值.【答案】答案见解析 【分析】根据正弦函数的定义求出m 值,然后再由余弦函数、正切函数的定义计算. 【详解】由题意,可知3x =-y m =,所以2223r x y m ++ 所以22sin 3y m r mα==+解得0m =或5± 当0m =时,3r =cos 1x r α==-,tan 0yxα==; 当5m =22r =6cos x r α==15tan y x α== 当5m =22r =6cos x r α==15tan y x α== (3)、(2021·重庆市秀山高级中学校高三月考)已知角α的终边经过点()1,1P -,则sin α= ( ) A .12B .12-C 2D .2【答案】C 【分析】首先根据题意求出2r =sin α的值. 【详解】22(1)12r -+=2sin 2α=故选:C【变式训练2-1】、若角终边经过点,则( ) A.B. C. D. 【答案】D【解析】, ,选D. 【变式训练2-2】、(2020·永州市第四中学高一月考)若一个α角的终边上有一点()4,P a -且3sin cos 4αα⋅=,则a 的值为( ) A .3B .43±C .-3433D 3【答案】C 【解析】由已知,得()()()22222243sin 4444aa a a αα-==∴=-+-+-+,解得43a =-433α()()3,40P a a a ≠sin α=354535±45±229165r a a a =+=44sin 55a a α==±故选C .【变式训练2-3】、(2021·天津·大钟庄高中高三月考)已知角α的终边经过点P (-4,m ),且3sin 5α=-,则m =___________. 【答案】3- 【分析】利用任意角的三角函数的定义求解. 【详解】解:∵已知角α的终边经过点P (-4,m ),且3sin 5α=-,∴223sin 5(4)m α=--+,显然0m <,解得3m =-,3m =(舍去), 故答案为:3-例3.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m -,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值. 【答案】5m =±;当5m =时,6cos 4α=-,15tan 3α=-;当5m =-时,6cos 4α=-,15tan 3α= 【分析】根据三角函数定义可由()22sin 043m m m m α==≠+求得m 的值;结合m 的值,由三角函数定义可求得cos ,tan αα. 【详解】()22sin 043m m m m α==≠+,5m ∴=±; 当5m =时,236cos 43m α=-=-+,15tan 33m α=-=-; 当5m =-时,236cos 43m α=-=-+,15tan 33m α=-=. 【变式训练3-1】、(2021·江苏·高一专题练习)已知α角的终边经过点()3,P m -,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.【答案】(1)10sin 4=a ; (2)1-或61543--或61543-+. 【分析】(1)根据三角函数的定义得到2243m m m =+,通过解方程即可求出m 的值,从而可求出sin α值;(2)根据(1)中求出的m 值,通过分类讨论,利用三角函数的定义即可求出答案. (1)由三角函数的定义,可知2243m m m =+,解得0m =或5m =±, ∵α为第二象限角,∴m >0,所以m =5, ∴10sin 4α=; (2)由(1)知0m =或5m =±,当0m =时,cos 1,tan 0αα=-=,所以cos tan 1αα+=-; 当5m =时,6cos 4α=-,15tan 3α=-,所以cos ta 43n 615αα=--+; 当5m =-时,6cos 4α=-,15tan 3α=,所以cos ta 43n 615αα=-++. 综上所述,cos tan αα+的取值为1-或61543--或61543-+.重难点题型突破03 同角三角函数的公式例4、(1)、(2022·湖北·安陆第一高中高一阶段练习)已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________. 【答案】43-【分析】先利用三角函数的定义求出tan 2α=,再进行弦化切,代入求解. 【详解】因为角α的终边经过点()1,2P ,所以12cos 0,tan 215αα.所以sin 2sin 2cos tan 2224cos sin sin cos tan 12131cos αααααααααα--------====-++++. 故答案为:43-(2)、(2022·贵州·高二开学考试)若tan 2α=,则225sin 3cos 1αα-+的值为( ) A .175B .4C .225D .285【答案】C【分析】根据22sin cos 1αα+=,将原式齐次化后再弦化切即可得答案. 【详解】解:原式222222225sin 3cos sin cos 6tan 222sin cos tan 15αααααααα-++-===++. 故选:C .(3)、(2022·天津市新华中学高三阶段练习)已知tan 3α=,则222sin sin cos 3cos αααα+-的值为( ) A .95B .18C .1710D .15【答案】A【分析】原式可除以22sin cos αα+化简成222tan tan 3tan 1ααα+-+,代入tan 3α=求值即可【详解】222sin sin cos 3cos αααα+- 22222sin sin cos 3cos sin cos αααααα+-+=222tan tan 3tan 1ααα+-=+, 代入tan 3α=可算得原式的值为95.故选:A【变式训练4-1】、(2021·江苏·扬州中学高三月考)若sin 2cos 55cos sin 16αααα+=-,则tan α=( )A .13B .12C .13-D .12-【答案】C 【分析】利用同角三角函数基本关系化弦为切即可求解. 【详解】 由sin 2cos 55cos sin 16αααα+=-可得tan 255tan 16αα+=-,解得:1tan 3α=-,故选:C.【变式训练4-2】.(2022·宁夏·青铜峡市宁朔中学高二期末(文))已知tan 4θ=,则2cos sin cos 2sin θθθθ-=+_____________ 【答案】29-【分析】分子,分母同除以cos θ,再把tan θ的值代入即可求解 【详解】2cos sin 2tan 242cos 2sin 12tan 1249θθθθθθ---===-+++⨯故答案为:29-【变式训练4-3】.已知点(1,2)P -是角α终边上的一点,则tan α=______,sin 2cos 2sin 3cos αααα-+=_______.【答案】2- 4 【解析】根据题意知:2tan 21α-==-,sin 2cos tan 242sin 3cos 2tan 3αααααα--==++. 故答案为:-2;4.例5.(2020·内蒙古·北方重工集团第五中学高一阶段练习(文))(1)已知tan 3α=,计算3sin αcos αsin α2cos α;(2)已知1sin cos (0)2αααπ+=<<,求sin cos αα.【答案】(1)10;(2)38-【分析】(1)利用商数关系化弦为切,即可得解;(2)将1sin cos 2αα+=进行平方即可求得答案 【详解】(1)因为tan 3α=,所以3sin cos 3tan 110sin 2cos tan 2αααααα++==--;(2)由1sin cos (0)2αααπ+=<<,平方可得221sin cos 2sin cos 12sin cos 4αααααα++=+=,所以3sin cos 8αα=-【变式训练5-1】、(2022·全国·高一课时练习)已知23sin 4sin cos 10ααα-+=. (1)求tan α的值; (2)求2sin cos 1cos ααα+的值.【答案】(1)1tan 2α=(2)29 【分析】(1)利用“1”的代换及弦切互化可求1tan 2α=. (2)利用“1”的代换及弦切互化可求三角函数式的值. (1)解法一:∵22sin cos 1αα+=,23sin α-4sin cos 10αα+=, ∴2223sin 4sin cos 10sin cos ααααα-+=+, 分子分母同时除以2cos α,得223tan 4tan 10tan 1ααα-+=+,即()22tan 10α-=,解得1tan 2α=.解法二:∵23sin 4sin cos 10ααα-+=,∴224sin 4sin cos cos 0αααα-+=, 即2(2sin cos )0αα-=,∴2sin cos 0αα-= ∴1tan 2α=. (2) ∵1tan 2α=,∴2222sin cos sin cos tan 21cos sin 2cos tan 29ααααααααα===+++.重难点题型突破4 综合应用例6.(2022·全国·高一课时练习)求证:()2cos sin cos sin 1sin 1cos 1sin cos αααααααα--=++++ 【答案】详见解析【证明】方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++ ()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边,∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【分析】方法一:从等式左边推出右边,通分化简,再有()2sin cos 1sin cos 2αααα+-=,整理化简即可得到等式右边,得证.