复杂网络牛顿—拉夫逊法潮流分析
潮流计算的计算机方法

一、潮流计算的计算机方法对于复杂网络的潮流计算,一般必须借助电子计算机进行。
其计算步骤是:建立电力网络的数学模型,确定计算方法、制定框图和编制程序。
本章重点介绍前两部分,并着重阐述在电力系统潮流实际计算中常用的、基本的方法。
1,电力网络的数学模型电力网络的数学模型指的是将网络有关参数相变量及其相互关系归纳起来所组成的.可以反映网络性能的数学方程式组。
也就是对电力系统的运行状态、变量和网络参数之间相互关系的—种数学描述。
电力网络的数学模型有节点电压方程和回路电流方程等,前者在电力系统潮流计算中广泛采用。
节点电压方程又分为以节点导纳矩阵表示的节点电压方程和以节点阻抗矩阵表示的节点电压方程。
(1)节点导纳矩阵在电路理论课中。
已讲过了用节点导纳矩阵表示的节点电压方程:对于n个节点的网络其展开为:上式中,I是节点注入电流的列向量。
在电力系统计算中,节点注入电流可理解为节点电源电流与负荷电流之和,并规定电源向网络节点的注人电流为正。
那么,只有负荷节点的注入电流为负,而仅起联络作用的联络节点的注入电流为零。
U是节点电压的列向量。
网络中有接地支路时,通常以大地作参考点,节点电压就是各节点的对地电压。
并规定地节点的编号为0。
y是一个n×n阶节点导纳矩阵,其阶数n就等于网络中除参考节点外的节点数。
物理意义:节点i单位电压,其余节点接地,此时各节点向网络注入的电流就是节点i 的自导纳和其余节点的与节点i之间的互导纳。
特点:对称矩阵,稀疏矩阵,对角占优(2) 节点阻抗矩阵对导纳阵求逆,得:其中称为节点阻抗矩阵,是节点导纳矩阵的逆阵。
物理意义:节点i注入单位电流,其余节点不注入电流,此时各节点的电压就是节点i 的自阻抗和其余节点的与节点i之间的互阻抗。
特点:满阵,对称,对角占优2,功率方程、变量和节点分类(1)功率方程已知的是节点的注入功率,因此,需要重新列写方程: **==B B B B B U S I U Y其展开式为: i i i nj j ij U jQ P U Y ~1-=∑= 所以:∑=**=+nj jij i i i U Y U jQ P 1 展开写成极坐标方程的形式:)cos sin ()sin cos (11ij ij ij ij n j j i i ij ij ij ij n j j i i B G U U Q B G U U P δδδδ-=+=∑∑==所以节点的功率方程为:)cos sin ()sin cos (11ij ij ij ij n j j i di Gi i ij ij ij ij nj j i di Gi i B G U U Q Q Q B G U U P P P δδδδ---=∆+--=∆∑∑==(2) 变量分类负荷消耗的有功、无功功率取决于用户,因而是无法控制的,故称为不可控变量或扰动变量。
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算
油田自出井管网的潮流模拟分析是油田开发运行中的重要工作,是保
证油田系统安全运行的基础性工作。
牛顿-拉夫逊法是一种经典的油田自
出井管网的潮流模拟计算方法。
本文介绍了牛顿-拉夫逊法的概念,原理,特点,以及利用牛顿-拉夫逊法求解油田自出井管网潮流问题的基本方法
和步骤。
一、牛顿-拉夫逊方法的概念
牛顿-拉夫逊法也叫牛顿-拉夫逊潮流计算法,它是一种迭代法,用于
求解牛顿-拉夫逊方程,即求解由牛顿-拉夫逊节点组成的网络中流动矢量
的幅值和相位角。
牛顿-拉夫逊方程是以节点电压和电流矢量以及节点内
的电阻和电感量建立的方程组,是油田自出井管网潮流模拟计算的基础方
程组。
牛顿-拉夫逊方程是一组非线性方程,其解依赖节点网络结构,因
此实施计算时需要迭代求解,因此被称为牛顿-拉夫逊迭代法或牛顿-拉夫
逊方法。
二、牛顿-拉夫逊方法原理
牛顿-拉夫逊方法是一种迭代法,它采用迭代新旧节点电压矢量的比
例来求解油田自出井管网潮流模拟问题,算法充分利用了网络的放大、收敛、稳定特性,每一次迭代,都可以有效地拿到更新的节点电压矢量。
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算牛顿-拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程的数值方法。
