matlab(数学实验)matlab编程求解线性代数
MATLAB中的线性代数运算方法详述

MATLAB中的线性代数运算方法详述导言:线性代数是数学中的一个重要分支,它研究向量空间及其线性变换、线性方程组和矩阵等概念。
在科学计算与工程实践中,线性代数的应用十分广泛。
MATLAB作为一种强大的数值计算软件,提供了丰富的线性代数运算方法,能够帮助用户高效地解决各种与矩阵、向量相关的问题。
本文将详细介绍MATLAB中常用的线性代数运算方法,并且从算法原理到具体函数的使用进行详细说明。
一、矩阵运算在MATLAB中,矩阵是一种重要的数据类型,它可以表示线性系统、图像等多种实际问题。
矩阵的加法和乘法是线性代数运算中最基本的运算,MATLAB提供了相应的函数来进行矩阵的加法和乘法运算。
1.1 矩阵加法MATLAB中的矩阵加法使用“+”操作符进行操作,可以直接对两个矩阵进行加法运算。
例如,给定两个矩阵A和B,可以使用"A + B"来进行矩阵加法运算。
1.2 矩阵乘法MATLAB中的矩阵乘法使用"*"操作符进行操作,可以直接对两个矩阵进行乘法运算。
需要注意的是,矩阵相乘的维度要满足匹配规则,即乘法前一个矩阵的列数要等于后一个矩阵的行数。
例如,给定两个矩阵A和B,可以使用"A * B"来进行矩阵乘法运算。
二、向量运算向量是线性代数中常用的数据结构,它可以表示方向和大小。
在MATLAB中,向量是一种特殊的矩阵,可以使用矩阵运算中的方法进行计算。
2.1 向量点乘向量的点乘是指两个向量对应位置上元素的乘积之和。
MATLAB中可以使用“.*”操作符进行向量的点乘运算。
例如,给定两个向量A和B,可以使用"A .* B"来进行向量点乘运算。
2.2 向量叉乘向量的叉乘是指两个三维向量的运算结果,它得到一个新的向量,该向量与两个原始向量都垂直。
MATLAB中可以使用叉乘函数cross()进行向量的叉乘运算。
例如,给定两个向量A和B,可以使用"cross(A, B)"来进行向量叉乘运算。
线性代数实践MATLAB

使用`eig`函数求解特征值和特征向量,例如 `[V,D] = eig(A)`。
Matlab中矩阵分解相关函数
lu
用于LU分解。
qr
用于QR分解。
eig
用于求解特征值和特征向量。
用于奇异值分解。
svd
hess
用于Hessenberg分解。
用于Schur分解。
schur
03
线性空间与变换在
掌握了特征值与特征向量的计算
通过Matlab编程,我们能够快速准确地求解矩阵的特征值和特征向 量,这对于很多实际问题具有重要意义。
实现了线性方程组的求解
利用Matlab的左除和右除运算,我们方便地解决了线性方程组的求 解问题,提高了计算效率。
进行了矩阵分解与应用
通过Matlab,我们实现了矩阵的LU分解、QR分解以及SVD分解等, 这些方法在数据分析、图像处理等领域有广泛应用。
线性代数实践 matlab
目录
CONTENTS
• 线性代数基本概念与Matlab实现 • 矩阵分解方法及其在Matlab中应
用 • 线性空间与变换在Matlab中实践
目录
CONTENTS
• 线性方程组求解方法及Matlab实 现
• 特征值与特征向量计算及Matlab 应用
• 总结与展望
01
线性代数基本概念
03
矩阵转置
04
矩阵转置是指将矩阵的行和列互 换得到的结果。在Matlab中, 可以使用单引号进行矩阵转置运 算,如`A_transpose = A'`。
矩阵逆
矩阵逆是指一个矩阵与另一个矩 阵相乘得到单位矩阵的结果。在 Matlab中,可以使用`inv`函数求 解矩阵逆,如`A_inv = inv(A)`。
用MATLAB解决线性代数问题实验报告

实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144实验目的:学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似对角化问题,以及解决投入产出分析等应用问题。
实验内容:矩阵转置:A=[1 2;3 4];B=[4 3;2 1];>> A',B'ans =1 32 4ans =4 33 1矩阵加减:A-Bans=-3 -11 3矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans=8 520 13ans=4 66 4矩阵除法:A\B,B./Aans=-6 -55 4ans=4 1.50.6667 0.25特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵ones(m,n)||生成m行n列的元素全为一的矩阵eye(n)||生成n阶单位矩阵rand(m,n)||生成m行n列[0 ,1]上均匀分布随机数矩阵zeros(2,3)ans =0 0 00 0 0>> ones(3,3)ans =1 1 11 1 11 1 1>> eye(3)ans =1 0 00 1 00 0 1>> rand(2,4)ans =Columns 1 through 30.9501 0.6068 0.89130.2311 0.4860 0.7621Column 40.45650.0185矩阵处理:trace(A)||返回矩阵的迹diag(A)||返回矩阵对角线元素构成的向量tril(A)||提取矩阵的下三角部分triu(A)||提取矩阵的上三角部分flipud(A)||矩阵上下翻转fliplr(A)||矩阵左右翻转reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9];>> t=trace(A),d=diag(A),u=triu(A)t =15d =159u =1 2 30 5 60 0 9 flipud(A),fliplr(A)ans =7 8 94 5 61 2 3 ans =3 2 16 5 49 8 7矩阵特征值与标准型:[V,D]=eig(A)||返回矩阵特征值与特征向量[V J]=Jordan(A)||返回矩阵的相似变换矩阵和若尔当标准型A=[1 2;3 4];>> [V,D]=eig(A)V =-0.8246 -0.41600.5658 -0.9094D =-0.3723 00 5.3723>> [V,J]=jordan(A)V =0.2389 0.76110.5222 -0.5222J =5.3723 00 -0.3723线性方程组求解A=[1 2 1;3 -2 1];B=[1;4];x=A\B x =1.2500 ||求一特解-0.1250>> A=[1 2;3 -2;1 -1];B=[1;4;2];x=A\Bx = ||求得一最小二乘近似解1.2838-0.1757:方阵的相似对角化及应用:A=[1 1/4 0;0 1/2 0;0 1/4 1];[P,T]=eig(A) P =1.0000 0 -0.40820 0 0.81650 1.0000 -0.4082T =1.0000 0 00 1.0000 00 0 0.5000求得三个特征值1,1,0.5,对应特征向量(1,0,0),(0,0,1),(-0.4028,0.8165,-0.4082),由于三个特征向量线性无关,从而A 可相似对角化,即p-1AP=T.那么A∧n=p[1 0 0;0 1 0;0 0 0]p-1,计算的P*diag([1,1,0])*inv(P)ans =1.0000 0.50000 00 0 00 0.5000 1.0000所以得到近似解。
实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组第一节 线性方程组的求解 一、齐次方程组的求解rref (A ) %将矩阵A 化为阶梯形的最简式null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基础解系【例1】 求下列齐次线性方程组的一个基础解系,并写出通解:我们可以通过两种方法来解: 解法1:>> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans=1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程⎪⎩⎪⎨⎧=+--=+--=-+-02200432143214321x x x x x x x x x x x x取x2,x4为自由未知量,扩充方程组为即提取自由未知量系数形成的列向量为基础解系,记所以齐次方程组的通解为解法2: clearA=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2];B=null(A, 'r') % help null 看看加个‘r ’是什么作用,若去掉r ,是什么结果?执行后可得结果: B=1 0 1 0 0 1 0 1⎩⎨⎧=-=-004321x x x x ⎪⎪⎩⎪⎪⎨⎧====44432221x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡11000011424321x x x x x x ,00111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ε,11002⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ε2211εεk k x +=易见,可直接得基础解系所以齐次方程组的通解为二、非齐次线性方程组的求解 Matlab 命令的基本格式:X =A\b %系数阵A 满秩时,用左除法求线性方程组AX =b 的解注意:A/B 即为AB -1, 而A\B 即为A -1B.C =[A,b];D =rref(C) % 求线性方程组AX =b 的特解,即D 的最后一列元素【例2】 求下列非齐次线性方程组的解:,00111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ε,11002⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ε⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454354332121x x x x x x x x x x x x x 2211εεk k x +=解: clearA=[5 6 0 0 0;1 5 6 0 0;0 1 5 6 0;0 0 1 5 6;0 0 0 1 5]; b=[1;0;0;0;1];format rational %采用有理数近似输出格式,比较format short 看看x=A\b执行后可得所求方程组的解. 作业:【第一题】 求下列非齐次线性方程组的通解.A=[1 2 3 1;1 4 6 2;2 9 8 3;3 7 7 2] B=[3;2;7;12] format rational x=A\B x =⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++1227737389222643324321432143214321x x x x x x x x x x x x x x x x42/31/2684838239393950-7/3【第二题】计算工资问题一个木工,一个电工,一个油漆工,三个人相互同意彼此装修他们自己的房子。
如何使用Matlab解决数学问题

如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。
而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。
本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。
一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。
安装完成后,打开软件即可启动Matlab的工作环境。
2. 变量和运算符在Matlab中,变量可以用来存储数据。
我们可以通过赋值运算符“=”将数值赋给一个变量。
例如,可以使用“a=5”将数值5赋给变量a。
Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。