方法二:由恒等式2222cos 1sin ,sin 1cos αααα=-=-,得cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+ ,然后运用等比定理即可证明. 【详解】证明:方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边, ∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【点睛】本题考查利用同角三角函数的基本关系进行恒等式的证明;其中法一()2sin cos 1sin cos 2αααα+-=是证明的关键,法二恒等式cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+的合理利用是证明的关键;本题属于难题. 【变式训练6-1】、(2022·天津市滨海新区塘沽第一中学高三阶段练习)已知sin cos sin cos θθθθ+=,则角θ所在的区间可能是A .(,)42ππ B .3(,)24ππ C .(,)24ππ-- D .5(,)4ππ 【答案】C 【详解】令sin cos sin cos a θθθθ+==,则111sin 2,222a θ⎡⎤=∈-⎢⎥⎣⎦,又由()2sin cos 2sin cos 10θθθθ+--=,得2210a a --=,解得12a =-,舍去()12+,则sin cos 120θθ=-<,θ在第二或第四象限,排除A 和D ,又sin cos 120θθ+=-<而sin cos 2sin 4πθθθ⎛⎫+=+ ⎪⎝⎭,当3,24ππθ⎛⎫∈ ⎪⎝⎭时,sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭排除B ,只有C 答案满足,故选C. 点睛:本题主要考查了三角恒等式的应用,三角函数在各象限内的符号,以及排除法在选择题中的应用,具有一定难度;令sin cos sin cos a θθθθ+==,可将已知等式转化为关于a 的一元二次方程,结合三角函数的有界性可得12a =-,即sin θ和cos θ的符号相反,可排除A 和D ,当3,24x ππ⎛⎫∈ ⎪⎝⎭时,可求出sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭与所求矛盾,排除B.【变式训练6-2】、(2021·上海·高一期末)若对任意实数x ,不等式2sin 2cos 3x a x a -≤+恒成立,则实数a 的取值范围是______. 【答案】[]1,3-【分析】原不等式可化为2cos 2cos 20x a x a +++≥,令cos ,[1,1]t x t =∈-,转化为二次不等式 2220t at a +++≥当[1,1]t ∈-时恒成立,利用二次函数求最小值即可解决.【详解】由原不等式可化简为2cos 2cos 20x a x a +++≥对任意x R ∈恒成立,令cos ,[1,1]t x t =∈-得:2220t at a +++≥当[1,1]t ∈-时恒成立,令2()22h t t at a =+++,[1,1]t ∈-,函数对称轴方程为t a =-,当1t a =-<-,即1a >时,min ()(1)30h t h a =-=-≥,解得13a ,当11t a -≤=-≤,即11a -≤≤时,2min ()()20h t h a a a =-=-++≥,解得12a -≤≤, 所以11a -≤≤,当1t a =->,即1a <-时,min ()(1)330h t h a ==+≥,解得1a ≥-,所以a ∈∅,综上实数a 的取值范围是13a -≤≤,故答案为[]1,3-【点睛】本题主要考查了二次函数的最值,分类讨论的思想,换元法,属于难题.四、课堂训练1.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( )A 2B .2C .2D .1 【答案】A【分析】根据给定条件,利用三角函数定义直接计算作答.【详解】角α的终边上点(2,2)P -,则||22r OP ==,所以22sin 2r α==. 故选:A2.(2022·山东·青岛中学高二阶段练习)已知tan 2θ=,则cos sin sin cos θθθθ-+的值为( ) A .13- B .13 C .3- D .3 【答案】A 【分析】利用同角三角函数基本关系,分子分母同时除以cos θ,将弦化切,代入求解即可.【详解】tan 2θ=, ∴cos sin 1tan 121sin cos tan 1123θθθθθθ---===-+++. 故选:A.3.(2021·山东·德州市陵城区翔龙高级中学高一阶段练习)下列说法正确的有( )A .经过30分钟,钟表的分针转过2π-弧度B .若sin 0,cos 0θθ><,则θ为第二象限角C .若sin cos 1θθ+>,则θ为第一象限角D .第一象限角都是锐角,钝角都在第二象限 【答案】BC【分析】根据任意角的概念可判断A ;由正弦值余弦值的正负可判断角的范围,判断B;将sin cos 1θθ+>平方推出sin 0,cos 0θθ,判断θ为第一象限角,判断C;举反例可判断D.【详解】对于A, 经过30分钟,钟表的分针转过π-弧度,A 错误;对于B ,若sin 0,cos 0θθ><,则θ为第二象限角,正确;对于C ,因为sin cos 1θθ+>,故2(sin cos )1,12sin cos 1θθθθ+>∴+>,即sin cos 0>θθ,结合sin cos 1θθ+>可知sin 0,cos 0θθ,故θ为第一象限角,C 正确;对于D ,第一象限角不都是锐角,比如390是第一象限角,但不是锐角, 故D 错误;故选:BC4.(2021·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值. 【答案】25或25-. 【分析】先求点P 到原点的距离,再利用定义求sin α,cos α,应注意分类讨论.【详解】225r x y a =+=,∴当0a >时,5r a =,33sin 55a a α-∴==-,4cos 5α=,22sin cos 5αα∴+=-; 当0a <时,5r a =-,33sin 55a a α-∴==-,4cos 5=-α,22sin cos 5αα∴+=. 综上可知,2sin cos αα+的值为25或25-.16。
三角函数典型超级易错题

三角函数典型超级易错题三角函数是高中数学中的一个重要章节,涉及到许多概念和性质。
虽然三角函数的基本理论并不难以理解,但由于其具有一些易错点,所以在做题过程中可能会遇到一些挑战。
本文将就三角函数中的一些典型易错题进行详细分析和解答,以帮助读者更好地理解和掌握这一知识点。
1. 题目:已知$\tan x=\frac{3}{4}$,求$\sin x$和$\cos x$的值。
解答:首先,根据定义,$\tan x=\frac{\sin x}{\cos x}$,所以我们可以得到一个等式:$$\frac{\sin x}{\cos x}=\frac{3}{4}$$接下来,我们可以利用三角函数的定义和性质,将$\sin x$和$\cosx$之间的关系进行转化。
通过三角函数的定义,我们知道$\sin x$和$\cos x$是有关的:$$\sin^2x+\cos^2x=1$$将其变形得到:$$\sin^2x=1-\cos^2x$$将上式代入第一个等式中,得到:$$\frac{1-\cos^2x}{\cos x}=\frac{3}{4}$$进一步整理,得到二次方程:$$4-4\cos^2x=3\cos x$$将其变形,得到:$$4\cos^2x+3\cos x-4=0$$这是一个关于$\cos x$的一元二次方程,我们可以使用求根公式求解。
令$a=4$,$b=3$,$c=-4$,带入求根公式:$$\cos x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$代入数值,我们可以解得:$$\cos x=\frac{-3\pm\sqrt{9+64}}{8}$$将其化简得到:$$\cos x=\frac{-3\pm\sqrt{73}}{8}$$但是我们需要注意的是,对于给定的条件$\tan x=\frac{3}{4}$,角$x$的值是有限制的。
在单位圆上,正切函数$\tan x$的定义域是$(-\infty, \infty)$,而我们已知$\tan x=\frac{3}{4}$,所以根据正切函数在单位圆上的性质,我们可以得到一个范围限制:$$0<x<\frac{\pi}{2}$$在这个范围内,$\cos x>0$,所以我们可以舍弃$\cos x<0$的解,只考虑$\cos x>0$的解。
初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、
难题)
初三《三角函数》经典题汇编(易错题、难题)
概述
本文档以初三数学学科的《三角函数》为主题,整理了一些经
典的题,主要包括易错题和难题。
这些题旨在帮助学生加深对三角
函数的理解和应用能力。
题目列表
1. 题目:已知直角三角形的一条直角边为5,斜边为13,求另
一条直角边的长度。
难度:易错题
答案:12
2. 题目:已知角A的正弦值为1/2,求角A的度数。