它通过迭代逼近根的方式,将非线性方程转化为一系列的线性方程来求解。
在电力系统中,潮流计算用于确定电力网中节点的电压幅值和相角。
潮流计算是电力系统分析的重要基础,可以用于计算电力系统的潮流分布、功率损耗、节点电压稳定度等参数,为电力系统的规划、运行和控制提供参考依据。
牛顿-拉夫逊法是一种常用的潮流计算方法,它的基本思想是通过不断迭代来逼近电网的潮流分布,直到满足一定的收敛条件。
下面将对牛顿-拉夫逊法的具体步骤进行详细介绍。
首先,我们需要建立电力网络的节点潮流方程,即功率方程。
对于每一个节点i,其节点功率方程可以表示为:Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij * sin(θi -θj))) = 0Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij * cos(θi -θj))) = 0其中,Pi和Qi分别为节点i的有功功率和无功功率,Vi和θi分别为节点i的电压幅值和相角,Gij和Bij分别为节点i和节点j之间的导纳和电纳。
接下来,我们需要对每个节点的电压幅值和相角进行初始化。
一般情况下,可以将电压幅值设置为1,相角设置为0。
然后,我们可以开始进行迭代计算。
在每一轮迭代中,我们需要计算每个节点的雅可比矩阵和功率残差,然后更新电压幅值和相角。
雅可比矩阵可以通过对节点功率方程进行求导得到,具体如下:dPi/dVi = -sum(Vj * (Gij * sin(θi - θj) + Bij * cos(θi - θj)))dPi/dθi = sum(Vj * (Gij * Vi * cos(θi - θj) - Bij * Vi * sin(θi - θj)))dQi/dVi = sum(Vj * (Gij * cos(θi - θj) - Bij * sin(θi - θj)))dQi/dθi = sum(Vj * (Gij * Vi * sin(θi - θj) + Bij * Vi * cos(θi - θj)))功率残差可以通过将节点功率方程代入得到,如下:RPi = Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij *sin(θi - θj)))RQi = Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij *cos(θi - θj)))最后,我们可以使用牛顿-拉夫逊法的迭代公式来更新电压幅值和相角,具体如下:Vi(new) = Vi(old) + ΔViθi(new) = θi(old) + Δθi其中,ΔVi和Δθi分别为通过求解线性方程组得到的电压幅值和相角的增量。
第四章复杂电力系统潮流计算-牛顿-拉夫逊潮流计算

ΔX
(k )
?
Yes
收敛结束
极坐标形式的潮流方程
* * I U Y U Pi jQi Ui i i ij j * j 1 n
U i U i i,U j U j j Yij Gij jBij , ij i j
电压相量用 极坐标表示
极坐标下有功功率和无功功率方程
n Pi U iU j (Gij cos ij Bij sin ij ) j 1 n Q U U (G sin B cos ) ij ij ij i i j ij j 1
i 1, 2, , n
泰勒级数展开忽略步时的修正方程组为修正量修正方程的矩阵形式其中函数fx的jocabi雅可比矩阵收敛结束yesijijij极坐标下有功功率和无功功率方程电压相量用极坐标表示次迭代时pq节点
§3-4 牛顿-拉夫逊法潮流计算 (Newton-Raphson迭代法)
牛顿-拉夫逊法
单变量非线性方程
真解
f ( x ) 0,
j 1 n
n
U i U j [(Gij cos ij Bij sin ij ) j (Gij sin ij Bij cos ij )
j 1 n
U i U j (Gij cos ij Bij sin ij ) jU i U j (Gij sin ij Bij cos ij )
x( 0 )
1
x( 0 )
1
x1 x( 0 ) n x2 f n xn (0) x n x n f 1 x n
迭代至第 k 步时的修正方程组为
牛顿-拉夫逊算法(极坐标)潮流计算算例