3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。
我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。
4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。
同时,我们还可以自己编写函数和脚本。
函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。
二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。
例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。
2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。
通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。
三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。
Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。
用MATLAB做线性代数实验

2
0
, 2
5 3
, 3
1
3
, 4
1
4
, 5
1
2
。
3
6
0Hale Waihona Puke 73【程序如下】:
% (1)
A=[1 2 1 3;4 -1 5 6;1 -3 -4 7;1 2 1 1]' r=rank(A) [R,IP]=rref(A) % (2) A=[1 2 0 2 1;-2 -5 1 -1 1;0 -3 3 4 2;P3 6 0 -7 3] r=rank(A) [R,IP]=rref(A)
例如:
已知
A
1 3
2 4
,
B
1 1
2 0
,解矩阵方程
(1)
AX
B , (2) XA B 。
MATLAB 程序如下:
A=[1 2;3 4];
B=[1 2;-1 1];
X1=inv(A)*B % AX=B or
X1=A\B
X2=B*inv(A) % XA=B
X2=A/B
将 p(x) 分解为最简分式之和 q( x)
[p,q]=residue(a,b,r) 将简单分式之和合并为有理分式
例如,将有理分式
f
(x)
x2 x3 2x2 3x2
分解为最简分式之和的程序如下:
p=[1 2];
q=[1 2 3 2];
[a,b,r]=residue(p,q)
输出:a =
-0.2500 - 0.4725i
p=[1 -6 11 -6];
利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。
线性代数的MATLAB软件实验报告

线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 特征多项式
格式: C=poly(A)
例:>> A=[16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1]; >> poly(A) %直接求取 ans = 1.000000000000000e+000 -3.399999999999999e+001 -7.999999999999986e+001 2.719999999999999e+003 -2.819840539024018e-012 >> A=sym(A); poly(A) %运用符号工具箱 ans = x^4-34*x^3-80*x^2+2720*x
• 符号矩阵的输入 数值矩阵A转换成符号矩阵: B=sym(A) 例: >> A=hilb(3) A= 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000 >> B=sym(A) B= [ 1, 1/2, 1/3] [ 1/2, 1/3, 1/4] [ 1/3, 1/4, 1/5]
>> H=sym(hilb(7)); inv(H)
ans = [ 49, -1176, 8820, -29400, 48510, -38808, 12012] [-1176, 37632, -317520, 1128960, -1940400, 1596672, -504504] [8820, -317520, 2857680, -10584000, 18711000, -15717240, 5045040] [-29400, 1128960, -10584000, 40320000, -72765000, 62092800, -20180160] [48510, -1940400, 18711000, -72765000, 133402500, -115259760, 37837800] [-38808, 1596672, -15717240, 62092800, -115259760, 100590336, -33297264] [12012, -504504, 5045040, -20180160, 37837800, -33297264, 11099088]
• 矩阵的迹
格式:
t=trace(A)
• 矩阵的秩
格式:r=rank(A) %用默认的精度求数值秩 r=rank(A, ) %给定精度下求数值秩
矩阵的秩也表示该矩阵中行列式不等于0的子式的最大阶 次。可证行秩和列秩(线性无关的)应相等。
• 例
>> A=[16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1]; rank(A) ans = 3 该矩阵的秩为3,小于矩阵的阶次,故为非满秩矩阵。
生成三对角矩阵:
>> V=diag([1 2 3 4])+diag([2 3 4],1)+diag([5 4 3],-1)
V= 1 5 0 0
2 2 4 0
0 3 3 3
0 0 4 4
–Hilbert矩阵及逆Hilbert矩阵
生成n阶的Hilbert矩阵:
A=hilb(n)
求取逆Hilbert矩阵:
第四章• 矩阵 线性方程组的直接解法 线性方程组的迭代法 线性方程组的符号解法 稀疏矩阵技术 特征值与特征向量
4.1 矩阵 4.1.1特殊矩阵的输入
• 数值矩阵的输入
–零矩阵、幺矩阵及单位矩阵 生成nn方阵: A=zeros(n), B=ones(n), C=eye(n) 生成mn矩阵: A=zeros(m,n), B=ones(m,n), C=eye(m,n) 生成和矩阵B同样位数的矩阵: A=zeros(size(B))
-0.93824992236885 -2.81474976710656 2.81474976710656 0.93824992236885
>> norm(A*B-eye(size(A))) %检验
-0.11999999999999 1.19999999999990 -2.69999999999976 1.67999999999984
0.23999999999998 -2.69999999999976 6.47999999999940 -4.19999999999961
-0.13999999999999 1.67999999999984 -4.19999999999961 2.79999999999974
>> H=sym(hilb(30)); norm(double(H*inv(H)-eye(size(H))))
ans = 0
• 例:奇异阵求逆
>> A=[16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1]; >> format long; B = inv(A)
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.306145e-017. B= 1.0e+014 * 0.93824992236885 2.81474976710656 -2.81474976710656 2.81474976710656 8.44424930131968 -8.44424930131968 -2.81474976710656 -8.44424930131968 8.44424930131968 -0.93824992236885 -2.81474976710656 2.81474976710656
–随机元素矩阵
若矩阵随机元素满足[0,1]区间上的均匀分布 生成nm阶标准均匀分布为随机数矩阵: A=rand(n,m)
生成nn阶标准均匀分布为随机数方阵:
A=rand(n)
–对角元素矩阵
已知向量生成对角矩阵: A=diag(V) 已知矩阵提取对角元素列向量: V=diag(A) 生成主对角线上第k条对角线为V的矩阵: A=diag(V,k)
B=invhilb(n)
–Hankel(汉克 ) 矩阵
其中:第一列的各个元素定义为C向量,最后一行各 个元素定义为R。H为对称阵。
H1=hankel(C) 由 Hankel 矩阵反对角线上元素相等得出一下三角 阵均为零的Hankel 矩阵
–Vandermonde(范德蒙)矩阵
–伴随矩阵
其中:P(s)为首项系数为一的多向式。
• 例:求一向量、矩阵的范数
>> a=[16 2 3 13]; >> [norm(a), norm(a,2), norm(a,1), norm(a,Inf)] ans = 2.092844953645635e+001 2.092844953645635e+001 3.400000000000000e+001 1.600000000000000e+001 >> A=[16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1]; >> [norm(A), norm(A,2), norm(A,1), norm(A,Inf)] ans = 34 34 34 34 符号运算工具箱未提供norm( )函数,需先用double( ) 函数转换成双精度数值矩阵,再调用norm( )函数。
计算误差范数: >> norm(H*inv(H)-eye(size(H)))
ans = 6.235798190375727e-013
>> H2=invhilb(4); norm(H*H2-eye(size(H)))
ans = 5.684341886080802e-014
>> H=hilb(10); H1=inv(H); norm(H*H1-eye(size(H))) ans = 0.00264500826202 >> H2=invhilb(10); norm(H*H2-eye(size(H))) ans = 1.612897415528547e-005 >> H=hilb(13); H1=inv(H); norm(H*H1-eye(size(H))) Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.339949e-018. ans = 53.23696008570294 >> H2=invhilb(13); norm(H*H2-eye(size(H))) ans = 11.37062973181391 对接近于奇异矩阵,高阶一般不建议用inv( ),可用符号工具箱。
4.1.2 矩阵基本概念与性质
• 行列式
格式 :d=det(A)
例:求行列式
>> A=[16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1]; det(A) ans = 0
• 例:
>> tic, A=sym(hilb(20)); det(A), toc ans = 1/23774547167685345090916442434276164401754 1983775348649303318533123441975931064458 5187585766816573773440565759867265558971 7656384197107933033865823241498112410235 5448916615471780963525779783680000000000 0000000000000000000000000 elapsed_time = 2.3140 高阶的Hilbert矩阵是接近奇异的矩阵。