难度:易错题
答案:30°
3. 题目:已知角B的余弦值为3/5,求角B的度数。
难度:易错题
答案:53.13°
4. 题目:已知角C的正切值为2,求角C的度数。
难度:难题
答案:63.43°
5. 题目:已知直角三角形的一条直角边为8,角A的正弦值为3/4,求斜边的长度。
难度:难题
答案:10
6. 题目:已知角A的弧度为π/6,求角A的正弦值。
难度:难题
答案:1/2
7. 题目:已知角B的弧度为5π/6,求角B的正切值。
难度:难题
答案:√3
结论
通过解答这些经典习题,学生可以巩固对三角函数的基本概念和相关计算方法的掌握。
这些题目既包括易错题,帮助学生强化知识记忆,又包括难题,提高学生的解题能力。
建议学生针对这些题目进行练习,加深对三角函数的理解和应用能力,从而在考试中取得好成绩。
三角函数题型常见的八个易错点

三角函数模块常见的八个易错点易错点1:不能正确理解三角函数的定义例题1: 角α的终边落在直线y =2x 上,则sin α的值为错解:在角的终边上取点P (1,2),∴r =|OP |=12+22=5,∴sin α=y r =25=255错因:当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误解析:当角的终边在第一象限时,在角的终边上取点P (1,2) 由r =|OP |=12+22=5,得sin α=25=255当角的终边在第三象限时,在角的终边上取点Q (-1,-2)∴r OQ ===sin α=-25=-255变式1: 已知角的终边过点P ,,则角的正弦值、余弦值分别为 解析:当0m <时,||,OP = 所以sin αα====当0m >时,||,OP =所以sin ,cos 55αα====总结:本题主要考查了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点,在做题时容易遗忘0m <的情况α(,2)m m 0m ≠α易错点2 利用同角三角函数基本关系式时忽略参数取值例题2: 已知cos θ=t ,求sin θ、tan θ的值. 错解:①当0<t <1时,θ为第一或第四象限角.θ为第一象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t ;θ为第四象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. ②当-1<t <0时,θ为第二或第三象限角. θ为第二象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第三象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t.综上,sin θθθ=⎪⎩为第一、二象限角为第三、四象限角tan t θθθ=⎨⎪⎪⎩为第一、二象限角为第三、四象限角 错因:上述解法注意到了θ的余弦值含有参数t ,根据余弦函数的取值范围对t 进行分类讨论,但上述讨论不全面,漏掉了很多情况,如t =-1,t =0,t =1 解析:①当t =-1时,sin θ=0,tan θ=0 ②当-1<t <0时,θ为第二或第三象限角 若θ为第二象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第三象限角,则sin θ=-1-t 2,tan θ=-1-t2t③当t =0时,sin θ=1,tan θ不存在或sin θ=-1,tan θ不存在 ④当0<t <1时,θ为第一或第四象限角若θ为第一象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第四象限角,则sin θ=-1-t 2,tan θ=-1-t 2t⑤当t =1时,sin θ=0,tan θ=0综上得:变式2: 如果,那么解析:()222sin801cos 801cos 801k =-=--=-sin80tan100tan80cos80k∴=-=-=-总结:要作出正确选择,需认真选择诱导公式,不能错用公式.对于nπ+α,若n 是偶数,则角nπ+α的三角函数值等于角α的同名三角函数值;若n 为奇数,则角nπ+α的三角函数值等于角π+α的同名三角函数值.cos(80)k -︒=tan100︒=易错点3 不能准确运用诱导公式进行化简求值例题3: 若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值错解:原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0. 错因:错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ. 解析:原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为6=.变式3: 若n ∈Z ,在①sin ⎝⎛⎭⎫n π+π3;②sin ⎝⎛⎭⎫2n π±π3;③πsin[π(1)]3n n +-;④πcos[2π(1)]6n n +-中,与sin π3相等的是A .①②B .③④C .①④D .②③解析:①sin ⎝⎛⎭⎫n π+π3=⎩⎨⎧sin π3,n 为偶数sin ⎝⎛⎭⎫π+π3,n 为奇数=⎩⎨⎧sin π3,n 为偶数-sin π3,n 为奇数.②sin ⎝⎛⎭⎫2n π±π3=sin(±π3)=±sin π3. ③ππsin[(1)],sin ,π33sin[π(1)]=πππ3sin[π(1)],sin(π)sin ,333n nn n n n n n ⎧⎧-⎪⎪⎪⎪+-=⎨⎨⎪⎪+--=⎪⎪⎩⎩为偶数为偶数为奇数为奇数 . ④ππππcos[2π(1)]cos[(1)]cos sin 6663nn n +-=-⋅==. 故③④与sin π3相等,应选B .易错点4 不能正确理解三角函数图象变换规律例题4: 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位错解:y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B . 错因:没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.解析:y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .变式4: 将函数()()ππsin 2()22f x x θθ=+-<<的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x的图象都经过点P ,则ϕ的值可以是 A .53π B .56π C .2πD .6π 解析:依题意()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦,因为()f x ,()g x的图象都经过点P ,所以()sin sin 22θθϕ⎧=⎪⎪⎨⎪-=⎪⎩, 又因为22θππ-<<,所以3θπ=,所以2233k ϕππ-=π+或22233k ϕππ-=π+,k ∈Z , 解得k ϕ=-π或ππ6k ϕ=--,k ∈Z , 在6k ϕπ=-π-,k ∈Z 中,取1k =-,即得56ϕ=π,故选B.易错点5 注意符号对三角函数性质的影响例题5: 已知函数f (x )=2cos ⎝⎛⎭⎫π3-x 2.(1)求f (x )的单调递增区间;(2)若x ∈[-π,π],求f (x )的最大值和最小值.错解:(1)由-π≤π3-x 2≤0得,2π3≤x ≤8π3,∴f (x )的单调递增区间为⎣⎡⎦⎤2π3,8π3. (2)∵-1≤cos ⎝⎛⎭⎫π3-x 2≤1,∴[f (x )]ma x =2,[f (x )]min =-2.错因:(1)忽略了函数f (x )的周期性;(2)忽略了x ∈[-π,π]对函数f (x )的最值的影响 解析:(1)∵f (x )=2cos ⎝⎛⎭⎫π3-x 2=2cos ⎝⎛⎭⎫x 2-π3.由2k π-π≤x 2-π3≤2k π得,4k π-4π3≤x ≤4k π+2π3(k ∈Z ).故f (x )的单调增区间为[4k π-4π3,4k π+2π3](k ∈Z ).(2)由-π≤x ≤π⇒-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,f (x )ma x =2,当x 2-π3=-5π6,即x =-π时,f (x )min =-3变式5: (1)函数tan(2)3y x π=-的单调递减区间是______(2)已知函数y =a sin x +2,x ∈R 的最大值为3,则实数a 的值是______(3)若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是_____解析:(1)把函数tan(2)3y x π=-变为tan(2)3y x π=--由2,232k x k k ππππ-<-<π+∈Z ,得2,66k x k k π5ππ-<<π+∈Z 即5,212212k k x k ππππ-<<+∈Z,tan(2)3y x π=-减区间为5(,)()212212k k k ππππ-+∈Z (2)若a >0时,当sin x =1时,函数y =a sin x +2取最大值a +2,∴a +2=3,∴a =1 若a <0,当sin x =-1时,函数y =a sin x +2(x ∈R )取得最大值-a +2=3,∴a =-1 综上可知,a 的值为±1(3)易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3易错点6 三角恒等变换中忽略角的范围致误例题6: 已知α、β为三角形的两个内角,cos α=17,sin (α+β,则β=错解:∵0<α<π,cos α=17,∴sin α7=.