极坐标系下的潮流计算
潮流计算
在电力系统中,潮流计算是一种常用的计算方法,用于确定在给定网络结构和参数下,各节点的电压 、电流和功率分布。在极坐标系下进行潮流计算,可以更好地描述和分析电力系统的电磁场分布和变 化。
极坐标系下的潮流计算特点
在极坐标系下进行潮流计算,可以更直观地描述电力线路的走向和角度变化,更好地反映电力系统的 复杂性和实际情况。此外,极坐标系下的潮流计算还可以方便地处理电力系统的非对称性和不对称故 障等问题。
03
CATALOGUE
极坐标系下的牛顿-拉夫逊算法
极坐标系简介
极坐标系
一种二维坐标系统,由一个原点(称为极点)和一条从极点出发的射线(称为 极轴)组成。在极坐标系中,点P的位置由一个角度θ和一个距离r确定。
极坐标系的应用
极坐标系广泛应用于物理学、工程学、经济学等领域,特别是在电力系统和通 信网络中,用于描述电场、磁场、电流和电压等物理量的分布和变化。
极坐标形式
将电力系统的节点和支路参数以极坐 标形式表示,将实数问题转化为复数 问题,简化计算过程并提高计算效率 。
02
CATALOGUE
牛顿-拉夫逊算法原理
算法概述
牛顿-拉夫逊算法是一种迭代算法,用于求解非线性方程组。在电力系统中,它 被广泛应用于潮流计算,以求解电力网络中的电压、电流和功率等参数。
准确的结果。
通过极坐标系的处理,算法 能够更好地处理电力系统的 复杂结构和不对称性,提高 了计算的准确性和适应性。
算例分析表明,该算法在处理 大规模电力系统时仍具有较好 的性能,能够满足实际应用的
需求。
展望
进一步研究牛顿-拉夫逊算法在极坐标 系下的收敛性分析,探讨收敛速度与电 力系统规模、结构和参数之间的关系, 为算法的优后的电压、电流和功 率等参数。
牛顿拉夫逊潮流计算

牛顿—拉夫逊法潮流计算一、 潮流计算的基本原理实际电力系统中的节点类型5二、实际电力系统中的节点类型123452s 3s 4s 过渡节点:PQ 为0的给定PQ 节点,如图的节点5网络中各节点的性质:负荷节点:给定功率P 、Q 如图中的3、4节点如图中的节点1,可能有两种情况:给定P 、Q 运行,给定P 、V 运行3. 负荷发电机混合节点:PQ 节点,如图中的节点2发电机节点负荷节点负荷节点混合节点过渡节点1. 负荷节点:2. 发电机节点:4.潮流计算中节点类型划分6三、潮流计算中节点类型的划分也称为松弛节点,摇摆节点123452s 3s 4s 平衡节点PQ 节点PQ 节点PV 节点PQ 节点PQ∈Ω1. PQ 节点:已知P 、Q负荷、过渡节点,PQ 给定的发电机节点,大部分节点PV ∈Ω给定PV 的发电机节点,具有可调电源的变电所,少量节点2.PV 节点:已知P 、V3. 平衡节点+基准节点:已知V 、δ采用极坐标,节点电压表示为()cos sin i i i i i i V V V j δδδ=∠=+节点功率将写成⎪⎪⎭⎪⎪⎬⎫-=+=∑∑==n j ij ij ij ij j i i nj ij ij ij ij j i i B G V V Q B G V V P 11)cos sin ()sin cos (δδδδ (1) 式中,ij i j δδδ=-,是i 、j 两节点电压的相角差。
方程式把节点功率表示为节点电压的幅值和相角的函数。
在有n 个节点的系统中,假定第1~m 号节点为P Q 节点,第1~1m n +-号节点为PV 节点,第n 号节点为平衡节点。
n V 和n δ是给定的,PV 节点的电压幅值11~m n V V +-也是给定的。
因此,只剩下1n -个节点的电压相角121,,,n δδδ- 和m 个节点的电压幅值12,,,m V V V 是未知量。
实际上,对于每一个P Q 节点或每一个PV 节点都可以列写一个有功功率不平衡量方程式()1(cos sin )01,2,,1ni is i is i j ij ij ij ij j P P P P V V G B i n δδ=∆=-=-+==-∑ (2)而对于每一个P Q 节点还可以再列写一个无功功率不平衡量方程式()1(sin cos )01,2,,ni is i is i j ij ij ij ij j Q Q Q Q V V G B i m δδ=∆=-=--==∑ (3)式(2)和式(3)一共包含了1n m -+个方程式,正好同未知量的数目相等,而比直角坐标形式的方程少了1n m -+个。
