多元线性回归模型的基本假定

合集下载

经典多元线性回归模型的基本假定

经典多元线性回归模型的基本假定

经典多元线性回归模型的基本假定
1、判定系数检验。

多元线性回归模型判定系数的定义与一元线性回归分析类似。

判定系数R的计算公式为:R = R接近于1表明Y 与X1,X2,…,Xk之间的线性关系程度密切;R接近于0表明Y与X1,X2,…,Xk之间的线性关系程度不密切。

2、回归系数显著性检验。

在多元回归分析中,回归系数显著性检验是检验模型中每个自变量与因变量之间的线性关系是否显著。

显著性检验是通过计算各回归系数的t检验值进行的。

回归系数的t检验值的计算公式为:=(j = 1,2,…,k),式中是回归系数的标准差。

3、回归方程的显著性检验。

回归方程的显著性检验是检验所有自变量作为一个整体与因变量之间是否有显著的线性相关关系。

显著性检验是通过F检验进行的。

F检验值的计算公式是:F(k,n-k -1)=多元回归方程的显著性检验与一元回归方程类似,在此也不再赘述。

第三章课后作业

第三章课后作业

(2) ˆ0 = Y − α ˆ1 X 1 − α ˆ 2 X 2 = (Y − X 1 ) − (α ˆ1 − 1) X 1 − α ˆ2 X 2 α ˆ X −β ˆ X = (Y − X ) − β
1 1 1 2 2
ˆ =β
0
证毕。
(3)设: Z i = Yi − X 1i (a)式的拟合优度为:
2 i 3i 2 3i
2 i 3i 2 3i
2 i 3i 2 3i
ˆ1 − 1 =α & & (y & −x & ) ∑x ∑x & x & & (y & −x & ) x ∑x ˆ = ∑ β & & x & ∑x ∑x & x & & ∑x ∑x & & y & & & ∑x ∑x ∑x ∑x & x & & y & & x & & x & ∑x ∑x ∑x ∑x = − & & x & & & x & ∑x ∑x ∑x ∑x & x & & & x & & ∑x ∑x ∑x ∑x
证明: 根据 OLS 估计原理依次求解上述待估参数可证明。 或
ˆi 为: 由回归方程(2)可得残差ν ˆ0 − α ˆ1 X 2i ,将其带入回归方程(3)可得: νˆi = X 1i − α ˆ0 − α ˆ1 X 2i ) + γ 2 X 2i + wi Yi = γ 0 + γ 1 ( X 1i − α ˆ 0 ) + γ 1 X 1i + (γ 2 − γ 1α ˆ1 ) X 2i + wi = (γ 0 − γ 1α

第三章 多元线性回归模型

第三章 多元线性回归模型


Y Xb U
X 称为数据矩阵或设计矩阵。
6
二、古典假定
假定1:零均值假定 E(ui ) 0 (i 1,2,...,n)
1 E ( 1 ) E ( ) 2 2 E (μ) E 0 n E ( n )
写成矩阵形式:
Y1 1 X 21 Y 1 X 22 2 Yn 1 X 2 n X 31 X k 1 b 1 u1 X 32 X k 2 b 2 u 2 X 3 n X kn b k un

ei 1 X 21 X e 1 X 22 2i i X ki ei 1 X 2 n X 31 X k 1 e1 X 32 X k 2 e2 X e 0 X 3 n X kn en
9
当总体观测值难于得到时,回归系数向 量 b 是未知的,这时可以由样本观测值进行 估计,可表示为
ˆ ˆ Xb Y
但实际观测值与计算值有偏差,记为:
ˆ e Y Y
于是
ˆ e Y Xb
称为多元样本回归函数。
10
ˆ b 1 ˆ b2 ˆ b ˆ b k
同理
ˆ x x b ˆ x 2 x3 i yi b 2 2i 3i 3 3i
x2 i yi x x3 i yi x2 i x3 i ˆ b2 2 2 2 x2 x ( x x ) i 3i 2i 3i
2 3i
x3 i yi x x2 i yi x2 i x3 i ˆ b3 2 2 2 x2 x ( x x ) i 3i 2i 3i

多元线性回归模型

多元线性回归模型

第三章 多元线性回归模型基本概念(1)多元线性回归模型; (2)偏回归系数;(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?2.在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中二者是否有等价的作用?3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?4.在一项调查大学生一学期平均成绩(Y )与每周在学习(1X )、睡觉(2X )、 娱乐(3X )与其他各种活动(4X )所用时间的关系的研究中,建立如下回归模型: 011223344Y X X X X u βββββ=+++++如果这些活动所用时间的总和为一周的总小时数168。

问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?5.表3-1给出三变量模型的回归结果。

表 3-1(1)求样本容量n ,残差平方和RSS ,回归平方和ESS 及残差平方和RSS 的自由度。

(2)求拟合优度2R 及调整的拟合优度2R -。

(3)检验假设:2X 和3X 对Y 无影响。

应采用什么假设检验?为什么? (4)根据以上信息,你能否确定3X 和3X 各自对Y 的影响?6.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 12310.360.0940.1310.210Y X X X =-++20.214R =其中,Y 为劳动力受教育年数,1X 为该劳动力家庭中兄弟姐妹的人数,2X 与3X 分别为母亲与父亲受教育的年数。