又∵sin (α+β)=14,∴cos (α+β11.14-∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α 又∵0<β<π,∴β=233ππ或. 错因:(1)不能根据题设条件缩小α、β及α+β取值范围,在由同角基本关系式求sin (α+β)时不能正确判断符号,产生两角(2)结论处应由cos β的值确定β的取值,由sin β确定结论时易出现两解而造成失误解析:因为0<α<π,cos α=17,所以sin α=,故32αππ<<又因为0<α+β<π,sin (α+β)=142<,所以0<α+β<3π或32π<α+β<π由3π<α<2π知32π<α+β<π,所以cos (α+β1114∴cos β=cos[(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=12.又0<β<π,∴β=3π变式6: (1)已知△ABC 中,sin(A +B )=45,cos B =-23,则cos A 的值为(2)已知sin α-sin β=-23,cos α-cos β=23,且α、β∈⎝⎛⎭⎫0,π2,则tan(α-β)的值为 解析:(1)在△ABC 中,∵cos B =-23<0,∴B 为钝角,且sin B =53,∴A +B 为钝角由sin(A +B )=45,得cos(A +B )=-35∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =-35×⎝⎛⎭⎫-23+45×53=6+4515(2)由题知sin α-sin β=-23①, cos α-cos β=23②由于sin α-sin β=-23<0,所以-π2<α-β<0由①2+②2,得cos(α-β)=59,所以sin(α-β)=-2149.所以tan(α-β)=-2145易错点7 求函数y=Asin(ωx+φ)的性质时出错例题7: 函数y =5sin(x +20°)+4cos(x +50°)的最大值为 错解:函数的最大值为52+42=41.错因:形如y =asin x +bcos x 的函数的最大值为a 2+b 2,而函数y =5sin(x +20°)+4cos(x +50°)不符合上述形式.解析:y =5sin(x +20°)+4cos(x +50°)=5sin(x +20°)+4cos[(x +20°)+30°] =5sin(x +20°)+4cos(x +20°)cos30°-4sin(x +20°)sin30°=5sin(x +20°)+23cos(x +20°)-2sin(x +20°)=3sin(x +20°)+23cos(x +20°),∴max y ==变式7: 已知函数2()sin 22sin f x x x =-(1)求函数()f x 的最小正周期(2)求函数()f x解析:(1)因为2()sin 22sin f x x x =-sin 2(1cos2x x =--所以函数()f x(2所以()f x [1]-易错点8 解三角形时忽略角的取值范围致误例题8: 在ABC △中,若3C B =,则c b的取值范围为 错解:由正弦定理,可得2222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 0cos 1,14cos 13,0,0,03c C B B B B B B B B b B B BcB B b c b+===+=-≤<∴-≤-<>><<由可得错因:错解中没有考虑角B 的取值范围,误认为角B 的取值范围为()0,180︒︒ 解析:由正弦定理可得222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 180,3,045,cos 1214cos 13,13c C B B B B B B B B b B B BA B C C B B B cB b+===+=-++=︒=∴︒<<︒<<∴<-<<<即变式8: 已知,21,21a a a -+是钝角三角形的三边,则实数a 的取值范围为解析:因为,21,21a a a -+是三角形的三边,所以01210,2210a a a a >⎧⎪->>⎨⎪+>⎩即①所以21a +是三角形的最大边,设其所对的角为θ(钝角)则222(21)(21)cos 02(21)a a a a a θ+--+=<-,化简得280a a -<,解得08②a <<要使,21,21a a a -+构成三角形,需满足21212121,2121a a a a a a a a a ++>-⎧⎪+->+⎨⎪-++>⎩即2③a >结合①②③,可得28.a <<。
专题1-1 三角函数 重难点、易错点突破(含答案)

专题1-1 三角函数重难点、易错点突破(建议用时:180分钟)1 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系的巧应用.一、知一求二例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、“1”的妙用例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.2 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y =cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求: (1)函数f (x )的单调减区间;(2)函数f (x )在[-π,0]上的单调减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的对称轴方程是________.五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ=________.1 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列两个数的大小tan(-13π4)与tan(-17π5).2 三角恒等变形的几个技巧三角函数是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 3-sin 70°2-cos 210°=________. 二、化平方式例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)).三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为________.二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )________.(将正确说法的序号填上) ①在区间⎣⎡⎦⎤2π3,4π3上是单调增函数 ②在区间⎣⎡⎦⎤3π4,13π12上是单调增函数 ③在区间⎣⎡⎦⎤-π8,π4上是单调减函数 ④在区间⎣⎡⎦⎤π3,5π6上是单调减函数 五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________. 六、研究方程的实根例6 已知方程2sin ⎝⎛⎭⎫x +π4=k 在[0,π]上有两个实数根x 1,x 2,求实数k 的取值范围,并求x 1+x 2的值.2 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x 2-sin 2x的最值.例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合.二、利用正弦、余弦函数的有界性求解例3 求函数y =2sin x +12sin x -1的值域.例4 求函数y =sin x +3cos x -4的值域.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x的最值.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.易错问题盘点一、求角时选择三角函数类型不当而致错例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x的奇偶性.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.专题1-1 三角函数重难点、易错点突破参考答案1 同角三角函数关系巧应用例1 解析 由sin α=255,且sin 2α+cos 2α=1得cos α=±55, 因为π2≤α≤π,可得cos α=-55,所以tan α=sin αcos α=-2. 答案 -2点评 已知某角的弦函数值求其他三角函数值时,先利用平方关系求另一弦函数值,再求切函数值,需要注意的是利用平方关系时,若没有角度的限制,要注意分类讨论.例2 证明 因为sin 2x +cos 2x =1,所以1=(sin 2x +cos 2x )3,1=(sin 2x +cos 2x )2,所以1-sin 6x -cos 6x 1-sin 4x -cos 4x =(sin 2x +cos 2x )3-sin 6x -cos 6x (sin 2x +cos 2x )2-sin 4x -cos 4x=3sin 4x cos 2x +3cos 4x sin 2x 2sin 2x cos 2x =3(sin 2x +cos 2x )2=32. 