第三节牛顿 拉夫逊法潮流计算

∂P H11 = 1 = U1 U 2 ( −G12 sin δ12 + B12 cos δ12 ) ∂δ1 +U 3 ( −G13 sin δ13 + B13 cos δ13 ) + ... = −U1 ∑ U j (Gij sin δ ij − Bij cos δ ij )
j =2
PV节点:δi • 节点功率和支路功率(第二求解对象)
4-3 牛顿—拉夫逊法潮流计算
共2(m-1)+(n-m)=n+m-2个变量, 则需n+m-2个独立方程
节点注入功率—电压实数方程组(极坐标形式)
对节点i:
~ & S i = Pi + jQ i = U i
∑
* * Yij U j j =1
~ Si = U i
n
∑ (G
j =1 ij
− jBij U j e
)
jδ ij
e
jδ ij
= cos δ ij + j sin δ ij
∑ (G
j =1
− jBij U j cos δ ij + j sin δ ij
) (
)
4-3 牛顿—拉夫逊法潮流计算
节点注入功率—电压实数方程组(极坐标形式)
j =1
n
n
(
)
)
Qi = U i ∑ U j Gij sin δ ij − Bij cos δ ij
j =1
(
(U,δ)不是真解
∆Pi (U, δ) = Pi − U i ∑U j Gij cosδ ij + Bij sin δ ij
j =1 n
j =1
电力系统网络潮流计算—牛顿拉夫逊法

电力系统网络潮流计算—牛顿拉夫逊法牛顿拉弗逊法(Newton-Raphson Method)是一种常用的电力系统网络潮流计算方法,用于求解复杂电力系统中的节点电压和支路潮流分布。
本文将对牛顿拉弗逊法进行详细介绍,并讨论其优缺点及应用范围。
牛顿拉弗逊法的基本原理是通过迭代计算,将电力系统网络潮流计算问题转化为一个非线性方程组的求解问题。
假设电力系统有n个节点,则该方程组的节点电压和支路潮流分布可以通过以下公式表示:f(x)=0其中,f为非线性函数,x为待求解的节点电压和支路潮流分布。
通过泰勒展开,可以将f在其中一点x_k处展开为:f(x)≈f(x_k)+J_k(x-x_k)其中,J_k为f在x_k处的雅可比矩阵,x_k为当前迭代步骤的解。
通过令f(x)≈f(x_k)+J_k(x-x_k)=0,可以求解方程J_k(x-x_k)=-f(x_k),得到下一步的迭代解x_{k+1}。
通过不断迭代,可以逐步接近真实的解,直到满足收敛条件为止。
牛顿拉弗逊法的迭代公式如下:x_{k+1}=x_k-(J_k)^{-1}f(x_k)其中,(J_k)^{-1}为雅可比矩阵J_k的逆矩阵。
牛顿拉弗逊法的优点之一是收敛速度快。
相比其他方法,如高斯赛德尔法,牛顿拉弗逊法通常需要更少的迭代次数才能达到收敛条件。
这是因为牛顿拉弗逊法利用了函数的一阶导数信息,能够更快地找到接近解的方向。
然而,牛顿拉弗逊法也存在一些缺点。
首先,该方法要求求解雅可比矩阵的逆矩阵,计算量较大。
尤其是在大型电力系统网络中,雅可比矩阵往往非常大,计算逆矩阵的复杂度高。
其次,如果初始猜测值不合理,可能会导致算法无法收敛,需要选择合适的初始值,否则可能陷入局部极小值。
牛顿拉弗逊法在电力系统网络潮流计算中有广泛的应用。
该方法可以用于计算节点电压和支路潮流分布,提供电力系统分析和设计的重要数据。
它可以用于稳态分析、短路分析、负荷流分析等多种电力系统问题的求解。
这些问题在电力系统规划、运行和控制等方面都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东交通学院电力系统分析课程设计报告书院(部)别信息科学与电气工程学院班级学号姓名指导教师时间 2014.06.9-2013.06.13课程设计任务书题目复杂网络牛顿—拉夫逊法潮流分析院(部) 信息科学与电气工程学院专业电气工程及其自动化班级学生姓名学号6 月9 日至 6 月13 日共 1 周指导教师(签字)负责人(签字)年月日成绩评定表目录摘要 (2)1.1 潮流计算 (3)1.1.1潮流计算要求 (4)1.2 MATLAB简介 (5)2.1 实验设计要求 (5)2.2 电力系统等值网络 (5)2.2.1牛顿拉夫逊法程序流程图 (5)2.2.2 实验设计步骤 (7)2.2.3程序输出结果 (10)心得体会 (13)参考文献 (14)附录 (15)..摘要本课程设计通过对地区电网的设计,巩固和运用前面所学到的基础理论知识,掌握电力系统设计的一般原则和方法,培养分析问题和解决问题的能力。