问:(1) 1X 是否具有预期的影响?为什么?若2X 与3X 保持不变,为了使预测的受教育水平减少一年,需要1X 增加多少?(2)请对2X 的系数给予适当的解释。

计量经济学复习资料2

计量经济学复习资料2

2、如果假设 4 满足,则假设 2 也满足。
以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模
型,也称为经典线性回归模型
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求样本回归函数尽可能好地拟合这组值.
普通最小二乘法给出的判断标准是:二者之差的平方和最小。
R 2 1 RSS /(n k 1) TSS /(n 1) 其中:n-k-1 为残差平方和的自由度,n-1 为总体平方和
的自由度。
R 2 1 (1 R 2 ) n 1 n k 1
三、方程的显著性检验(F 检验) H0: ß0= ß1= ß2= … =ßk=0 H1: ßj 不全为 0
TSS yi2 (Yi Y )2 总体平方和
ESS yˆi2 (Yˆi Y )2 回归平方和
RSS ei2 (Yi Yˆi )2 残差平方和
1、TSS=ESS+RSS 2、可决系数 R2 统计量

R 2 ESS 1 RSS
TSS
TSS
称 R2 为(样本)可决系数/判定系数 可决系数的取值范围:[0,1] R2 越接近 1,说明实际观测点离样本线越近,拟合优度越高。 T 检验 检验步骤: (1)对总体参数提出假设
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
1
1
xi2
(X i X )2
X
2 i
1 n
Xi 2
xi yi
(X i X )(Yi Y )
X
iYi
1 n
X i Yi
上述参数估计量可以写成:
ˆ1

多元线性回归模型及假定

多元线性回归模型及假定

X
k2

为解释变量
X

n (k
1) 阶样本观测矩阵;
M

ˆ0

ˆ1
βˆ k 11


ˆ2

为未知
1 X 1n
X 2n L
X kn
M ˆk
参数向量 的 (k 1) 1阶估计值列向量。
样本回归方程得到的被解释变量估计值 Yˆi 与实际观测值 Yi 之间的偏差称为残差 ei 。 ei Yi Yˆi Yi (ˆ0 ˆ1X1i ˆ2i L ˆki X ki )
n


X 1i
M

X ki
X1i
X
2 1i
M
X 1i X ki
X 2i X 2i X 1i
M
X 2i X ki
L L
M
X ki X ki X 1i
M


ˆ0 ˆ1


ˆ2



Yi X 1iYi
多个解释变量,多个解释变量同时对被解释变量 Y 发生作用,若要考察其中一个解释变量对 Y 的影
响就必须假设其它解释变量保持不变来进行分析。因此多元线性回归模型中的回归系数为偏回归系
数,即反映了当模型中的其它变量不变时,其中一个解释变量对因变量 Y 的均值的影响。
由于参数 0 , 1, 2 ,L , k 都是未知的,可以利用样本观测值 ( X1i , X 2i ,L , X ki ;Yi ) 对它们进行
(3-3)
标准
实用文案
Y1 1 X 11
Y2

《计量经济学》第五章最新完整知识

《计量经济学》第五章最新完整知识

第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。

需要我们建立多元线性回归模型。

一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。

最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。

假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。

(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。

在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。

李子奈《计量经济学》第四版简答题

李子奈《计量经济学》第四版简答题

计量经济学简答题1.简述计量经济学中的检验包括哪些内容?(1)t 检验:回归模型中变量的显著性检验;(2)F 检验:方程总体线性的显著性检验;受约束的回归检验;多重共线性检验(判定系数检验法和逐步回归法检验法);异方差性检验(G-Q 检验)(3)卡方检验:异方差性的检验(White 检验)、拉格朗日乘数(LM )检验(4)拟合优度检验:检验模型对样本观测值的拟合程度,一元线性回归模型中看可决系数R 2统计量的值,多元回归模型中看调整的R 2统计量的值。

其值越接近1,说明模型的拟合优度较高。

(5)异方差性的检验:图示检验法、White 检验、布罗施-帕甘(B-P )检验(F 统计量或LM统计量)、戈里瑟(Gleiser )检验。

(6)序列相关性的检验:图示法、回归检验法、D.W.检验法、拉格朗日乘数(LM )检验(7)时间序列的平稳性检验:单位根检验(DF 检验、ADF 检验)2.计量经济学研究的对象是什么?计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。

3.应用计量经济学方法,研究客观经济现象的步骤是什么?(1)陈述理论(或假设);(2)建立计量经济模型;(3)收集数据;(4)估计参数;(5)假设检验;(6)预测和政策分析。

4.多元线性回归模型的经典的基本假定有哪些?(1)回归模型是正确设定的;(2)解释变量X 1,X 2...X K 在所抽取的样本中具有变异性,且X j 之间不存在严格线性相关性(无完全多重共线性);(3)随机干扰项具有条件零均值性:()0...|2,1=K i X X X E μ;(4)随机干扰项具有条件同方差及不序列相关性:()221...,|ar σμ=K i X X X V ,()0...,|,21=K j i X X X Cov μμ;(5)随机干扰项满足正态分布:()221,0~...,|σμN X X X K i 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档