即原命题得证.点评 本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.例3 解析 (1)因为cos α≠0,分子分母同除以cos α,得2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)2sin 2α-3cos 2α=2sin 2α-3cos 2αsin 2α+cos 2α, 因为cos 2 α≠0,分子分母同除以cos 2α,得2sin 2α-3cos 2αsin 2α+cos 2α=2tan 2α-3tan 2α+1=2×22-322+1=1. 答案 (1)-1 (2)1点评 这是一组在已知tan α=m 的条件下,求关于sin α、cos α的齐次式值的问题.解这类问题需注意以下几点:(1)一定是关于sin α、cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以分子、分母可同时除以cos n α(n ∈N +).这样可以将所求式化为关于tan α的表达式,整体代入tan α=m 的值求解.2 三角函数的性质总盘点例1解析 由题意得cos x ≥12,所以2k π-π3≤x ≤2k π+π3,k ∈Z . 即函数的定义域是[2k π-π3,2k π+π3],k ∈Z . 答案 [2k π-π3,2k π+π3],k ∈Z 点评 解本题的关键是先列出保证函数式有意义的三角不等式,然后利用三角函数的图象或者单位圆中三角函数线求解.例2 解析 因为0<x ≤π3,所以π3<x +π3≤23π,f (x )=cos x 的图象如图所示: 可知cos 23π≤cos(x +π3)<cos π3,即-12≤y <12.故函数的值域是[-12,12). 答案 [-12,12) 点评 解本题的关键是从x 的范围入手,先求得ωx +φ的范围,再结合余弦函数的图象对应得出cos(ωx +φ)的范围,从而可得函数的值域或者最值.例3 解 由f (x )=sin(π3-2x )可化为f (x )=-sin(2x -π3). 所以原函数的单调减区间即为函数y =sin(2x -π3)的单调增区间. (1)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z . 所以f (x )=sin(π3-2x )的单调减区间为[k π-π12,k π+5π12],k ∈Z . (2)在减区间[k π-π12,k π+5π12],k ∈Z 中, 令k =-1、0时,可以得到当x ∈[-π,0]时,f (x )=sin(π3-2x )的单调减区间为[-π,-7π12],[-π12,0]. 点评 解本题的关键是先把函数化为标准形式y =sin(ωx +φ),ω>0,然后把ωx +φ看做一个整体,根据y =sin x 的单调性列出不等式,求得递减区间的通解;如果要求某一个区间上的单调区间,再对通解中的k 进行取值,便可求得函数在这个区间上的单调区间.例4 解析 由T =π=2π2ω得ω=1, 所以f (x )=sin(2x -π3), 由2x -π3=π2+k π,k ∈Z ,解得f (x )的对称轴为x =5π12+k π2,k ∈Z . 答案 x =5π12+k π2,k ∈Z 点评 解本题的关键是先由周期公式求得ω的值,再解决对称轴问题,求解对称轴有两种方法:一种是直接求得函数的对称轴;另一种是根据对称轴的特征——对应的函数值为函数的最值解决.同样地,求解对称中心也有两种方法.例5 解析 函数是偶函数,所以函数关于x =0对称.由x +φ3=π2+k π,k ∈Z ,可得函数的对称轴方程是x =x 3π2+3k π-φ,k ∈Z .令3π2+3k π-φ=0,k ∈Z , 解得φ=3π2+3k π,k ∈Z ,又φ∈[0,2π),故φ=3π2. 答案 3π2点评 解本题的关键是把奇偶性转化为对称性解决:偶函数⇔函数图象关于y 轴对称;奇函数⇔函数图象关于原点对称.1 善用数学思想——巧解题例1 解析 在同一坐标系中画出y =sin x ,y =cos x ,x ∈(0,2π)的图象如图: 由图知,x ∈(π4,5π4).答案 (π4,5π4)点评 求解三角函数的方程、不等式时,通常利用函数的图象使问题变得更简单. 例2 解 角α的终边在直线3x +4y =0上, 在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t , r =x 2+y 2=(4t )2+(-3t )2=5|t |.当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34,综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34.点评 (1)若角的终边位置象限不确定,应分类讨论.(2)若三角函数值含有变量,因变量取不同的值会导致不同的结果,需要讨论.例3 解析 f (x )=3cos x -sin 2x =cos 2x +3cos x -1=(cos x +32)2-74, 设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,又函数f (t )=(t +32)2-74在[12,32]上是单调增函数,故f (t )max =f (32)=54,所以f (x )的最大值为54. 答案 54点评 遇平方关系,可想到构造二次函数,再利用二次函数求解最大值. 例4 解 tan(-13π4)=-tan π4,tan(-17π5)=-tan 2π5.因为0<π4<2π5<π2,且y =tan x 在(0,π2)上是单调增函数,所以tan π4<tan 2π5.所以-tan π4>-tan 2π5,即tan(-13π4)>tan(-17π5).点评 三角函数值比较大小问题一般将其转化到某一三角函数的一个单调区间内,然后利用三角函数的单调性比较大小.另外诱导公式的使用也充分体现了将未知化为已知的化归与转化思想.2 三角恒等变形的几个技巧例1 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.例2 解 因为α∈(3π2,2π),所以α2∈(3π4,π), 所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2.点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2.例3 解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.例4 解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3.答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比.例5 解 原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题例1 解析 根据题设中的新定义,得f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,作出函数f (x )在一个周期内的图象,如图可知函数f (x )的值域为⎣⎡⎦⎤-1,22. 答案 ⎣⎡⎦⎤-1,22点评 有关三角函数的值域的确定,常常作出函数的图象,借助于图象直观、准确地求解. 例2 解析 在同一直角坐标系内,画出y =⎝⎛⎭⎫12x及y =sin x 的图象,由图象可观察出交点个数为2. 答案 2点评 有关三角函数的交点个数的确定,常常作出函数的图象,借助于图象直观、准确求解.例3 解析 ∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3, 又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,画出函数大致图象,如图所示, ∴f (x )在π6+π32=π4处取得最小值.∴π4ω+π3=2k π-π2(k ∈Z ).∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间⎝⎛⎭⎫π6,π3内已存在最大值.故ω=143. 答案143点评 本小题考查对y =A sin(ωx +φ)的图象及性质的理解与应用,求解本题应注意两点:一是f (x )在π4处取得最小值;二是在区间⎝⎛⎭⎫π6,π3内只有最小值而无最大值,求解时作出其草图可以帮助解题.例4 解析 作出函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3的图象如图所示.由图象可知②正确. 答案 ②点评 形如f (x )=|A sin(ωx +φ)+k |(A ≠0,ω≠0)的函数性质,可作出其图象,利用数形结合思想求解. 例5 解析 作出函数y =sinπx2,y =kx 的函数图象,如图所示.当k ≤0时,显然成立;当0<k ≤1时,由图象可知: sinπx2≥kx 在[0,1]上成立.综上所述,k ≤1. 答案 (-∞,1]点评 数形结合时,函数图象要根据题目需要作得精确可信,必要时应结合计算判断.本题讨论y =kx 与y =sinπx2的图象关系时,不要忘记k ≤0的情况. 