在此过程中,要考虑到各方面的相互关系和相互影响,综合地运用课程中所学到的知识,进行独立思考。
潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。
潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及其相角)、网络中的功率分布及功率损耗等。
通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。
传运用MATLAB软件进行仿真潮流计算,图形界面直观,运行稳定,计算准确,提高了计算速度,各个类的有效封装又使程序具有很好的模块性.可维护性和可重用性。
因此,潮流计算在电力系统的规划计算、生产运行、调度管理及科学计算中都有着广泛的应用。
也就是说,对于电气工程及其自动化专业的学生来说,掌握潮流计算是非常重要和必要的。
关键字:潮流计算牛拉法Matlab1潮流计算1.1潮流计算概述潮流计算是研究电力系统稳态运行情况的一种基本电气计算,常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。
对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。
潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。
具体表现在以下方面:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。
(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。
总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。
此外,电力系统潮流计算也是计算系统动态稳定和静态稳定的基础。
所以潮流计算是研究电力系统的一种很重要和基础的计算。
1.1.1潮流计算的要求电力系统运行必须满足一定技术和经济上的要求。
这些要求够成了潮流问题中某些变量的约束条件,常用的约束条件如下:1.节点电压应满足min max (1,2,)i i i U U U i n ≤≤=从保证电能质量和供电安全的要求来看,电力系统的所有电气设备都必须运行在额定电压附近。
PU 节点电压幅值必须按上述条件给定。
因此,这一约束条件对PQ 节点而言。
2.节点的有功功率和无功功率应满足min max min max Gi Gi Gi Gi Gi Gi P P P Q Q Q ≤≤⎫⎬≤≤⎭PQ 节点的有功功率和无功功率,以及PU 节点的有功功率,在给定是就必须满足上述条件,因此,对平衡节点的P 和Q 以及PU 节点的Q 应按上述条件进行检验。
3.节点之间电压的相位差应满足max ||||||ij i j i j θθθθθ=-<-为了保证系统运行的稳定性,要求某些输电线路两端的电压相位不超过一定的数值。
这一约束的主要意义就在于此。
因此,潮流计算可以归结为求解一组非线性方程组,并使其解答满足一定的约束条件。
常用的方法是迭代法和牛顿法,在计算过程中,或得出结果之后用约束条件进行检验。
如果不能满足要求,则应修改某些变量的给定值,甚至修改系统的运行方式,重新进行计算。
1 MATLAB 简介1.2 MATLAB 概述 MATLAB 是矩阵实验室(Matrix Laboratory )的简称,是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。
基本功能MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。
2.1实验设计要求下图示网络中,变压器的变比、各支路阻抗和一半的对地电纳均以标么值标于图中,设5节点为平衡节点,电压为1,节点4为PV节点,电压为1,P=0.5。
试求该网络的潮流分布,方法不限,求解精度为10e-5。
2.2电力系统等值网络2.2.1牛顿拉夫逊法程序流程图2.2.2实验设计步骤第一步,节点编号。
由已知条件可知G1为平衡节点,编号为5;G2为PV节点,编号为4;其余为PQ节点,编号为1,2,3;列出支路表与节点数据表如表1-1和1-2所示。
表1-1 支路数据表1-2 节点数据第二步,求节点导纳矩阵Y 11=j0.09+1/(0.03+j0.1)+j0.07+1/(0.025+j0.08)=6.311-j20.4652 Y 12=Y 21=-1/(0.025+j0.08)=-3.5587+j11.3879 Y 13=Y 31=-1/(0.03+j0.1)=-2.7523+j9.1743Y 22=1/(1.05*1.05*j0.1905)+j0.05+j0.07+1/(0.025+j0.08)+1/(0.02+j0.06)=8.5587-j31.0292Y 23=Y 32=-1/(0.02+j0.06)=-5+j15 Y 24=Y 42=-1/(1.05*j0.1905)=j4.9993Y 33=1/(1.05*1.05*j0.1905)+j0.09+1/(0.03+j0.1)+j0.05+1/(0.02+j0.06)=7.7523-j28.7956Y 35=Y 53=-1/(1.05*j0.1905)=j4.9993 Y 44=1/(j0.1905)=-j5.2493 Y 55=1/(j0.1905)=-j5.2493Y 14=Y 41=Y 15=Y 51=Y 25=Y 52=Y 34=Y 43=Y 45=Y 54=0 则节点导纳矩阵为B B B I Y U =第三步,设定初值。
给定个节点电压初始值(0)(0)e f 、 第四步,根据节点功率方程()()()()112222()j ni i i ij j ij j i ij j ij j j j ni i i ij j ij j i ij j ij j j i i i P P e G e B f f G f B e Q Q f G f B f e G f B e U U e f ====⎡⎤=--++⎣⎦⎡⎤=---+⎣⎦=-+∑∑ (1)式,求出修正方程式常数项向量(0)(0)2(0)P Q U 、、 △ P1=-0.8055 △Q1=-0.372;△P2=-0.18 △Q2=0.2475;△ P3=0 △Q3=-0.3875 △ P4=0.5 △U4=-2第五步:将电压初始值代入下式,求雅克比矩阵方程。
()()()()()2211=-=-+=-=-==0==i iij i ij i j j i iij i ij ij j i i j jj ni i i ij j ij j i ij j ij j j j ni i i ij j ij j i ij j ij j j i i j i P Q G e B f e f P Q B e G f f e U U e f j i P P e G e B f f G f B e Q Q f G f B f e G f B e P e ====≠∂∂∂∂∂∂∂∂∂∂∂∂⎡⎤=--++⎣⎦⎡⎤=---+⎣⎦∂∂∑∑当时,矩阵中非对角元素是当时,对角元素是()()()()1==1==1122---=-+-=+-=-++=-2e =-2j nij j ij j ii i ii i j j ni ij j ij j ii i ii i j i j ni ij j ij j ii i ii ij i j ni ij j ij j ii i ii ij i i ii i ijG e B f G e B f P G f B e B e G f f Q G f B e B e G f e Q G e B f G e B f f U e U f f ====-∂+∂∂+∂∂-∂∂∂∂∂∑∑∑∑(2)第六步:解修正方程式,求出修正量(0)(0)e f 、第七步:修正各节点电压(1)(0)(0)(1)(0)(0)=+=+e e ef f f⎧⎪⎨⎪⎩ 第八步:将(1)(1)e f 、再代入(1)式,求出(1)(1)2(1)P Q U 、、第九步:校验是否收敛,其收敛条件为(k)()()(x)=,k k f P Q ε﹤式中,()(),k k P Q 为向量()()k k P Q 、中大分量的绝对值。
这个收敛条件比较直观,它可以直接显示出最终结果的功率误差第十步:如果收敛,就进一步计算各段电力线路潮流和平衡节点功率,并打印出计算结果;如果不收敛,转回3步进行下一次迭代计算,直到收敛为止。