例6 解 在同一坐标系内作出函数y 1=2sin ⎝⎛⎭⎫x +π4(0≤x ≤π)与y 2=k 的图象,如图所示.当x =0时,y 1=2sin ⎝⎛⎭⎫0+π4=1. 所以当k ∈[1,2)时,两曲线在[0,π]上有两个交点,即方程有两个实数根x 1、x 2,且x 1、x 2关于x =π4对称,x 1+x 2=π2.故实数k 的取值范围是[1,2),且x 1+x 2=π2.点评 本题通过函数图象的交点个数判断方程实数根的个数,应重视这种方法.2 聚焦三角函数最值的求解策略例1 解 原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x=⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14.例2 解 原函数化简得:y =sin 2x +cos 2x +2=2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值.例3 解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.即函数的值域为⎝⎛⎦⎤-∞,13∪[3,+∞). 例4解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3, ∴sin(x +φ)=-4y -31+y 2.∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 即值域为⎣⎢⎡⎦⎥⎤-12-2615,-12+2615.点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.例5 解y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-a22-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2,2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cosx =12(1-t 2). 例7 解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0; 当t =3即sin x =1时,y max =83.例8 解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-x a sin θ, ∴x =a sin θ1+sin θcos θ, ∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t 4在区间(0,1]上是减少的, 所以当sin 2θ=1时,⎝⎛⎭⎫P Q min =94. 点评 一些复杂的三角函数最值问题,可以通过适当换元转化为简单的代数函数后,利用函数单调性巧妙解决.易错问题盘点例1 [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4. [剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π), 所以α+β=π4.温馨点评 根据条件求角,主要有两步:(1)求角的某种三角函数值;(2)确定角的范围,从而确定所求角的值.完成第一步一般要选择相对角的范围区分度比较大的三角函数,且确定范围要尽量缩小.例2 [错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系得:⎩⎪⎨⎪⎧tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π), ∴π2<α<π,π2<β<π.∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.例3 [错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,∴B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.例4 [错解] f (x )=1+sin x -cos x 1+sin x +cos x=1+2sin x 2cos x 2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x 2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x 2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错.[正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1, 即2sin ⎝⎛⎭⎫x +π4≠-1,从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π,且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 所以函数f (x )为非奇非偶函数.例5 [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数, ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z . 即θ=k π+π4,k ∈Z .[剖析] 因为x +θ与x -θ是不同的角,所以函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理.[正解] 因为f (x )=sin(x +θ)+cos(x -θ)是偶函数,所以f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0, ∴θ+π4=k π,即θ=k π-π4,k ∈Z .。
三角函数题型常见的八个易错点

三角函数模块常见的八个易错点易错点1:不能正确理解三角函数的定义例题1: 角α的终边落在直线y =2x 上,则sin α的值为错解:在角的终边上取点P (1,2),∴r =|OP |=12+22=5,∴sin α=y r =25=255错因:当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误解析:当角的终边在第一象限时,在角的终边上取点P (1,2) 由r =|OP |=12+22=5,得sin α=25=255当角的终边在第三象限时,在角的终边上取点Q (-1,-2)∴r OQ ===sin α=-25=-255变式1: 已知角的终边过点P ,,则角的正弦值、余弦值分别为 解析:当0m <时,||,OP = 所以sin αα====当0m >时,||,OP =所以sin ,cos 55αα====总结:本题主要考查了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点,在做题时容易遗忘0m <的情况α(,2)m m 0m ≠α易错点2 利用同角三角函数基本关系式时忽略参数取值例题2: 已知cos θ=t ,求sin θ、tan θ的值. 错解:①当0<t <1时,θ为第一或第四象限角.θ为第一象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t ;θ为第四象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. ②当-1<t <0时,θ为第二或第三象限角. θ为第二象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第三象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t.综上,sin θθθ=⎪⎩为第一、二象限角为第三、四象限角tan t θθθ=⎨⎪⎪⎩为第一、二象限角为第三、四象限角 错因:上述解法注意到了θ的余弦值含有参数t ,根据余弦函数的取值范围对t 进行分类讨论,但上述讨论不全面,漏掉了很多情况,如t =-1,t =0,t =1 解析:①当t =-1时,sin θ=0,tan θ=0 ②当-1<t <0时,θ为第二或第三象限角 若θ为第二象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第三象限角,则sin θ=-1-t 2,tan θ=-1-t2t③当t =0时,sin θ=1,tan θ不存在或sin θ=-1,tan θ不存在 ④当0<t <1时,θ为第一或第四象限角若θ为第一象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第四象限角,则sin θ=-1-t 2,tan θ=-1-t 2t⑤当t =1时,sin θ=0,tan θ=0综上得:变式2: 如果,那么解析:()222sin801cos 801cos 801k =-=--=-sin80tan100tan80cos80k∴=-=-=-总结:要作出正确选择,需认真选择诱导公式,不能错用公式.对于nπ+α,若n 是偶数,则角nπ+α的三角函数值等于角α的同名三角函数值;若n 为奇数,则角nπ+α的三角函数值等于角π+α的同名三角函数值.cos(80)k -︒=tan100︒=易错点3 不能准确运用诱导公式进行化简求值例题3: 若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值错解:原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0. 错因:错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ. 解析:原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为6=.变式3: 若n ∈Z ,在①sin ⎝⎛⎭⎫n π+π3;②sin ⎝⎛⎭⎫2n π±π3;③πsin[π(1)]3n n +-;④πcos[2π(1)]6n n +-中,与sin π3相等的是A .①②B .③④C .①④D .②③解析:①sin ⎝⎛⎭⎫n π+π3=⎩⎨⎧sin π3,n 为偶数sin ⎝⎛⎭⎫π+π3,n 为奇数=⎩⎨⎧sin π3,n 为偶数-sin π3,n 为奇数.②sin ⎝⎛⎭⎫2n π±π3=sin(±π3)=±sin π3. ③ππsin[(1)],sin ,π33sin[π(1)]=πππ3sin[π(1)],sin(π)sin ,333n nn n n n n n ⎧⎧-⎪⎪⎪⎪+-=⎨⎨⎪⎪+--=⎪⎪⎩⎩为偶数为偶数为奇数为奇数 . ④ππππcos[2π(1)]cos[(1)]cos sin 6663nn n +-=-⋅==. 故③④与sin π3相等,应选B .易错点4 不能正确理解三角函数图象变换规律例题4: 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位错解:y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B . 错因:没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.解析:y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .变式4: 将函数()()ππsin 2()22f x x θθ=+-<<的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x的图象都经过点P ,则ϕ的值可以是 A .53π B .56π C .2πD .6π 解析:依题意()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦,因为()f x ,()g x的图象都经过点P ,所以()sin sin 22θθϕ⎧=⎪⎪⎨⎪-=⎪⎩, 又因为22θππ-<<,所以3θπ=,所以2233k ϕππ-=π+或22233k ϕππ-=π+,k ∈Z , 解得k ϕ=-π或ππ6k ϕ=--,k ∈Z , 在6k ϕπ=-π-,k ∈Z 中,取1k =-,即得56ϕ=π,故选B.易错点5 注意符号对三角函数性质的影响例题5: 已知函数f (x )=2cos ⎝⎛⎭⎫π3-x 2.(1)求f (x )的单调递增区间;(2)若x ∈[-π,π],求f (x )的最大值和最小值.错解:(1)由-π≤π3-x 2≤0得,2π3≤x ≤8π3,∴f (x )的单调递增区间为⎣⎡⎦⎤2π3,8π3. (2)∵-1≤cos ⎝⎛⎭⎫π3-x 2≤1,∴[f (x )]ma x =2,[f (x )]min =-2.错因:(1)忽略了函数f (x )的周期性;(2)忽略了x ∈[-π,π]对函数f (x )的最值的影响 解析:(1)∵f (x )=2cos ⎝⎛⎭⎫π3-x 2=2cos ⎝⎛⎭⎫x 2-π3.由2k π-π≤x 2-π3≤2k π得,4k π-4π3≤x ≤4k π+2π3(k ∈Z ).故f (x )的单调增区间为[4k π-4π3,4k π+2π3](k ∈Z ).(2)由-π≤x ≤π⇒-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,f (x )ma x =2,当x 2-π3=-5π6,即x =-π时,f (x )min =-3变式5: (1)函数tan(2)3y x π=-的单调递减区间是______(2)已知函数y =a sin x +2,x ∈R 的最大值为3,则实数a 的值是______(3)若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是_____解析:(1)把函数tan(2)3y x π=-变为tan(2)3y x π=--由2,232k x k k ππππ-<-<π+∈Z ,得2,66k x k k π5ππ-<<π+∈Z 即5,212212k k x k ππππ-<<+∈Z,tan(2)3y x π=-减区间为5(,)()212212k k k ππππ-+∈Z (2)若a >0时,当sin x =1时,函数y =a sin x +2取最大值a +2,∴a +2=3,∴a =1 若a <0,当sin x =-1时,函数y =a sin x +2(x ∈R )取得最大值-a +2=3,∴a =-1 综上可知,a 的值为±1(3)易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3易错点6 三角恒等变换中忽略角的范围致误例题6: 已知α、β为三角形的两个内角,cos α=17,sin (α+β,则β=错解:∵0<α<π,cos α=17,∴sin α7=.又∵sin (α+β)=14,∴cos (α+β11.14-∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α 又∵0<β<π,∴β=233ππ或. 错因:(1)不能根据题设条件缩小α、β及α+β取值范围,在由同角基本关系式求sin (α+β)时不能正确判断符号,产生两角(2)结论处应由cos β的值确定β的取值,由sin β确定结论时易出现两解而造成失误解析:因为0<α<π,cos α=17,所以sin α=,故32αππ<<又因为0<α+β<π,sin (α+β)=142<,所以0<α+β<3π或32π<α+β<π由3π<α<2π知32π<α+β<π,所以cos (α+β1114∴cos β=cos[(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=12.又0<β<π,∴β=3π变式6: (1)已知△ABC 中,sin(A +B )=45,cos B =-23,则cos A 的值为(2)已知sin α-sin β=-23,cos α-cos β=23,且α、β∈⎝⎛⎭⎫0,π2,则tan(α-β)的值为 解析:(1)在△ABC 中,∵cos B =-23<0,∴B 为钝角,且sin B =53,∴A +B 为钝角由sin(A +B )=45,得cos(A +B )=-35∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =-35×⎝⎛⎭⎫-23+45×53=6+4515(2)由题知sin α-sin β=-23①, cos α-cos β=23②由于sin α-sin β=-23<0,所以-π2<α-β<0由①2+②2,得cos(α-β)=59,所以sin(α-β)=-2149.所以tan(α-β)=-2145易错点7 求函数y=Asin(ωx+φ)的性质时出错例题7: 函数y =5sin(x +20°)+4cos(x +50°)的最大值为 错解:函数的最大值为52+42=41.错因:形如y =asin x +bcos x 的函数的最大值为a 2+b 2,而函数y =5sin(x +20°)+4cos(x +50°)不符合上述形式.解析:y =5sin(x +20°)+4cos(x +50°)=5sin(x +20°)+4cos[(x +20°)+30°] =5sin(x +20°)+4cos(x +20°)cos30°-4sin(x +20°)sin30°=5sin(x +20°)+23cos(x +20°)-2sin(x +20°)=3sin(x +20°)+23cos(x +20°),∴max y ==变式7: 已知函数2()sin 22sin f x x x =-(1)求函数()f x 的最小正周期(2)求函数()f x解析:(1)因为2()sin 22sin f x x x =-sin 2(1cos2x x =--所以函数()f x(2所以()f x [1]-易错点8 解三角形时忽略角的取值范围致误例题8: 在ABC △中,若3C B =,则c b的取值范围为 错解:由正弦定理,可得2222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 0cos 1,14cos 13,0,0,03c C B B B B B B B B b B B BcB B b c b+===+=-≤<∴-≤-<>><<由可得错因:错解中没有考虑角B 的取值范围,误认为角B 的取值范围为()0,180︒︒ 解析:由正弦定理可得222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 180,3,045,cos 1214cos 13,13c C B B B B B B B B b B B BA B C C B B B cB b+===+=-++=︒=∴︒<<︒<<∴<-<<<即变式8: 已知,21,21a a a -+是钝角三角形的三边,则实数a 的取值范围为解析:因为,21,21a a a -+是三角形的三边,所以01210,2210a a a a >⎧⎪->>⎨⎪+>⎩即①所以21a +是三角形的最大边,设其所对的角为θ(钝角)则222(21)(21)cos 02(21)a a a a a θ+--+=<-,化简得280a a -<,解得08②a <<要使,21,21a a a -+构成三角形,需满足21212121,2121a a a a a a a a a ++>-⎧⎪+->+⎨⎪-++>⎩即2③a >结合①②③,可得28.a <<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数零点易错题 三角函数重难点 教师版函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助.1. 因"望文生义"而致误例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标.正解:由()0232=+-=x x x f 得,x =1和2,所以选D.点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求.2. 因函数的图象不连续而致误例2.函数()xx x f 1+=的零点个数为 ( ) A.0 B.1 C.2 D.3错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B.错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()xx x f 1+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理. 正解:函数的定义域为()()+∞⋃∞-,00,,当0>x 时,()0>x f ,当0<x 时,()0<x f 所以函数没有零点.也可由01=+xx 得012=+x 方程无实数解. 点拨:对函数零点个数的判定,可以利用零点存在性定理来判定,涉及多个零点的往往借助于函数的单调性.若函数()x f y =在区间[]b a ,上的图象是连续曲线,并且在区间端点的函数值符号相反,即()()0<b f a f ,则在区间()b a ,内,函数()x f 至少有一个零点,即相应的方程()0=x f 在区间()b a ,至少有一个实数解.然而对于函数的()x f ,若满足()()0<b f a f ,则()x f 在区间[]b a ,内不一定有零点;反之,()x f 在区间[]b a ,内有零点也不一定有()()0<b f a f .前者是因为图象不连续,后者是因为方程有重根.如下图所示: 3. 因函数值同号而致误例3.判定函数()32-=x x f 在区间[]1,1-内是否有零点.错解:因为()()111-==-f f ,所以()()011>-f f ,函数()32-=x x f 在区间[]1,1-内没有零点.错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数()12-=x x g 在区间[]1,1-上有()()011>-g g ,但在[]1,1-内有零点21±=x .正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点.法二:由032=-x 得∉±=23x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点.点拨:对有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数2)1(-=x y 有零点1,(如上图)但函数值没变号.对函数零点的判定一定要抓住两点:①函数()x f y =在区间[]b a ,上的图象是连续曲线,②在区间端点的函数值符号相反,即()()0<b f a f . 4. 因忽略区间端点而致误例4.已知二次函数()m x m x x f 2)1(2+--=在[]1,0上有且只有一个零点,求实数m 的取值范围.错解:由函数的零点的性质得()()010<f f ,即()022<+m m ,解得02<<-m . 所以实数m 的取值范围为()0,2-.错解剖析:错解的原因是只注意到函数零点的应用,而忽略问题的其它形式:①在[]1,0上有二重根;②终点的函数值可能为0.正解:⑴当方程02)1(2=+--m x m x 在[]1,0上有两个相等实根时,()0812=--=∆m m 且1210<-<m ,此时无解. ⑵当方程02)1(2=+--m x m x 有两个不相等的实根时,① 有且只有一根在[]1,0上时,有()()010<f f ,即()022<+m m ,解得02<<-m ②当()00=f 时,m =0,()02=+=x x x f ,解得1,021-==x x ,合题意. ③当()01=f 时,2-=m ,方程可化为0432=-+x x ,解得4,121-==x x 合题意. 综上所述,实数m 的取值范围为[]0,2-.点拨:在求参数时,要注意将函数零点的特殊性质与函数的有关性质相结合,进行分类讨论使复杂的问题简单化. 本文已在《学苑新报》上发表方程的根与函数的零点1.函数2()41f x x x =--+的零点为( )A 、12-+B 、12--C 、12-± D 、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)1.C2.D3.易知函数()f x 在定义域(0,)+∞内是增函数.∵(1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>. ∴ (2)(3)0f f <,即函数()f x 的零点在区间(2,3). 所以选B.4. 求证方程231x x x -=+在(0,1)内必有一个实数根.4. 证明:设函数2()31x x f x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数.而0(0)3210f =-=-<,115(1)3022f =-=>,即(0)(1)0f f <,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231x xx -=+在(0,1)内必有一个实数根. 点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程231x xx -=+的实根个数.5. (1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .(2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 5. 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点.∴ (0)(1)1(21)0f f a =-⨯-<, 解得12a >. (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤,∴ (64)(4)0m --⨯-≤,解得23m ≤-.所以, 实数m 的取值范围是2(,]3-∞-.6. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围.6. 解:令2()223f x x mx m =+++有图像特征可知方程f (x )=0的两根都在(0,2)内需满足的条件是解得3514m -<<-。
7. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.7. 因为函数f (x )=|x 2-2x -3|-a 的零点个数不易讨论,所以可转化为方程|x 2-2x -3|-a =0根的个数来讨论,即转化为方程|x 2-2x -3|=a 的根的个数问题,再转化为函数f (x )=|x 2-2x -3|与函数f (x )=a 交点个数问题.解:设f (x )=|x 2-2x -3|和f (x )=a 分别作出这两个函数的图象(图3-1-1-5),它们交点的个数,即函数f (x )=|x 2-2x -3|-a 的零点个数.(1)若函数有两个零点,则a =0或a >4. (2)若函数有三个零点,则a =4. (3)函数有四个零点,则0<a <4.8. 已知函数f (x )=ax 3+bx 2+cx +d 有三个零点,分别是0、1、2,如图所示,求证:b <0. 8.证:因为f (0)=f (1)=f (2)=0,所以d =0,a +b +c =0,4a +2b +c =0. 所以a =3b-,c =32-b .所以f (x )=3b -x (x 2-3x +2)=3b -x (x -1)(x -2). 当x <0时,f (x )<0,所以b <0.证法二:因为f (0)=f (1)=f (2)=0,所以f (x )=ax (x -1)(x -2). 当x >2时,f (x )>0,所以a >0.比较同次项系数,得b =-3a .所以b <0.三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-B C .12-+.12分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令s i n c o s 2s i n (),4t x x x π=++而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。